MOHAMED BOUDIAF UNIVERSITY OF MSILA

Faculty of Mathematics and Computer Science
Computer Science Department
Module : Analysis I
University year : 2023/2024 Resp. M. TOUAHRIA

Chapter $\mathrm{N}^{\circ} 1$: Field of real and complex numbers

0.1 Representation of the set \mathbb{R}

At the foundation of Analysis are the real numbers, and there are different methods to introduce this. So in this section we will recall with some definitions and properties.

Definition 1 It is admitted that there exists a set called the set of natural numbers \mathbb{N} having the following properties :

- there exists a smallest element in \mathbb{N}, designed by 0 .
- for all integers natural n there exists natural element $n^{*}=n+1$ (n^{*} is called the next of n.)
- for all integers natural $n, n^{*} \neq 0$.
- for all integers natural n^{*}, m^{*} if $n^{*}=m^{*}$ then $n=m$.
- recurrence property : let P be a property defined on \mathbb{N}, if $P(0)$ is verified (checked) and $P(n+1)$ then P is checked for all n natural

We write $\mathbb{N}=\{0,1,2,3, \ldots\}$. We note by $\mathbb{N}^{*}=\mathbb{N}-\{0\}$ is the set of natural elements non-zero.
Exercise : show that for all n natural $2^{n}>0$.

Figure 1 - The German mathematician Leopold Kronecker (1831-1916).

Leopold Kronecker (1831-1916) has famously said that the natural numbers were created by god and all the rest of mathematics is human creation. Humans have learned to add natural numbers n, m and also to multiply them. The sum $m+n$ and the product $n \times m$ are again members of the set \mathbb{N}.

The difference $n-m$ is only a natural number if n is larger than m. Also, one can not divide two arbitrary natural numbers p, q as the quotient $\frac{p}{q}$ is only in \mathbb{N} if q is divisor of p.

Remark 2 The set of natural numbers \mathbb{N} has an obvious defect, because if n and m two integers such that $n>m$ the algebraic equations

$$
\begin{equation*}
n+x=m, \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
q \cdot x=p \tag{2}
\end{equation*}
$$

do not have solutions in \mathbb{N}.
Idea : we will extend \mathbb{N} towards another set called the set of whole numbers. To remedy the situation (that to say the first equation has a solution).
The set of whole numbers, we note by \mathbb{Z}. The symbol \mathbb{Z} comes from the German word Zahl for number.

Remark 3 The set of whole numbers, also have a defect because to solve equations of the type (2) for every $p, q \in \mathbb{Z}$, we have to introduce another kind of numbers.

If $G C D(p, q)=r$ than it exists a and b such that $p=r . a q=r . b$ and the solution is $x=\frac{a}{b}$ and $G C D(a, b)=1, x$ called rational number, and the set of rational numbers. This set is denoted by \mathbb{Q} which comes from the German word (of Latin origin) Quotient for quotient. We have

$$
\mathbb{Q}=\left\{\frac{a}{b}: a \in \mathbb{Z}, b \in \mathbb{N}^{*}, G C D(a, b)=1\right\}
$$

In this set, one can add, subtract, multiply, and divide without any restrictions following the well known rules. Furthermore, one can solve linear algebraic equations of the form

$$
\begin{equation*}
a x+b=0 \tag{3}
\end{equation*}
$$

for arbitrary $a, b \in \mathbb{Q}$ with $a \neq 0$ uniquely by an $x \in \mathbb{Q}$.
Remark 4 1. For all $n \in \mathbb{N}^{*}$ the equation $n . x=1$, admits an only solution $x=\frac{1}{n}$.
2. For all $n \in \mathbb{N}^{*}$ the equation $n . x=-1$, admits an only solution $x=\frac{-1}{n}$.
3. Any rational number can be represented by a periodic decimal expansion.

For example : $\frac{2}{7}=0.285714285714 \ldots, \quad \frac{2}{7}=0.285714$ also $\frac{11}{7}=1.5714285 \ldots, \quad \frac{11}{7}=$ 1.5714285.

