M'sila University
Fcaulty of Mathematics and Computer
Department of Mathematics
Year 2023/2024

TD Number 1

Exercise 1. In each case, find the characteristic polynomial, eigenvalues, eigenvectors, and (if possible) an invertible matrix P such that $P^{-1} A P$ is diagonal.
a. $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right]$,
b. $A=\left[\begin{array}{cc}2 & -4 \\ -1 & -1\end{array}\right]$, c. $A=\left[\begin{array}{ccc}7 & 0 & -4 \\ 0 & 5 & 0 \\ 5 & 0 & -2\end{array}\right]$
d. $A=\left[\begin{array}{ccc}1 & 1 & -3 \\ 2 & 0 & 6 \\ 1 & -1 & 5\end{array}\right]$,
e. $A=\left[\begin{array}{ccc}1 & -2 & 3 \\ 2 & 6 & -6 \\ 1 & 2 & -1\end{array}\right]$,
f. $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 3 & 0 & 1 \\ 2 & 0 & 0\end{array}\right]$
g. $A=\left[\begin{array}{ccc}3 & 1 & 1 \\ -4 & -2 & -5 \\ 2 & 2 & 5\end{array}\right]$,
h. $A=\left[\begin{array}{ccc}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & -1 & 2\end{array}\right]$

Exercise 2. In each case of Ex1, compute A^{n} (if possible).

Exercise 3. If $A=\left[\begin{array}{ll}1 & 3 \\ 0 & 2\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$ verify that A and B are diagonalizable, but $A B$ is not.

