1 Chapter 1: Diagonalization of matrices

1.1 Definitions

Let E be an n—dimensional space vector over a field K, where K = R or C.

dimFE = n, B a basis of E. Let f: F — FE a linear application (endomorphism of
E), A the square matrix (n x n) associated with f: A =Mp(f) = (ai;).

1.1.1 Definition 1. Characteristic Polynomial of a Matrix

If A is an n X n matrix, the characteristic polynomial P()\) of A is defined by:

P(\) = det(A — \,)

1.1.2 Definition 2. Eigenvalues and Eigenvectors

If A is n X n matrix, a number A is called an eigenvalue of A if there is V' € E such

that:
AV = \V

In this case, V is called an eigenvector of A corresponding to the eigenvalue .

3 5 5 20 5
1 _1} and V = L} then AV = {4} :4[1] =4V

So A =4 is an eigenvalue of A with corresponding eigenvector V.

Example. If A = {

Theorem. Let A be an n X n matrix.

1. The eigenvalues A of A are the roots of the characteristic polynomial P(\) of

A
P(\) =0

2. The A— eigenvectors X are the nonzero solutions to the homogeneous system

(A-ADX =0

1.1.3 Definition 3.
Let A be n X n matrix and A\ an eigenvalue of the matrix A. The set
E\) ={V e E AV = \V}

is called the eigenspace of A associated to the eigenvalue A in which E()) is vector
sub-space of E. Its dimension (dimE())) is called the the geometric multiplicity of
A.



1.1.4 Definition 4. Similarity and Diagonalization

If A, B are two n x n matrices, then they are similar if and only if there exists an

invertible matrix P such that:
A=P'BP

1.1.5 Definition 5. Trace of a matrix

If A= (a;;)is an n x n matrix, then the trace of A is

trace(A) =tr(A) = Z a;;
i=1

Lemma. Properties of a trace For n x n matrices A and B, and any k € R,
1. tr(A+ B) =tr(A) +tr(B)

2. tr(kA) = k.tr(A)

3. tr(AB) = tr(BA)

Theorem. Properties of similar matrices If A and B are n x n matrices and
A, B are similar, then

1. det(A) = det(B)

2. rank(A) = rank(B)

3. tr(A) =tr(B)

4. Pa(N) = Pg())

5. A and B have the same eigenvalues.

Proof. 1. We have B = P~'AP, then det(B) = det(P~'AP) = det(A)

4. Py(\) = det(B — L) = det(P-'AP — P-'AP) = det[P~\(A — AL,)P] =
det(P™1) x det(A — \I,,) x det(P)
[



1.1.6 Definition 6. Digonalizable

Let A be an n x n matrix. Then A is said to be diagonalizable if there exists an
invetible matrix P such that
P'AP =D

where D is a diagonal matrix.

Proposition. Let \; and Ay be two distinct eigenvalues (A; # Ag) of A, then
E(A) N E(A) =A{0}
Proof. If V€ E(A\1) N E(A2), then AV =MV = XAV ie. (A — )V =0.
Since \; # Ao, then we have V =0 O

1.1.7 Definition 7. Diagonalization

A square n X n matrix A is diagonalizable if A is similar to a diagonal matrix, i.e.
A=pPDpP
for a diagonal matrix D and an invertible matrix P.

Proposition. Let A be an n x n matrix. We suppose that P(\) have k distinct
roots Ap, Ag, .o, Ag. If E= E(\) @ E(A\2) & ... & E()\), then A is diagonalizable.

Proof. For i = 1,2,....,k, we choose the basis B; of E()\;). The basis B’ = UZ}B; of
FE consists of the eigenvectors of A associated with the eigenvalues A1, Ag, ..., A\x, then
the matrix D = Mg/ (f) is diagonal. O

Examples Find the characteristic polynomial, eigenvalues and eigenvectors of the
matrices:

3 5
1. A= 1 1
[1 2 -3
2. A=1|1 4 -5
0 2 -2
Solution.



1. POV = (A—4) (A +2)

)\1: ,)\2:4811(1)\3:2
1 1 1
Vi=|1],Vo=|3]| and V5= |2
1 2 1

1.2 Sufficient condition for a matrix to be diagonalizable
Proposition. An n x n matrix with n distinct eigenvalues is diagonalizable.

Proof. We have P(\) = (—1")(A=A1)(A=X2)...(A=\,), where A\;, A\a, ..., A, n distinct
eigenvalues of A and Vi, V5, ..., V,, the n eigenvectors associated with \;.