We can easily see that rational numbers have a defect, because the equation $x^{2}-2=0$, does not have a solution in \mathbb{Q}

Definition 5 The set of real numbers is the set of x-coordinate points on the line linear (O, i)

- The positive real numbers are the x-coordinate points on the right of O.
- The negative real numbers are the x-coordinate points on the left of O.

Remark 6 A no-rational number is said to be irrational and the set of these numbers is the irrational set denoted by \mathbb{R} / \mathbb{Q}.

For example : $\sqrt{2}, e, \pi$, are irrational numbers.

0.1.1 The algebraic structure of \mathbb{R}

There exist two operations on \mathbb{R}, called addition and multiplication, which assign to every pair a, b of elements from \mathbb{R} two new elements $a+b \in \mathbb{R}$ and $a b \in \mathbb{R}$ (we set $a b=a . b$). They are called the sum and the product of a, b. The operations addition and multiplication satisfy the following rules.

1. $(a+b)+c=a+(b+c) \quad$ (Associativity)
2. $a+b=b+a \quad$ (commutativity)
3. There is exactly one element in \mathbb{R}, called the zero and denoted by 0 , such that

$$
a+0=a \text { for all } a \in \mathbb{R}
$$

4. For all $a \in \mathbb{R}$ there exists exactly one $b \in \mathbb{R}$ such that $a+b=0$. The element b denoted by $-a$ and we will call it the negative to a.
5. $(a b) c=a(b c)$
(Associativity)
6. $a b=b a$ (commutativity)
7. There is exactly one element in $\mathbb{R} \backslash\{0\}$ called the one and denoted by 1 , such that $a .1=a$ for all $a \in \mathbb{R}$.
8. For every $a \in \mathbb{R} \backslash\{0\}$ there is exactly one element $b \in \mathbb{R}$, such that $a b=1$. We denote b by a^{-1} or $\frac{1}{a}$ and we say a^{-1} is the inverse element to a.
9. $a(b+c)=a b+a c$. (Distributivity)

Notation. We set

$$
a-b=a+(-b) \text { and } \frac{a}{b}=a b^{-1}=b^{-1} a
$$

and call $a-b$ the difference of a and b, and $\frac{a}{b}$ the quotient of a and b. The operation $a, b \longmapsto$ $a-b$ respectively $\frac{a}{b}$ subtraction and division.
Proposition 7 For all a, b in \mathbb{R}
$-0 . a=a .0=0$.

- $a . b=0$ if and only if $a=0$ or $b=0$.
$-(-1) \cdot a=-a$

0.1.2 Order relation in \mathbb{R}

Between the elements of \mathbb{R} there is a relation \leq, that is, for elements $x, y \in \mathbb{R}$. one can determine whether $x \leq y$ or not. Here the following conditions must hold :

1. For all $x \in \mathbb{R}: x \leq x$ (\leq reflexive). In other words, every element relates to itself.
2. For all $x, y \in \mathbb{R}: x \leq y$ and $y \leq x$ implies $x=y$ (\leq antisymmetric)
3. For all x, y, and z if $x \leq y$ and $y \leq z$ implies that $x \leq z$ (\leq transitive)
4. For all $x, y \in \mathbb{R}: x \leq y$ or $y \leq x$

The relation \leq on \mathbb{R} is called inequality.
A set on which there is a relation between pairs of elements satisfying axioms 1, 2, and 3, as you know, is said to be partially ordered. If in addition axiom 4 holds, that is, any two elements are comparable, the set is linearly ordered. Thus the set of real numbers is linearly ordered by the relation of inequality between elements.

Remark 8 Let $x, y \in \mathbb{R}$
\diamond If $x \geq y$ we can write $y \leq x$
\diamond If $x \geq y$ and $x \neq y$ we can write $y<x$
\diamond If $x \geq y$ and $x \neq y$ we can write $y>x$

0.2 Existence of the Least Upper (or Greatest Lower) Bound of a Set of Numbers

Definition 9 Let $X \subset \mathbb{R}$ be nonempty

- is said to be bounded frome above, upper bound or Majorant if there exists a number $M \in \mathbb{R}$ such that for all $x \in X, x \leq M$.

