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0.1 Representation of the set R
At the foundation of Analysis are the real numbers, and there are different methods to

introduce this. So in this section we will recall with some definitions and properties.

Definition 1 It is admitted that there exists a set called the set of natural numbers N having
the following properties :

◦ there exists a smallest element in N, designed by 0.
◦ for all integers natural n there exists natural element n∗ = n + 1 (n∗ is called the next

of n.)
◦ for all integers natural n, n∗ ̸= 0.
◦ for all integers natural n∗, m∗ if n∗ = m∗ then n = m.
◦ recurrence property : let P be a property defined on N, if P (0) is verified (checked)

and P (n + 1) then P is checked for all n natural

We write N = {0, 1, 2, 3, ....}. We note by N∗ = N− {0} is the set of natural elements non-zero.

Exercise : show that for all n natural 2n > 0.

Figure 1 – The German mathematician Leopold Kronecker (1831–1916).

Leopold Kronecker (1831–1916) has famously said that the natural numbers were crea-
ted by god and all the rest of mathematics is human creation. Humans have learned to add
natural numbers n, m and also to multiply them. The sum m + n and the product n × m are
again members of the set N.

The difference n−m is only a natural number if n is larger than m. Also, one can not divide
two arbitrary natural numbers p, q as the quotient p

q
is only in N if q is divisor of p.



Remark 2 The set of natural numbers N has an obvious defect, because if n and m two integers
such that n > m the algebraic equations

n + x = m, (1)

or
q.x = p (2)

do not have solutions in N.

Idea : we will extend N towards another set called the set of whole numbers. To remedy the
situation (that to say the first equation has a solution).
The set of whole numbers, we note by Z. The symbol Z comes from the German word Zahl for
number.

Remark 3 The set of whole numbers, also have a defect because to solve equations of the type
(2) for every p, q ∈ Z, we have to introduce another kind of numbers.

If GCD(p, q) = r than it exists a and b such that p = r.a q = r.b and the solution is x = a

b
and

GCD(a, b) = 1, x called rational number, and the set of rational numbers. This set is denoted
by Q which comes from the German word (of Latin origin) Quotient for quotient. We have

Q = {a

b
: a ∈ Z, b ∈ N∗, GCD(a, b) = 1}

In this set, one can add, subtract, multiply, and divide without any restrictions following the
well known rules. Furthermore, one can solve linear algebraic equations of the form

ax + b = 0 (3)

for arbitrary a, b ∈ Q with a ̸= 0 uniquely by an x ∈ Q.

Remark 4 1. For all n ∈ N∗ the equation n.x = 1, admits an only solution x = 1
n

.

2. For all n ∈ N∗ the equation n.x = −1, admits an only solution x = −1
n

.

3. Any rational number can be represented by a periodic decimal expansion.
For example : 2

7 = 0.285714285714...,
2
7 = 0.285714 also 11

7 = 1.5714285...,
11
7 =

1.5714285.

We can easily see that rational numbers have a defect, because the equation x2 − 2 = 0, does
not have a solution in Q

Definition 5 The set of real numbers is the set of x-coordinate points on the line linear (O, i)
— The positive real numbers are the x-coordinate points on the right of O.
— The negative real numbers are the x-coordinate points on the left of O.

Remark 6 A no-rational number is said to be irrational and the set of these numbers is the
irrational set denoted by R/Q.

For example :
√

2, e, π, are irrational numbers.



0.1.1 The algebraic structure of R
There exist two operations on R, called addition and multiplication, which assign to

every pair a, b of elements from R two new elements a + b ∈ R and ab ∈ R (we set ab = a.b).
They are called the sum and the product of a, b. The operations addition and multiplication
satisfy the following rules.

1. (a + b) + c = a + (b + c) (Associativity)
2. a + b = b + a (commutativity)
3. There is exactly one element in R, called the zero and denoted by 0, such that

a + 0 = a for all a ∈ R

4. For all a ∈ R there exists exactly one b ∈ R such that a + b = 0. The element b denoted
by −a and we will call it the negative to a.

5. (ab)c = a(bc) (Associativity)
6. ab = ba (commutativity)
7. There is exactly one element in R \ {0} called the one and denoted by 1, such that

a.1 = a for all a ∈ R.

