Chapter 2

Sets and Functions

2.1 Definitions and Examples

2.1.1 Sets and Elements

*

Intuitively, a set is a collection of objects. The objects in a set are called elements of that
set, and an element a belongs to E (written as a € E) or does not belong to E (written

asa ¢ F).

*

An empty set, denoted by 0, is a set that does not contain any elements.

*

A set E = {a}, consisting of a single element, is called a singleton.

Let E be a set. If a set A is contained in F, we say that A is a subset or a sub-set of E. The
elements of E that do not belong to set A form a new set called the complement of A in

E, denoted as A¢ or Cg(A). Formally, Cp(A) ={zr € E |z ¢ A}.

2.1.2 Set Operations

Given two sets A and B, we can construct other sets.

* We say that A is included in B (A is a subset of B or a part of B) and we denote it as A C B

if every element of A is also an element of B.

ACB& (Vre A=z € B)
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* We say that A and B are equal if and only if A C B and B C A.

* Given two sets A and B, the union of A and B, denoted as AU B (read as "A union B”), is

the set of elements that belong to either A or B.

AUB={x|rxe€ AVzx e B}

*

Given two sets A and B, the intersection of A and B, denoted as AN B (read as "A intersect

B”), is the set of elements that belong to both A and B.

ANB={z|x€ ANz € B}

*

We say that A and B are disjoint sets if AN B = ().

Example In N (the set of natural numbers), if we denote by D(n) the set of divisors of the

natural number n, we have

D(24) UD(16) = {1,2,3,4,6,8,12,16,24} and D(24) N D(16) = {1,2,3,4,8}

2.1.3 Properties and Rules of Calculations

Here are some properties and rules of calculations on sets.

Proposition 2.1 Let A, B, C be subsets of a set E. Then:

1. AUA=A AnA=A.
2. AUD=A AnD=0.

3. AUB=BUA, AN B = BN A (Commutativity).

4. AUBUC)=(AUB)UC, AN (BNC)=(ANB)NC (Associativity).

5. AUBNC)=(AUB)N(AUC), AN(BUC)=(ANB)U(ANC) (Distributivity).

2.1. Definitions and Examples
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Proof. We prove that AU (BNC)=(AUB)N(AUC)

Letz € AU(BNC)exeAoraze (BNO)
sSzreAor (reBandxel)
S ((rxeAorzeB)and (xe€ Aorx e ()
S (reAUB)and (x € AUC)

sre(AUB)N(AUC).

O

Definition 2.1 (Power Set) Let E be a set. We admit the existence of a set denoted by

P(E) such that the following equivalence holds:
XePE)eXCFE
P(FE) is called the power set of E.
Remark 2.1 If card(FE) = n, then card(P(E)) = 2"

Example If E = {1,2,3}, then card(P(E)) = 23 = 8 and

P(E) ={0,{1}, {2}, {3}, {1, 2},{1,3},{2,3},{1,2,3}}

Definition 2.2 (Set Difference) Let A, B be two subsets of E.

1. The difference of A and B, denoted A\ B, consists of elements that are in A but not
in B, ie, A\ B=ANCg(B).
2. The symmetric difference of A and B, denoted AAB, is the set (A\ B) U (B\ A) or
(AUB)\ (AN B).
Example 1. In N, we have D(24) \ D(16) = {3,6,12,24} and D(16) \ D(24) = {16}. Also,
D(24)AD(24) = {6, 12, 16, 24}.

2. The set R\ Q contains irrational numbers like 7.

Remark 2.2 When A C E, we have £\ A = Cg(A).