1. M is the supermum of X exists, it is an upper bound of X and,
2. if M^{\prime} another upper bound of X, than $M \leq M^{\prime}$ (that's to say M is the smallest upper bound of X). If it is exists the supermum of X is denoted by $\sup (X)$

- is said to be bounded frome below, lower bound or minorant if there exists a number $m \in \mathbb{R}$ such that for all $x \in X, x \geq m$.

1. m is the infimum of X exists, it is an lower bound of X and,
2. if m^{\prime} another lower bound of X, than $m^{\prime} \leq m$ (that's to say m is the greatest lower bound of X). If it is exists the infimum of X is denoted by $\inf (X)$

Remark $10 \quad-I f \inf (X) \in X$, we call it minimum of X, and we denoted it by $\min (X)$

- If $\sup (X) \in X$, we call it maximum of X, and we denoted it by $\max (X)$

For example, the set $X=\{x \in \mathbb{R} \mid 0 \leq x<1\}$ has a minimal element. But, as one can easily verify, it has no maximal element.

0.2.1 Characterization of supermum and infimum

Theorem 11 1. If a set $X \subset \mathbb{R}$ has supremum $\sup (X)=M$ if and only if

- M is an upper bound of X
- for all $\epsilon>0$ there exists $a \in X$ such that $\sup (A)-\epsilon<a \leq \sup (A)$.

2. If a set $X \subset \mathbb{R}$ has infimum $\inf (X)=m$ if and only if

- m is an lower bound of X
- for all $\epsilon>0$ there exists $a \in X$ such that $\inf (X) \leq a<\inf (X)+\epsilon$.

Exercise 1 : Determine the supermum and infimum of the parts A, and B in \mathbb{R}

$$
A=\left\{\sin \frac{2 n \pi}{7}, n \in \mathbb{Z}\right\}, \text { and } B=\left\{\cos \frac{2 n \pi}{7}, n \in \mathbb{Z}\right\}
$$

Proposition 12 The supermum or infimum if there exists is unique

- If X no bounded from above, we write for convention $\sup (X)=+\infty$
- If X no bounded from below, we write for convention $\inf (X)=-\infty$

Proposition 13 Let A; and B two no-empty parts bounded in \mathbb{R}

1. If $A \subset B$ then $\sup A \leq \sup B$, and $\inf A \geq \inf B$.
2. $\sup (A \cup B)=\max \{\sup A, \sup B\}$.
3. $\inf (A \cup B)=\min \{\inf A, \inf B\}$.

Proof: See the course or tutorials.
Exercise 2: Find the supremum, infimum, maximum and minimum of the following sets of numbers, whenever they exist, justifying your conclusions :

$$
A=] 1,5], \quad B=]-\infty, 2], \quad C=[-1,0[\cup[3,4]
$$

Theorem 14 The set of natural numbers is not bounded from above (majorant). The sets $\mathbb{Z}, \mathbb{Q}, \mathbb{R} / \mathbb{Q}$ and \mathbb{R} are neither lower nor upper bound.

0.3 Integer part

Theorem 15 For all $x \in \mathbb{R}$ there exists a unique $n \in \mathbb{Z}$, such that $n \leq x<n+1$.
Definition 16 Let $x \in \mathbb{R}$, the relative integers n verify $n \leq x<n+1$, is said the integer part of x, denoted by $[x]$. Also

$$
[x] \leq x<[x]+1
$$

For example : $[1.5]=1, \quad[0.95]=0, \quad[-1.75]=-2, \quad \ldots$
Exercise 3 : Find the integer part of this number $S=\frac{1}{\frac{1}{1980}+\frac{1}{1981}+\ldots .+\frac{1}{2001}}$
Exercise 4 : Solve in \mathbb{R} the following equations:

$$
\left[\frac{x-1}{2}\right]=-2, \quad[x]=x-1, \quad[x]+|x-1|=x, \quad\left[\log _{2} x\right]=\left[\log _{3} x\right]
$$