8. For every a ∈ R \ {0} there is exactly one element b ∈ R, such that ab = 1. We denote
b bya−1 or 1

a
and we say a−1 is the inverse element to a.

9. a(b + c) = ab + ac. (Distributivity)
Notation. We set

a − b = a + (−b) and a

b
= ab−1 = b−1a

and call a − b the difference of a and b, and a

b
the quotient of a and b. The operation a, b 7−→

a − b respectively a

b
subtraction and division.

Proposition 7 For all a, b in R
— 0.a = a.0 = 0.
— a.b = 0 if and only if a = 0 or b = 0.
— (−1).a = −a

0.1.2 Order relation in R
Between the elements of R there is a relation ≤, that is, for elements x, y ∈ R. one can

determine whether x ≤ y or not. Here the following conditions must hold :
1. For all x ∈ R : x ≤ x (≤ reflexive). In other words, every element relates to itself.
2. For all x, y ∈ R : x ≤ y and y ≤ x implies x = y (≤ antisymmetric)
3. For all x, y, and z if x ≤ y and y ≤ z implies that x ≤ z (≤ transitive)
4. For all x, y ∈ R : x ≤ y or y ≤ x

The relation ≤ on R is called inequality.
A set on which there is a relation between pairs of elements satisfying axioms 1, 2, and 3,

as you know, is said to be partially ordered. If in addition axiom 4 holds, that is, any two
elements are comparable, the set is linearly ordered. Thus the set of real numbers is linearly
ordered by the relation of inequality between elements.

Remark 8 Let x, y ∈ R
⋄ If x ≥ y we can write y ≤ x
⋄ If x ≥ y and x ̸= ywe can write y < x
⋄ If x ≥ y and x ̸= ywe can write y > x



0.2 Existence of the Least Upper (or Greatest Lower)
Bound of a Set of Numbers

Definition 9 Let X ⊂ R be nonempty
— is said to be bounded frome above, upper bound or Majorant if there exists a

number M ∈ R such that for all x ∈ X, x ≤ M.

1. M is the supermum of X exists, it is an upper bound of X and,
2. if M ′ another upper bound of X, than M ≤ M ′ (that’s to say M is the smallest

upper bound of X). If it is exists the supermum of X is denoted by sup(X)
— is said to be bounded frome below, lower bound or minorant if there exists a

number m ∈ R such that for all x ∈ X, x ≥ m.

1. m is the infimum of X exists, it is an lower bound of X and,
2. if m′ another lower bound of X, than m′ ≤ m (that’s to say m is the greatest lower

bound of X). If it is exists the infimum of X is denoted by inf(X)

Remark 10 — If inf(X) ∈ X, we call it minimum of X, and we denoted it by min(X)
— If sup(X) ∈ X, we call it maximum of X, and we denoted it by max(X)

For example, the set X = {x ∈ R|0 ≤ x < 1} has a minimal element. But, as one can easily
verify, it has no maximal element.

0.2.1 Characterization of supermum and infimum
Theorem 11 1. If a set X ⊂ R has supremum sup(X) = M if and only if

— M is an upper bound of X
— for all ϵ > 0there exists a ∈ X such that sup(A) − ϵ < a ≤ sup(A).

2. If a set X ⊂ R has infimum inf(X) = m if and only if
— m is an lower bound of X
— for all ϵ > 0there exists a ∈ X such that inf(X) ≤ a < inf(X) + ϵ.

Exercise 1 : Determine the supermum and infimum of the parts A, andB in R

A = {sin 2nπ

7 , n ∈ Z}, and B = {cos 2nπ

7 , n ∈ Z}

Proposition 12 The supermum or infimum if there exists is unique
— If X no bounded from above, we write for convention sup(X) = +∞
— If X no bounded from below, we write for convention inf(X) = −∞

Proposition 13 Let A; and B two no-empty parts bounded in R
1. If A ⊂ B then sup A ≤ sup B, and inf A ≥ inf B.

2. sup(A ∪ B) = max{sup A, sup B}.

3. inf(A ∪ B) = min{inf A, inf B}.

Proof : See the course or tutorials.
Exercise 2 : Find the supremum, infimum, maximum and minimum of the following sets of
numbers, whenever they exist, justifying your conclusions :

A =]1, 5], B =] − ∞, 2], C = [−1, 0[∪[3, 4]

Theorem 14 The set of natural numbers is not bounded from above (majorant). The sets
Z,Q,R/Q and R are neither lower nor upper bound.