2.1. Definitions and Examples
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Proposition 2.2 Let A, B be two subsets of E. Then:

1. A\A=0.

2. A\ = A

3. AUCR(A) = E.

4. ANCg(A) =0.

5. Cp(Cp(A)) = A.

6. Cp(ANB) = Cp(A) U Cp(B).

7. Cg(AUB) =Cg(A)NCg(B).
Proof. We prove that Cg(AN B) = Cg(A) U Cg(B).

Let z € Cp(ANB) < x ¢ (ANB)

s zre(ANB)

SrxceAandzx€B

sSrcAorreDB
sr¢Aorz ¢ B

O

Definition 2.3 (Partition) Let E be a set. A partition of F is a set {FE;} of subsets of £

that satisfies the following two conditions:

]_. E == UiEIEi

2. EENE;j=0foralli#jel.
Example Let A be a subset of E. Then the set {A, Cg(A)} is a partition of E.

Definition 2.4 (Cartesian Product) Let A, B be two sets. The Cartesian product, denoted

A x B, is the set of pairs (z,y) where z € A and y € B.

Ax B={(z,y) |r € Aand y € B}

2.1. Definitions and Examples
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Example
1. R2=R xR ={(z,y) | z,y € R}.
2. Let A={1,2,3} and B = {a,b}. Then A x B={(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)}.

Generalization If we consider sets Ay, As, ..., A,, we can similarly define n-tuples (z1, xo, ..., x,)

where 21 € Ay, 29 € Ao, ..., x, € A,.

A1XAQX...XAn:{(Il,LE‘Q,...,SCn)|$16A1,I2€A2,...,$n€An}.

Proposition 2.3 Let A, B,C, D be four subsets of E. Then:
1. AxC)Uu(Bx(C)=(AUB) xC.
2. AXxCYU(AxD)=Ax (CUD,).
3. AxO)N(BxD)=(ANB) x (CND).

Proof. We prove that (A x C)U (B x(C)=(AUB) x C.

(AxCYU (B xC)={(z,y) | (z,y) € Ax Cor (z,y) € BxC}
={(z,y) | (reAandye C)or (r€ Bandye ()}
={(z,y) | (r€ Aorx e B)and y € C}

=(AUB) xC.

2.1.4 Definitions and Examples

Definition 2.5 Let E, F' be two sets. We say that f is a function from E to F' if for every

element x € F, there exists a unique element y € F' such that f(z) =y, and we write
f.E—F oo E-LF

* The set F is called the domain and F is called the codomain. The element z is called

the pre-image and y is called the image of x under f.

2.1. Definitions and Examples
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* We denote by §(F, F) the set of all functions from E to F.

Example

f:{1,2,3} — {2,4,5}
is not a function.

T o~ x?

f:E — FE
2. The identity function is a function and will be very useful in the

r =

following.
P.:ExXF — FE P:ExF — F
3. The projections

(z,y) = P(r,y) == (z,y) = Py(zy) =y

are also functions.
Definition 2.6 (Restrictions and Extensions) Let f be a function from E to F.

1. The restriction of f to a subset A C E is the function denoted fj4 : A — F' defined

by

fa=f(z), vVeeA

2. The extension of f to a set E’ containing E is any function g from E’ to F whose

restriction is f.

Example If f is the identity function from R* to itself, it has infinitely many extensions to

R, among which:

1. The identity function on R.
2. The absolute value function from R to itself.

3. The function h defined by h(z) = i (z + |z|), which is identically zero on R™.

2.1.5 Direct Image and Inverse Image

Definition 2.7 Let E, F' be two sets.

1. For AC FE and f: E — F, the direct image of A under f is a subset of F' defined by

f(A) ={f(z) |z € A}

2.1. Definitions and Examples
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2. For BC F and f: F — F, the inverse image of B under f is a subset of E defined
by
f1(B)={z| f(z) € B}