0.4 Intervals and absolute value

We now introduce the following notation and terminology for the number sets listed below :

$$
\begin{gathered}
] a, b[=\{x \in \mathbb{R}: a<x<b\} \quad \text { is the open interval } \\
{[a, b]=\{x \in \mathbb{R}: a \leq x \leq b\} \quad \text { is the closed interval }} \\
] a, b]=\{x \in \mathbb{R}: a<x \leq b\} \quad \text { is the half open interval, containing b } \\
{[a, b[=\{x \in \mathbb{R}: a \leq x<b\} \quad \text { is the half open interval, containing a }}
\end{gathered}
$$

Definition 17 Open, closed, and half-open intervals are called numerical intervals or simply intervals. The numbers determining an interval are called its endpoints.

The quantity $b-a$ is called the length of the interval $a b$. If I is an interval, we shall denote its length by $|I|$.

The sets

$$
\begin{aligned}
&] a,+\infty=\{x \in \mathbb{R}: x>a\}, \quad[a,+\infty[=\{x \in \mathbb{R}: x \geq a\} \\
&] \infty, b[=\{x \in \mathbb{R}: x<b\}, \quad] \infty, b]=\{x \in \mathbb{R}: x \leq b\}
\end{aligned}
$$

and $]-\infty,+\infty=\mathbb{R}[$ are conventionally called unbounded intervals or infinite intervals.
Definition 18 An open interval containing the point $x \in \mathbb{R}$ will be called a neighborhood of this point.

So as not to have to investigate which of the points is "left" and which is "right", that is, whether $x<y$ or $y<x$ and whether the length is $y-x$ or $x-y$, we can use the useful function

$$
|x|=\sup \{x,-x\}
$$

or on other words

$$
|x|=\left\{\begin{array}{l}
x \quad \text { when } x>0 \\
0 \quad x=0 \\
-x \quad \text { when } x<0
\end{array}\right.
$$

which is called the modulus or absolute value of the number.
Definition 19 The distance between $x, y \in \mathbb{R}$ is the quantity $|x-y|$.

The distance is non-negative and equals zero only when the points x and y are the same. The distance from x to y is the same as the distance from y to x, since $|x-y|=|y-x|$. Finally, if $z \in \mathbb{R}$, then $|x-y|<|x-z|+|z-y|$. That is, the so-called triangle inequality holds.
The triangle inequality follows from a property of the absolute value that is also called the triangle inequality (since it can be obtained from the preceding triangle inequality by setting $z=0$ and replacing y by $-y$). To be specific, the inequality

$$
|x+y| \leq|x|+|y|
$$

holds for any numbers x and y, and equality holds only when the numbers x and y are both negative or both positive.
Proof : If $x \geq 0$ and $y \geq 0$, then $x+y \geq 0$, then $|x+y|=x+y$ and $|x|=x$ and $|y|=y$, so that equality holds in this case.
If $x \leq 0$ and $y \leq 0$, then $x+y \leq 0$, then $|x+y|=-(x+y)=-x-y=-x+(-y)$ and $|x|=-x$ and $|y|=-y$, and again we have equality.
Now suppose one of the numbers is negative and the other positive, for example, $x<0<y$. Then either $x<x+y \leq 0$ or $0 \leq x+y<y$. In the first case $|x-y|<|x|$, and in the second case $|x-y|<|y|$, so that in both cases $|x+y| \leq|x|+|y|$.
Proposition 20 For all $x, y \in \mathbb{R}$ we have :

1. $|x| \geq 0, \quad|x|=-|x|$.
2. $|x|=0$ if and only if $x=0$.
3. $|x|=x$ if and only if $x \geq 0$.
4. $|x y|=|x||y|$
5. $\left|\frac{x}{y}\right|=\frac{|x|}{|y|}, \quad y \neq 0$.
6. Let $\alpha>0$. if $|x| \leq \alpha$ if and only if $-\alpha \leq x \leq \alpha$.