0.3 Integer part
Theorem 15 For all x ∈ R there exists a unique n ∈ Z, such that n ≤ x < n + 1.

Definition 16 Let x ∈ R, the relative integers n verify n ≤ x < n + 1, is said the integer
part of x, denoted by [x]. Also

[x] ≤ x < [x] + 1

For example : [1.5] = 1, [0.95] = 0, [−1.75] = −2, ...

Exercise 3 : Find the integer part of this number S = 1
1

1980 + 1
1981 + .... + 1

2001
Exercise 4 : Solve in R the following equations :

[x − 1
2 ] = −2, [x] = x − 1, [x] + |x − 1| = x, [log2 x] = [log3 x].

0.4 Intervals and absolute value
We now introduce the following notation and terminology for the number sets listed below :

]a, b[= {x ∈ R : a < x < b} is the open interval

[a, b] = {x ∈ R : a ≤ x ≤ b} is the closed interval

]a, b] = {x ∈ R : a < x ≤ b} is the half open interval, containing b

[a, b[= {x ∈ R : a ≤ x < b} is the half open interval, containing a

Definition 17 Open, closed, and half-open intervals are called numerical intervals or simply
intervals. The numbers determining an interval are called its endpoints.

The quantity b − a is called the length of the interval ab. If I is an interval, we shall denote its
length by |I|.

The sets
]a, +∞[= {x ∈ R : x > a}, [a, +∞[= {x ∈ R : x ≥ a}

]∞, b[= {x ∈ R : x < b}, ]∞, b] = {x ∈ R : x ≤ b},

and ] − ∞, +∞ = R[ are conventionally called unbounded intervals or infinite intervals.

Definition 18 An open interval containing the point x ∈ R will be called a neighborhood of
this point.

So as not to have to investigate which of the points is "left" and which is "right", that is, whether
x < y or y < x and whether the length is y − x or x − y, we can use the useful function

|x| = sup{x, −x}

or on other words

|x| =


x when x > 0
0 x = 0
−x when x < 0.

which is called the modulus or absolute value of the number.

Definition 19 The distance between x, y ∈ R is the quantity |x − y|.



The distance is non-negative and equals zero only when the points x and y are the same. The
distance from x to y is the same as the distance from y to x, since |x − y| = |y − x|. Finally, if
z ∈ R, then |x − y| < |x − z| + |z − y|. That is, the so-called triangle inequality holds.
The triangle inequality follows from a property of the absolute value that is also called the
triangle inequality (since it can be obtained from the preceding triangle inequality by setting
z = 0 and replacing y by −y). To be specific, the inequality

|x + y| ≤ |x| + |y|

holds for any numbers x and y, and equality holds only when the numbers x and y are both
negative or both positive.
Proof : If x ≥ 0 and y ≥ 0, then x + y ≥ 0, then |x + y| = x + y and |x| = x and |y| = y, so
that equality holds in this case.
If x ≤ 0 and y ≤ 0, then x + y ≤ 0, then |x + y| = −(x + y) = −x − y = −x + (−y) and
|x| = −x and |y| = −y, and again we have equality.
Now suppose one of the numbers is negative and the other positive, for example, x < 0 < y.
Then either x < x + y ≤ 0 or 0 ≤ x + y < y. In the first case |x − y| < |x|, and in the second
case |x − y| < |y|, so that in both cases |x + y| ≤ |x| + |y|.
Proposition 20 For all x, y ∈ R we have :

1. |x| ≥ 0, |x| = −|x|.
2. |x| = 0 if and only if x = 0.

3. |x| = x if and only if x ≥ 0.

4. |xy| = |x||y|

5. |x
y

| = |x|
|y|

, y ̸= 0.

6. Let α > 0. if |x| ≤ α if and only if − α ≤ x ≤ α.

Exercise :5 Prove that for all real numbers a; b

1. Prove that for all real numbers a; b

|x| − |y| ≤ |x − y| ≤ |x| + |y|

2. Prove that for all real numbers a1; a2; ...; an

|a1 + a2 + ... + an| ≤ |a1| + |a2| + ... + |an|

0.5 Complex numbers C
Problem : The equation x2 = −4, for example does not solution in R, that’s to say the field

of real numbers has a obvious flaw. that’s reason to extend the set of real number a an other
set, where the previous equation does a solution.