N — N
Example Let f be a given function:

n - 2n+1
1. Let A ={0,1,2}, then f(A) = {f(n) |n € A} = {f(0), (1), f(2)} = {1,3,5}.
2. Let B = {5}, then f~'(B) = {n € N| f(n) € B} = {n € N| f(n) = 5} = {2}
Proposition 2.4 Let f : E — F be a function, A;, As be two subsets of E, and By, By be
two subsets of F'. Then
(1) F(AUA) = (AU (A), [ANA) Cf(A)N S (A);
(2) If Ay C Ay, then f(Ay) C f(As);
(3) A C f7H(f(A));
(4) [TH(BIUBy) = fTH(B)USTH(By), [fTH(BiNBy) =71 (B) N [ (By);
(5) If By C By, then f~'(By) C f~(Bs);
(6) f(f7"(B) C Bu.
Proof: We prove property (2).
Let y € f(A;), then 3z € Ay | f(z) =y, and since A} C Ay, there exists © € Ay | f(x) =
y. Therefore, y € f (As,).

g

Definition 2.8 (Composition) Let E, F, G be three sets, and f, g be two functions such that
E-LFPSa

Then we can obtain a function from E to G, denoted by h = g o f, and called the

composition of f and g, defined as

Vo e E h(z) =go f(z) = g[f(x)]

2.1. Definitions and Examples
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Remark 2.3 In general, f o g # go f. This is illustrated by real functions
flx) =2 gx)=22+1

fog(z)=flg(@)] = f2x +1) = (22 +1)°, gof(z)=g[f(z)] =g(z*) = 22" + 1.

Therefore, fog# go f.

* However, function composition is associative: ho (go f) = (hog)o f.

2.1.6 Injection, Surjection, Bijection

Definition 2.9 Let E, F' be two sets and f : F — F be a function.
1. f is injective if and only if
Ve,o' € B, f(x)=f(2)) =z =2
2. f is surjective if and only if
Yye F,az € E|y= f(x)

* Another formulation: f is surjective if and only if f(E) = F.

3. f is bijective if f is both injective and surjective. In other words,
Vye F,.Alx € E |y = f(z)

Remark 2.4 If f is bijective, and only in this case, to each y € F'is associated a unique z € FE.

We can define a bijective function, denoted as
' F—F
and called the inverse function of f. We have the equivalence
y=[f@)er=["(y)

Example Let f: N — Q be defined by f(z) = HLI Let’s show that f is injective. Assume

z,x" € N such that f(z) = f(2'). Then 7 = 77, which implies 1 + 2 = 1 + 2’ and

thus x = 2’. Therefore, f is injective.

2.1. Definitions and Examples
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However, f is not surjective. We need to find an element y that does not have a pre-image
under f. Here it is easy to see that we always have f(x) < 1, so for example y = 2 has

no pre-image. Hence, f is not surjective and therefore not bijective.

Theorem 2.1 Let E, F, G be three sets and f, g be two functions such that f: F — F and

g: F—G

1. If f and g are injective, then g o f is injective.
2. If f and g are surjective, then g o f is surjective.
3. If f and g are bijective, then g o f is bijective.

4. If f and g are bijective, then (go f)™ ' = f~log™
Proof

1. Since f and g are injective, we have
(go f)x) =(g90N)y) = flz) = fly) =z =y.
2. Since f and g are surjective, we have
(go fIE) =glf(E)] = g(F) = G.

3. Follows directly from (1) and (2).

4. Let z € G. Since g o f is bijective, there exists € E such that (go f)(z) = z.
We have (go f)7'(z) = (g0 /)" ((go f)(x) ==
On the other hand,
(fteog ) (2)=(fTog ) ((go fl@) = f (g7 (9(f(2) = f7'(f(2)) = z.

Therefore, (go f)™'(2) = (f"tog ) (2) Vz€G. Hence, (go f) = fltog™

2.2 Exercises with Solutions

Exercise 1.

2.2. Exercises with Solutions
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1. Let A={1,2,3,4,5}. Determine whether the following statements are true:

2€¢ A,3CADe A{0cAAU{D}=A

2. Let B ={1,2} and C' = {1, 3} be two sets.

(a) Determine BN C, BUC,Cy(B),C4(C), A\B, and BAC.

