Typical solution for Tutorial (TD) $\mathbf{N}^{0}: 01$

Exercise 1:

Answer true or false:
a) False
c) true
e) False
g) true
b) False
d) true
f) true

Exercise 2:

Write the algorithm that allows you to have a meal in a restaurant.
Algorithm have_a_meal
begin

1. Enter the restaurant and choose a table
2. review the menu to decide what to order.
3. Call the waiter/waitress to take your order.
4. When the food arrives, check if it matches your order.
5. Enjoy your meal
6. request the bill from the waiter/waitress.
7. Pay the bill, either by cash or card
8. Exit the restaurant.

End.

Exercise 3:

Show in diagram form the inputs, outputs and relationships between them for the following algorithms:

- The four arithmetic operations on two numbers. (+ in the classroom, and $/,-, *$ at home).

- Solving a first-degree equation $(\mathrm{A} \mathrm{X}+\mathrm{B}=0)$.

- First-year student registration.

- The sum of natural numbers less than N .

Exercise 4:

If we had three buckets. The first bucket "B1" is full with a capacity of 10 liters, the second bucket "B2" is empty with a capacity of 7 liters, and the third bucket "B3" is empty with a capacity of 3 liters. Write the algorithm that allows us to obtain 5 liters.

0 . initial state $(B 1=10, B 2=0, B 3=0)$

1. pour 7 L of B 1 into $\mathrm{B} 2(\mathrm{~B} 1=3, \mathrm{~B} 2=7, \mathrm{~B} 3=0)$
2. We pour 3 L of B 2 in B 3 . $(\mathrm{B} 1=3, \mathrm{~B} 2=4, \mathrm{~B} 3=3)$
3. We pour $B 3$ into $B 1$. $(B 1=6, B 2=4, B 3=0)$
4. We pour 3 L of B 2 in B 3 . $(\mathrm{B} 1=6, \mathrm{~B} 2=1, \mathrm{~B} 3=3)$
5. We pour B 3 into B 1 . $(\mathrm{B} 1=9, \mathrm{~B} 2=1, \mathrm{~B} 3=0)$
6. We pour B 2 into B 3 . $(\mathrm{B} 1=9, \mathrm{~B} 2=0, \mathrm{~B} 3=1)$
7. We pour 7 L of B 1 in B 2 . $(\mathrm{B} 1=2, \mathrm{~B} 2=7, \mathrm{~B} 3=1)$
8. We pour 2 L of B 2 in B 3 . $(\mathrm{B} 1=2, \mathrm{~B} 2=5, \mathrm{~B} 3=3)$