Idea : We will imagine that there exists a non-real number i such that i2 = −1 then

x2 = i24 ⇔ x = 2i /∈ R and x = 2i /∈ R which admits two different roots.

0.5.1 Construction the set of complex number
We consider the set C defined by

C = {(a, b) : a, b ∈ R},

provided by two laws : for all (a, b), (c, d) ∈ C

(a, b) + (c, d) = (a + c, b + d), (a, b).(c, d) = (ac − bd, ad + bc).

So (C, +, .) its commutative filed, because



1. + is commutative, associative, (0, 0) addition identity and (−a, −b) the inverse element
to (a, b), and

2. . is commutative, associative and the multiplication distributive over the addition. (1.0)
is multiplication identity. the inverse element of (a, b) is ( a

a2 + b2 ,
−b

a2 + b2 )

For (a, b) ∈ C : (a, b) = (a, 0) + (0, 1)(b, 0), we accept that there is an identification between
(a, 0) ∈ C ≡ a ∈ R. And we put i = (0, 1) so i2 = (0, 1).(0, 1) = (−1, 0), by identification we
have : (−1, 0) ≡ −1. Therefore

(a, b) = (a, 0) + (0, 1)(b, 0) = a + ib ∈ C

Definition 21 If a, b are real and z = a + ib, then the complex number, z = a − ib is called the
conjugate of z. a andb are the real part and imaginary part of z, respectively.

we shall occasionally write a = Re(z); b = Im(z)

Theorem 22 If z, and w are complex, then
1. z + w = z + w

2. z.w = z.w

3. z + z = 2Re(z) ; z − z = 2iIm(z)
4. z.zis real and positive.

Result :
◦ z is real ⇔ z = z
◦ z is imaginary ⇔ z = −z

Definition 23 If z is complex number its absolute value |z| is non-negative square root of zz;
that is |z| =

√
zz =

√
a2 + b2

Property : If z, and w are complex, then
◦ z = 0 ⇔ |z| = 0
◦ zz = |z|2
◦ |z.w| = |z|.|w|
◦ |Re(z)| ≤ |z|; |Im(z)| ≤ |z|

Exercise 6 :
1. Write under algebraic form the following complex numbers z1 = 1

2 + 3i
, z2 = 1

3 − 4i

2. Give the conjugate of 4 − 5i

3 + i
.

3. Determine the location points M(x, y) such that : iz − 1
z − i

is real.

The real numbers are often represented on the real line which increase as we move from left to

right.
The complex numbers, having two components, their real and imaginary parts, can be repre-

sented as a plane ; indeed, C is sometimes referred to as the complex plane, but more commonly,
when we represent C in this manner, we call it an Argand diagram (After the Swiss mathema-
tician Jean-Robert Argand (1768-1822)). The point (a, b) represents the complex number a+ bi



so that the x-axis contains all the real numbers, and so is termed the real axis, and the y-axis
contains all those complex numbers which are purely imaginary (i.e. have no real part), and so is

referred to as the imaginary axis.
Definition 24 we define θ to be the angle that the line connecting the origin to z = x+iy, z ̸= 0
makes with the positive real axis, .The number θ is called the argument of z and is written
arg z = θ.

We can write z = r(cos θ + sin θ). (polar or trigonometric form) The relations between z’s
Cartesian and polar co-ordinates are simple, we see that

x = r cos θ, and y = sin θ, r =
√

x2 + y2, tan θ = y

x
.

Note that arg z is defined only up to multiples of 2π. For example, the argument of 1 + i

could be π

4 or 9π

4 or −7π

4 etc... For simplicity, in this article we shall give all arguments in the

range 0 ≤ θ < 2π, so that π

4 would be the preferred choice here.

Note that the argument of 0 is undefined.
Exercise :7 Find the modulus and argument (polar form) of each of the following numbers.

(1 +
√

3i), (2 + i)(3 − i), (1 + i)5



Exercise :8 Let α be a real number in the range 0 < α <
π

2 . Find the modulus and argument
of the following numbers.

cos α − i sin α, sin α − i cos α, 1 + i tan α, 1 + cos α + i sin α.