(b) Determine B x C, B x ), B x {(}}, and P(P(B)).
Exercise 2. Let A, B,C be three subsets of the set £. Show that:

1. ANB=0< AcC Cg(B)
2. AC B< Cg(B) C Cg(A).
3. Cg(ANB)=Cg(A)UCg(B), Cg(AUB)=Cg(A)NCg(B)
4. A\(BUC) = (A\B)N (A\C).
5. Cg(A)ACE(B) = AAB, Cg(AAB)=Cg(A)AB(x)
6. ( AxCYU(BxC)=(AUB)xC.
7. AC B=P(A) C P(B).
Exercise 3. Let A, B,C be three subsets of the set E. Show that:
1. A=B& AnB=AUB.
2. AUB=ANnC& BCACC.
3. ANB=0< Cg(A)UCE(B) = E.

4. AAB=()< A= B.

()4

. (ANB)\C = (A\C) N (B\C) = (A\C)N B = (B\C) N A.

Exercise 4. Let f: E — F be a function. Let A, B be two subsets of the set E and C, D be

two subsets of the set . Show that:

1. f(AnB) C f(A)Nf(B), [f(AUB)=f(A)U f(B)(x)

2. f is injective & f(ANB) = f(A)N f(B).

2.2. Exercises with Solutions
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3. fiCnD)=fHC)nfHD), fHCUD)=f"HC)U fH(D)(x)
4. f(f71(C)) cC.
5. [ is surjective < f (f~1(C)) = C.
6. [~ (Cr(C)) =Crf~(C). 7. fH(CAD) = fTH(C)Af(D).
Exercise 5. Consider the function f defined by
fiR—R

2z
1+ 22

v — f(z) =
1. Is f injective? Surjective?
2. Show that f(R) =[-1,1].
3. Show that the function g defined by
g:[-1,1] — [-1,1]
z— g(x) = f(x)

is a bijection and find its inverse function ¢g—.

Exercise 6. Let E be a non-empty set. Consider a function f from E to R such that

i) f(¢) =0,
i) f(E) =1,
iii) VA, Be P(E): f(AUB) = f(A)+ f(B), if AN B = ¢.

1. For any subset A of E, express f (C’g‘) in terms of f(A).
2. Prove that VA, B € P(E): f(AUB) = f(A)+ f(B) — f(AN B).

3. Furthermore, suppose that
iv) VAe P(E) : f(A) > 0.

(a) Show that VA, Be€ P(E): AC B= f(A) < f(B).

(b) Show that VA € P(E): 0 < f(A) < 1.

2.2. Exercises with Solutions
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2.2.1 Solution

Exercise 1.

* 2 € A means that 2 is an element of A. This is true because the elements of A are 1,

2, and 3.

* 3 C A means that 3 is a subset of A. This is false because 3 is an element of A and

not a subset of A.

* ¢ € A means that ¢ is an element of A. This is false because the elements of A are 1,

2, and 3, but ¢ is not among these elements.

* {¢} C A means that the singleton {¢} is a subset of A. This is false because {¢} is a

subset of P(A) (the power set of A) and not a subset of A.

* AUu{¢} ={1,2,3,¢}. This is false because A has three elements.

a) BNC ={1};BUC ={1,2,3};Ca(B) = {3,4,5}; Ca(C) = {2,4,5}; A\B = {3,4,5}.
BAC ={BUC)\(BNC)=A{1,2,3}\{1} = {2,3}
b)
* Bx C={(z,y) |z € BAyeC}=1{(1,1),(1,3),(2,1),(2,3)}.
*Bx¢=A{(r,y) | € BAy € ¢}, where ¢ does not contain any elements, so
Bx ¢ =¢.
* Bx{ot ={(z,y) |z e BAye{o}} ={(1,9),(2,0)}.
* P(B) ={¢,B,{1},{2}}s0
P(P(B)) = {¢; P(B)i{o}:{B}:; {{1}}:{{2}}:{o, B} {o. {1}}: {0, {2} }: {B, {1} };{B, {2} };
{13423 {e, B, {11} {0, B, {211 {B, {1}, {2}};: {o, {1}, {2}}.