Exercise :5 Prove that for all real numbers $a ; b$

1. Prove that for all real numbers $a ; b$

$$
|x|-|y| \leq|x-y| \leq|x|+|y|
$$

2. Prove that for all real numbers $a_{1} ; a_{2} ; \ldots ; a_{n}$

$$
\left|a_{1}+a_{2}+\ldots+a_{n}\right| \leq\left|a_{1}\right|+\left|a_{2}\right|+\ldots+\left|a_{n}\right|
$$

0.5 Complex numbers \mathbb{C}

Problem : The equation $x^{2}=-4$, for example does not solution in \mathbb{R}, that's to say the field of real numbers has a obvious flaw. that's reason to extend the set of real number a an other set, where the previous equation does a solution.

Idea: We will imagine that there exists a non-real number i such that $i^{2}=-1$ then

$$
x^{2}=i^{2} 4 \Leftrightarrow x=2 i \notin \mathbb{R} \text { and } x=2 i \notin \mathbb{R} \text { which admits two different roots. }
$$

0.5.1 Construction the set of complex number

We consider the set \mathbb{C} defined by

$$
\mathbb{C}=\{(a, b): a, b \in \mathbb{R}\}
$$

provided by two laws : for all $(a, b),(c, d) \in \mathbb{C}$

$$
(a, b)+(c, d)=(a+c, b+d), \quad(a, b) \cdot(c, d)=(a c-b d, a d+b c) .
$$

So $(\mathbb{C},+,$.$) its commutative filed, because$

1. + is commutative, associative, $(0,0)$ addition identity and $(-a,-b)$ the inverse element to (a, b), and
2. . is commutative, associative and the multiplication distributive over the addition. (1.0) is multiplication identity. the inverse element of (a, b) is $\left(\frac{a}{a^{2}+b^{2}}, \frac{-b}{a^{2}+b^{2}}\right)$
For $(a, b) \in \mathbb{C}: \quad(a, b)=(a, 0)+(0,1)(b, 0)$, we accept that there is an identification between $(a, 0) \in \mathbb{C} \equiv a \in \mathbb{R}$. And we put $i=(0,1)$ so $i^{2}=(0,1) \cdot(0,1)=(-1,0)$, by identification we have : $(-1,0) \equiv-1$. Therefore

$$
(a, b)=(a, 0)+(0,1)(b, 0)=a+i b \in \mathbb{C}
$$

Definition 21 If a, b are real and $z=a+i b$, then the complex number, $\bar{z}=a-i b$ is called the conjugate of $z . a$ andb are the real part and imaginary part of z, respectively.
we shall occasionally write $a=\operatorname{Re}(z) ; b=\operatorname{Im}(z)$
Theorem 22 If z, and w are complex, then

1. $\overline{z+w}=\bar{z}+\bar{w}$
2. $\bar{z} \cdot \bar{w}=\bar{z} \cdot \bar{w}$
3. $z+\bar{z}=2 \operatorname{Re}(z) ; \quad z-\bar{z}=2 i \operatorname{Im}(z)$
4. $z . \bar{z}$ is real and positive.

Result :

- z is real $\Leftrightarrow z=\bar{z}$
$\circ z$ is imaginary $\Leftrightarrow z=-\bar{z}$
Definition 23 If z is complex number its absolute value $|z|$ is non-negative square root of $z \bar{z}$; that is $|z|=\sqrt{z \bar{z}}=\sqrt{a^{2}+b^{2}}$

Property : If z, and w are complex, then

- $z=0 \Leftrightarrow|z|=0$
- $z \bar{z}=|z|^{2}$
- $|z \cdot w|=|z| .|w|$
- $|\operatorname{Re}(z)| \leq|z| ; \quad|\operatorname{Im}(z)| \leq|z|$

Exercise 6 :

1. Write under algebraic form the following complex numbers $z_{1}=\frac{1}{2+3 i}, \quad z_{2}=\frac{1}{3-4 i}$
2. Give the conjugate of $\frac{4-5 i}{3+i}$.
3. Determine the location points $M(x, y)$ such that : $\frac{i z-1}{z-i}$ is real.