Exercise :9 sketch the following sets :

|z| < 1, Re(z) = 3, |z − 1| = |z + i|, arg(z − i) = π

2

Proposition 25 Let z, and w ∈ C. Then to multiples of 2π the following equations hold
◦ arg(zw) = arg(z) + arg(w) if z, w ̸= 0
◦ arg( z

w
) = arg(z) − arg(w) if z, w ̸= 0

◦ arg(z̄) = − arg(z) if z ̸= 0.

Theorem 26 (MOIVRE’S THEOREM) For a real number θ and integer n we have that

(cos α + i sin α)n = cos nα + i sin nα

Exercise9 : Use De Moivre’s Theorem to show that

cos(5θ) = 16 cos5 θ − 20 cos3 θ + 5 cos θ

and that
sin(5θ) = (16 cos4 θ − 12 cos2 θ + 1) sin θ

Definition 27 (Euler’s formula) For any real number θ, we denote eiθ the complex number
cos α + i sin α is the modulus 1 and θ argument.

It follows from Euler’s formula that, for any complex number z written in exponential form,
z = reiθ = r(cos θ + i sin θ)

Theorem 28 For any θ1, θ2 ∈ R, we have
— eiθ1 .eiθ2 = ei(θ1+θ2)

— eiθ1

eiθ2
= ei(θ1−θ2)

— (eiθ)n = einθ

Example :
— Determine the exponential form for z = (1 + i)4

√
3 − i

.

— Calculate (1 + i)14.

0.5.2 The square root of a complex number
Let w = α + iβ, we want to find the square root of w, i.e find z = x + iy, such that z2 = w,

hence 
x2 − y2 = α.....(1)
2xy = β.......(2)
x2 + y2 = |w|......(3)

The equations (1) and (3) allowed to find x and y and equation (2) allows us to remove the
ambiguity on the signs.



For example w =
√

3
2 + 1

2i 
x2 − y2 =

√
3

2 .....(1)

2xy = 1
2 .......(2)

x2 + y2 = 1......(3)

(1)+(3) : x = ±
√√

3 + 2
4 = ±

√
2 +

√
3

2

(3)-(1) : y = ±

√
2 −

√
3

2
From (2) : xy > 0, so x and y have the same sign. Therefore the roots√

2 +
√

3
2 + i

√
2 −

√
3

2 , −

√
2 +

√
3

2 − i

√
2 −

√
3

2

0.5.3 Example :Quadratic equation
We deal this type of equations with a simple numerical example, we consider

(1 + i)z2 − (5 + i)z + 6 + 4i = 0.

Then ∆ = 16 − 30i, so the square roots of ∆ is 5 + 3i and − 5 + 3i. Hence the solutions is

z1 = 2 − 3i, z2 = 1 + i

Exercise 10 : Find the square roots of −5 − 12i, and hence solve the quadratic equation

z2 − (4 + i)z + (5 + 5i) = 0.

Exercise 11 : Show that the complex number 1 + i is a root of the cubic equation

z3 + z2 + (5 − 7i)z − (10 + 2i) = 0,

and hence find the other two roots.

0.5.4 Roots of Unity
Consider the complex number

z0 = cos θ + i sin θ.

where 0 ≤ θ < 2π. The modulus of z0 is 1, and the argument of z0 is θ.



Problem. Let n be a natural number. Find all those complex z such that zn = 1.
We know from the Fundamental Theorem of Algebra that there are (counting repetitions) n
solutions : these are known as the nth roots of unity.

Let’s first solve zn = 1 directly for n = 2, 3, 4.
— ◦ When n = 2 we have 0 = z2 − 1 = (z − 1)(z + 1), and so the square roots of 1are ±1.
— ◦ When n = 3 we can factorise as follows 0 = z3 − 1 = (z − 1)(z2 + z + 1). So the cube

roots of 1 are 1, −1
2 +

√
3

2 , −1
2 −

√
3

2
— ◦ When n = 4 we can factorise as follows 0 = z4 − 1 = (z2 − 1)(z2 + 1) = (z − 1)(z +

1)(z − i)(z + i), so that the fourth roots of 1 are −1, i and − i.