Exercise 2.

1. AnNB=¢ < AC Cg(B).

2.2. Exercises with Solutions
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= We have AN B = ¢. Let © € A and assume that x ¢ Cg(B).

Then x ¢ Cg(B) =z € C(Cg(B)) = B =12€ ANB = AN B # ¢, which is

absurd. Thus, x € Cg(B).

< We assume that AN B # ¢. Then, 3 € E/x € ANB = 2z € AANx € B and
since A C Cg(B), we have x € Cg(B) Az € B =z € Cg(B) N B = ¢, which is a

contradiction. Therefore, AN B = ¢.
= Let’s assume that A C B and = € Cg(B). Then x € Cg(B) = = ¢ B and since
AC B,wehavex ¢ A=z € Cg(A) = Cg(B) C (A).
< We have Cg(B) C Cg(A). Then z € A = 2 ¢ Cg(A) = = ¢ Cg(B) = = € B.
Therefore, A C B.
re€Cg(ANB)s 2 ¢ (ANB)<—=x¢ AVae ¢ B
T E CE<A> Vxe CE(B>
& x € Cg(A)UCg(B).
The same applies to the union.
4. A\(BUC) = (A\B)N(A\C).
ABUC)E AncBue)2 An ( Cs(B) N Cp(C) )
= (AN Cy(B)) N (AN Cp(0)) = (A\B) N (4\C).
5. Cg(A)ACE(B) = AAB.
According to the definition: AAB = (A\B) U (B\A) = (ANCg(B))U(BNCg(A)). By
replacing A with Cg(A) and B with Cg(B) in the previous formula
Cp(A)ACE(B) =(Ce(A)\Cr(B)) U(Cr(B)\Ck(4)) =
Cp(A)NCp(B)UCp(B)NCp(A) =

(ANCg(B))U(BNCg(A)) = AAB

2.2. Exercises with Solutions
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Since N and U are commutative laws.

6. (AxC)U(BxC)=(AUB) xC.

(AxCYU (B xC)={(x,y)/(x,y) € Ax C or (z,y) € BxC}
={(z,y) | (r€Aandy e C)or (x € Bandy € C}
={(z,y) | (r€Aorx e B)and y € C}

=(AUB) xC.
7. AC B= P(A) C P(B).
According to the definition: P(A) = {X | X C A}, we have:
X € P(A) = X C A and since A C B, we have X C B = x € P(B). Therefore, the
inclusion holds.

Exercise 4.

1. f(ANB) C f(A) N f(B).

Let y € f(AN B), which means there exists x € AN B such that y = f(z). Since
x € A, we have y = f(z) € f(A). Similarly, since x € B, we have y € f(B). Hence,
y € [(A) N f(B).

Therefore, f(AN B) C f(A)N f(B).

2. f is injective & f(ANB) = f(A)N f(B).

< Let’s assume that f(ANB) = f(A) N f(B). We need to prove that f is injective.

Assume that f(x1) = f(xg) for some z1,29 € E. Let A = {x1} and B = {x.}.
We have f(x1) = f(x2) € f(A)N f(B) = f(AN B), which means f(AN B) # ¢.
This implies A N B # ¢, which contradicts the assumption x; = x5. Therefore, f is

injective.

—> We assume that f is injective. We need to prove that f(AN B) = f(A) N f(B).

2.2. Exercises with Solutions
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We already proved in part (1) that f(AN B) C f(A)N f(B). Now let’s prove the
other inclusion. Let y € f(A) N f(B). Then y € f(A) and y € f(B).

=JreAly=f(x) AN 3FTeBly=7/[(2).
Since f(z) = f(2’) and f is injective, we have x = T.
=r€ANB= f(z)e f(ANB)=y € f(ANB).

