M'sila University Fcaulty of Mathematics and Computer Department of Mathematics Year 2023/2024

TD Number 1

Exercise 1. In each case, find the characteristic polynomial, eigenvalues, eigenvectors, and (if possible) an invertible matrix P such that $P^{-1}AP$ is diagonal.

a.
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$$
, **b.** $A = \begin{bmatrix} 2 & -4 \\ -1 & -1 \end{bmatrix}$, **c.** $A = \begin{bmatrix} 7 & 0 & -4 \\ 0 & 5 & 0 \\ 5 & 0 & -2 \end{bmatrix}$
d. $A = \begin{bmatrix} 1 & 1 & -3 \\ 2 & 0 & 6 \\ 1 & -1 & 5 \end{bmatrix}$, **e.** $A = \begin{bmatrix} 1 & -2 & 3 \\ 2 & 6 & -6 \\ 1 & 2 & -1 \end{bmatrix}$, **f.** $A = \begin{bmatrix} 0 & 1 & 0 \\ 3 & 0 & 1 \\ 2 & 0 & 0 \end{bmatrix}$
g. $A = \begin{bmatrix} 3 & 1 & 1 \\ -4 & -2 & -5 \\ 2 & 2 & 5 \end{bmatrix}$, **h.** $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & -1 & 2 \end{bmatrix}$

Exercise 2. In each case of Ex1, compute A^n (if possible).

Exercise 3. If $A = \begin{bmatrix} 1 & 3 \\ 0 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$ verify that A and B are diagonalizable, but AB is not.