The real numbers are often represented on the real line which increase as we move from left to

1	-	1	\cdot	1
-4	-2	0	$\sqrt{2} \quad 2$	π

right.
The complex numbers, having two components, their real and imaginary parts, can be represented as a plane ; indeed, \mathbb{C} is sometimes referred to as the complex plane, but more commonly, when we represent \mathbb{C} in this manner, we call it an Argand diagram (After the Swiss mathematician Jean-Robert Argand (1768-1822)). The point (a, b) represents the complex number $a+b i$
so that the x -axis contains all the real numbers, and so is termed the real axis, and the y -axis contains all those complex numbers which are purely imaginary (i.e. have no real part), and so is

referred to as the imaginary axis.
Definition 24 we define θ to be the angle that the line connecting the origin to $z=x+i y, z \neq 0$ makes with the positive real axis,. The number θ is called the argument of z and is written $\arg z=\theta$.
We can write $z=r(\cos \theta+\sin \theta)$. (polar or trigonometric form) The relations between z's Cartesian and polar co-ordinates are simple, we see that

$$
x=r \cos \theta, \text { and } \quad y=\sin \theta, \quad r=\sqrt{x^{2}+y^{2}}, \quad \tan \theta=\frac{y}{x} .
$$

Note that $\arg z$ is defined only up to multiples of 2π. For example, the argument of $1+i$ could be $\frac{\pi}{4}$ or $\frac{9 \pi}{4}$ or $\frac{-7 \pi}{4}$ etc... For simplicity, in this article we shall give all arguments in the range $0 \leq \theta<2 \pi$, so that $\frac{\pi}{4}$ would be the preferred choice here.

Note that the argument of 0 is undefined.
Exercise :7 Find the modulus and argument (polar form) of each of the following numbers.

$$
(1+\sqrt{3} i), \quad(2+i)(3-i), \quad(1+i)^{5}
$$

Exercise :8 Let α be a real number in the range $0<\alpha<\frac{\pi}{2}$. Find the modulus and argument of the following numbers.

$$
\cos \alpha-i \sin \alpha, \quad \sin \alpha-i \cos \alpha, \quad 1+i \tan \alpha, \quad 1+\cos \alpha+i \sin \alpha
$$

Exercise :9 sketch the following sets :

$$
|z|<1, \quad \operatorname{Re}(z)=3, \quad|z-1|=|z+i|, \quad \arg (z-i)=\frac{\pi}{2}
$$

Proposition 25 Let z, and $w \in \mathbb{C}$. Then to multiples of 2π the following equations hold

- $\arg (z w)=\arg (z)+\arg (w)$ if $z, w \neq 0$
- $\arg \left(\frac{z}{w}\right)=\arg (z)-\arg (w)$ if $z, w \neq 0$
- $\arg (\bar{z})=-\arg (z)$ if $z \neq 0$.

Theorem 26 (MOIVRE'S THEOREM) For a real number θ and integer n we have that

$$
(\cos \alpha+i \sin \alpha)^{n}=\cos n \alpha+i \sin n \alpha
$$

Exercise9 : Use De Moivre's Theorem to show that

$$
\cos (5 \theta)=16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta
$$

and that

$$
\sin (5 \theta)=\left(16 \cos ^{4} \theta-12 \cos ^{2} \theta+1\right) \sin \theta
$$

Definition 27 (Euler's formula) For any real number θ, we denote $e^{i \theta}$ the complex number $\cos \alpha+i \sin \alpha$ is the modulus 1 and θ argument.