Thus, f(A)N f(B) C f(AN B).
3. fFHCnD)=fHC)nfHD)
fH(CnD)={z; f(x) € CN D}
= {z; f(x) e C A f(z) € D}
= {(; f(x) € C) and (z; f(x) € D)}
= (C)nf D).
4. If f(z) € f(f1(C)), then z € C

Therefore, f (f~1(C)) c C.
5. f is surjective & f (f1(C)) = C.

= We need to prove that for every y € F, there exists z € E such that y = f(z).

For every y € F, we have y € {y} and according to the hypothesis, we can write
{v}=r{w})-

Therefore, there exists an element x € E with z € f~'({y}) = f(z) € {y} =

f(z) =y.

<= We have f(f '(C)) C C according to (4). Now we need to prove that C' C
FUHO)).
Let y € C, which means y € F. Since f is surjective, there exists € E such that
y = f(x).

= Jr € Ely = f(x) A3z € Bly = f(2).

2.2. Exercises with Solutions
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= f(z) = f(2') and since f is injective = =7
=ze fHC)= f(z)e f(f1(O))

Therefore, y € f(f~1(C)). Hence, f (f~*(C)) D C.

(6) /7 (Cr(C)) = Crf(C).

z € [T (Cr(C)) & fz) € Cp(C) & f(x) ¢ C o ¢ f71(C)

sz e CpfY(0).
(7) fHCAD) = f~HC)AfH(D).

fHCAD) = fH(C\D) U (D\C)) = fH(C\D) U f1(D\C)
= fHCNCR (D) U fHDNCR(0))
= ()N fFHCr D)) U (fFHD)N FHCr(C))) -
= (fHC)NCrfTH D)) U (fH(D)NCrfH(C)).
= (O D) U DN HO)
= [TH(C)AfH (D).

Exercise 5.

1. f is not injective because f(2) = f(1/2) = % but 2 # %

f is not surjective because the value ”2” does not have a preimage.

To show this, we can solve the equation f(z) = 2 which leads to 2> —x + 1 = 0 and this

equation has no real solutions.

2. We know that f(R) = [—1,1] if the equation f(x) = y has a unique solution z for every
y e [_L 1]
flx)=y=yz? —22+y=0.... (%)

A=1—1y?

(%) has a solution if and only if A > 0, so there are solutions if and only if y € [—1,1].

Hence, f(R) = [-1,1].

2.2. Exercises with Solutions
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3. ¢ is bijective if and only if ¢ is injective and surjective.

—> We assume that g is bijective. We need to prove that for every y € [—1,1], the
equation g(x) = y has a unique solution.
So for every y € [—1, 1], there exists a unique = € [—1, 1] such that g(z) = .

Let’s find the solution to g(z) = x:

g = VI € [-1,1]
y
14y /1-92
T = v ) gé [_1> 1]

\/1—22 /1 =22
We can see that # ¢ [—1, 1], so the only solution is x = # Therefore,

g is bijective.

2.2. Exercises with Solutions
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Binary Relations on a Set

3.1 Basic Definitions

Definition 3.1 (Binary Relation) Let E be a set. A binary relation R on E is a property
that applies to pairs of elements from E. We denote xRy to indicate that the property

is true for the pair (z,y) € E x E.
Example

1. The inequality < is a relation on N, Z, and R.
2. The inclusion relation in the power set of E: ARB < A C B.

3. The divisibility relation on the integers: mRn < m divides n.
Definition 3.2 Let R be a relation on a set E.

1. R is reflexive if for every x € E, 2’Rx holds.
2. R is symmetric if for all z,y € E, xRy = yRx.
3. R is antisymmetric if for all z,y € E, (zRy AyRz) =z =y.

4. R is transitive if for all x,y,z € E, (xRy AyRz) = zRz.

42
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3.2 Equivalence Relations

Definition 3.3 (Equivalence Relation) A binary relation R on E is an equivalence relation

if and only if it is reflexive, symmetric, and transitive.