It follows from Euler's formula that, for any complex number z written in exponential form, $z=r e^{i \theta}=r(\cos \theta+i \sin \theta)$

Theorem 28 For any $\theta_{1}, \theta_{2} \in \mathbb{R}$, we have
$-e^{i \theta_{1}} \cdot e^{i \theta_{2}}=e^{i\left(\theta_{1}+\theta_{2}\right)}$
$-\frac{e^{i \theta_{1}}}{e^{i \theta_{2}}}=e^{i\left(\theta_{1}-\theta_{2}\right)}$
$-\left(e^{i \theta}\right)^{n}=e^{i n \theta}$
Example :

- Determine the exponential form for $z=\frac{(1+i)^{4}}{\sqrt{3}-i}$.
- Calculate $(1+i)^{14}$.

0.5.2 The square root of a complex number

Let $w=\alpha+i \beta$, we want to find the square root of w, i.e find $z=x+i y$, such that $z^{2}=w$, hence

$$
\left\{\begin{array}{l}
x^{2}-y^{2}=\alpha \ldots .(1) \\
2 x y=\beta \ldots \ldots .(2) \\
x^{2}+y^{2}=|w| \ldots \ldots(3)
\end{array}\right.
$$

The equations (1) and (3) allowed to find x and y and equation (2) allows us to remove the ambiguity on the signs.

For example $w=\frac{\sqrt{3}}{2}+\frac{1}{2} i$

$$
\left\{\begin{array}{l}
x^{2}-y^{2}=\frac{\sqrt{3}}{2} \ldots . .(1) \\
2 x y=\frac{1}{2} \ldots \ldots .(2) \\
x^{2}+y^{2}=1 \ldots \ldots .(3)
\end{array}\right.
$$

$(1)+(3): x= \pm \sqrt{\frac{\sqrt{3}+2}{4}}= \pm \frac{\sqrt{2+\sqrt{3}}}{2}$
(3)-(1) : $y= \pm \frac{\sqrt{2-\sqrt{3}}}{2}$

From (2) : $x y>0$, so x and y have the same sign. Therefore the roots

$$
\frac{\sqrt{2+\sqrt{3}}}{2}+i \frac{\sqrt{2-\sqrt{3}}}{2}, \quad-\frac{\sqrt{2+\sqrt{3}}}{2}-i \frac{\sqrt{2-\sqrt{3}}}{2}
$$

0.5.3 Example :Quadratic equation

We deal this type of equations with a simple numerical example, we consider

$$
(1+i) z^{2}-(5+i) z+6+4 i=0
$$

Then $\Delta=16-30 i$, so the square roots of Δ is $5+3 i$ and $-5+3 i$. Hence the solutions is

$$
z_{1}=2-3 i, \quad z_{2}=1+i
$$

Exercise 10 : Find the square roots of $-5-12 i$, and hence solve the quadratic equation

$$
z^{2}-(4+i) z+(5+5 i)=0 .
$$

Exercise 11 : Show that the complex number $1+i$ is a root of the cubic equation

$$
z^{3}+z 2+(5-7 i) z-(10+2 i)=0
$$

and hence find the other two roots.

0.5.4 Roots of Unity

Consider the complex number

$$
z_{0}=\cos \theta+i \sin \theta
$$

where $0 \leq \theta<2 \pi$. The modulus of z_{0} is 1 , and the argument of z_{0} is θ.

Problem. Let n be a natural number. Find all those complex z such that $z^{n}=1$.
We know from the Fundamental Theorem of Algebra that there are (counting repetitions) n solutions : these are known as the nth roots of unity.

Let's first solve $z^{n}=1$ directly for $n=2,3,4$.

- \circ When $n=2$ we have $0=z^{2}-1=(z-1)(z+1)$, and so the square roots of 1are ± 1.
- \circ When $n=3$ we can factorise as follows $0=z^{3}-1=(z-1)\left(z^{2}+z+1\right)$. So the cube roots of 1 are $1,-\frac{1}{2}+\frac{\sqrt{3}}{2},-\frac{1}{2}-\frac{\sqrt{3}}{2}$
- \circ When $n=4$ we can factorise as follows $0=z^{4}-1=\left(z^{2}-1\right)\left(z^{2}+1\right)=(z-1)(z+$ 1) $(z-i)(z+i)$, so that the fourth roots of 1 are $-1, i$ and $-i$.