Example 1 The relation R of "being parallel” is an equivalence relation for the set E of affine
lines in the plane:
1. Reflexivity: A line is parallel to itself.
2. Symmetry: If line D is parallel to D', then D’ is parallel to D.
3. Transitivity: If line D is parallel to D" and D’ is parallel to D", then D is parallel to
D".
Example 2 Consider the following relation on Z:

TRy IkeZ|x—y=2k

1. R is reflexive because 3k =0 | x — z = 2k = 0, thus zRz.

2. Suppose zRy, then 3k € Z | v — y = 2k = y — x = 2k’ with ¥’ = —k € Z. Therefore,
yRzx. Hence, R is symmetric.

3. Suppose 2Ry and yRz. Then, (3k € Z | v —y = 2k) and (I € Z | y — =z = 2K') by
adding these equations, we obtain x — z = 2k” with £ = (k+ k') € Z. Thus, 2Rz.

Therefore, R is transitive. Consequently, R is an equivalence relation.

Definition 3.4 Let R be an equivalence relation on a set E. The equivalence class of an
element x € E is the set of elements in F that are related to x by R, denoted by C(x) or
T

T={y € E|yRa}

Definition 3.5 Let R be an equivalence relation on a set E. The quotient set of E by R is

the set of equivalence classes of R, denoted by E/R:

E/R={z|z € E}
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Example In the previous example, we have
T={y €l |yRa}
={y €L |z —y=2k}
={x—-2k:kelZ}
={...,xc—4 -2 z,x+2,x+4,...}.

0={yeE|0Ry}={...,-4,-2,0,2,4,.. }, I={ye E| 1Ry} ={...,—3,—-1,1,3,...}

and 2 = 0.Therefore,Z/R = {7 |z € E} = {0,1}
Proposition 3.1 Let R be an equivalence relation on E£. Then

1. An equivalence class is a subset of the set F, i.e., forallx € E, T C E.
2. An equivalence class is never empty, i.e., for all x € E, T # ¢.
3. The intersection of two distinct equivalence classes is empty, i.e., for all x,y € F,
TNG=¢.
4. Forallz,y € F, xRy < T = 1.
Theorem 3.1 Let R be an equivalence relation on E. The equivalence classes (Z),cr form a

partition of E:

E= Urer®

3.3 Order Relation

Definition 3.6 (Order Relation) A binary relation R on E is an order relation if and only

if it is reflexive, antisymmetric, and transitive. We then say that (F,R) is an ordered set.
Example.

1. The inequality < is an order relation on N, Z, and R.

2. The inclusion relation in the power set of F is an order relation: ARB < A C B.
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Definition 3.7 Let R be an order relation on K. Two elements z and y of E are said to be

comparable if 2Ry or yRx.

Definition 3.8 (Total Order and Partial Order) Let R be an order relation on E. If any
two elements x and y are always comparable, we say that R is a total order relation
and the set E is called totally ordered. Otherwise (i.e., if there exist at least two non-
comparable elements x and y), we say that R is a partial order relation and the set E is

called partially ordered.
Example.

1. <is a total order on N, Z, and R.

2. The divisibility relation in N* is a partial order.
Definition 3.9 Let R be an order relation on E, and let M, m be two elements of E.

1. M is an upper bound of a subset A of F if tRM for every x € A.

2. m is a lower bound of a subset A of E if mRxz for every z € A.
Example.

1. The set {8,10, 12} is bounded above by 120 and bounded below by 2 for the divisibility

relation ”/” on N.

2. P(E) is bounded below by () and bounded above by FE for the inclusion relation C.

3.4 Exercises with Solutions
Exercise 1. In R, the binary relation R is defined as follows:
Ve,y e R: 2Ry <= 2> —1=19¢*—1

1. Show that R is an equivalence relation on R.

2. Determine the quotient set R/R.
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