AV =MV

AVy = AV

AV, =\, V,
We can prove that B’ = (V, V5, ..., V},) is a basis of E by induction:
We prove that the set (Vi, V5, Vs, ..., Viyq) is linearly independent of E.

aVi+ Vot .o+ oV + o1 Vi =0 (1)

We have A(an V) + aoVo + ... + ax Vi + a1 Vi 1) = 0, then
a1 AV] 4+ ag AV + o+ ap AV + a1 AV =0

At M Vi + ao Vo + o+ ap M Vi + a1 A1 Vi (2)
From (2) — Agy1(1):

(A1 = Aer)aa Vi + (A2 = Agpr)aaVa + o+ (A — M) Vi = 0
Since the set (Vi, V4, ..., Vi) is linearly independent of £ by induction hypothesis, then

(A = Mer1)ar = (Ao — A1) = oo = (Mg — Mpg1)ag = 0 (because )y, are distinct).
Therefore oy = as = ... = a; =0
By (1) we have ag1Vir1 =0, then ag; =0 O



1.3 Necessary and sufficient condition for diagonalizability

Proposition 1. Let A be an n x n matrix, then

where A; is an eigenvalue of A multiplicity m.

Proof. Let (e1, ea, ..., €,) the basis of E(\;), then we can find the basis B = (ey, e, ..., €, €411, ..., €5)
of E.
The matrix A is similar of the matrix A’ of the form

A1
A
1 A,
A= A\
0 Ay
A=A |
AL— A
. Ay
P(\) = det(A— \I,) = A — A
0 Ay — A,y
= ()\1 — )\)Tdet(Ag — /\]n—r)
Then m > r, where r = dimE()\) O

Proposition 2. Let A be an n xn matrix. Then A is diagonalizable if and only if:

1. P()) is factored.

2. For each eigenvalue \; of A, dim(E()\;) is equal to the multiplicity of \;
ie.



Proof. By induction, the sub-spaces E()\;), i = 1, ..., 7, verify

E=EM)®EX\)®..®E(\)
forj=1,...,k
Denote S; = E(A) ® E(X2) & ... & E()\;)
It is sufficient to demonstrate that S; N E(\;41) = {0}
Let V € Sj N E()\j+1), then

V=Vi+Vat..4+V
and
AV = )\j+1v

For (3), we have AV = AV} + AV, + ... + AV}, then
)\jHV = )\1‘/1 + )\2‘/2 + ...+ )‘]‘/j

For (4) — X\j41(3), we have

0= (A = A)Vi+ (A2 = Njp) Vo + o+ (A = )V

Using induction hypothesis, we get V) = Vo = ... =V; =0

Since Y1, dimE(\;) = Y>_i, m; = n, we see that E = ®F_ | E();). Then A is diago-

nalizable and we write:

A1

A
A2

A2

Ak

Ak




Examples.

0 1 -1
1. A=|-1 2 -1
-1 1 0
P(A) = —A(\A—1)?
A1 = =1
PO =0= =0
)\2 = 1,m2 =2
1
E(\) = E(0) =<V; >, where V; = [1| and dimE(\) =1=my
1
1 1
E(X\y) = E(1) =< V5, V3 >, where Vo = (3], V3 = [2| and dimE(Xp) = 1 =
2 1
mo = 2.
Then the matrix A is diagonalizable.
1 2 -3
2. A=12 5 -7
1 3 —4
P(A\) = —A(\—1)?
A1=0 =1
PO =0={1 M
)\2 = 1,77’1,2 =2
1
E(\) = E(0) =< Vi >, where V; = |1| and dimE(\) =1=m
1
=1=
E(X) = E(1) =< Vo >, where Vo = [3| and dimE(X\y) =1 # mg =2
2

Then the matrix A isn’t diagonalizable.



2 Chapter 2: Triangulability of matrices

1 2 -3
Example 1. Consider the matrix A= |2 5 —T7|, then
1 3 —4

P(\) = —A(A—1)?

Ao=0,my =1
PO =0= ¢
)\2:1,7’)7,2:2

E(\) = E(0) =<V >, where V] = and dimE(M\) =1=my

E(X) = E(1) =< V3 >, where V5 = and dimE(X2) =1 # mg = 2

o
1
_1_
"
3
2
Then the matrix A isn’t diagonalizable.

What to do if matrix A is not diagonalizable?
Therefore, we use triangulation:

2.1 Proposition

Let f : E — F alinear map and A the matrix of f, we suppose the characteristic
polynomial P(A) of f (or A) is factored in K[A]. Then f (or A) is triangulable.

Proof. By induction over dimFE: the result is true for the space of dimension 1.
Suppose they are true for spaces of dimension < n — 1 and let E be a space of
dimension n.

Let P(A) = (A= A)(A = X2)...(A—=X\,) in K[\, (K =R or C).

We suppose that the eigenvalues \; are not necessarily distinct. We denote V7,
an eigenvector associated with \; (i.e f(Vi) = A\ VWp).

By the incomplete basis theorem, there exists a basis B’ of E where

B’ = (V1,es, €3, ...,¢e,) then the matrix A’ has the form

—/\1 a1 . . . QAip
0 ag
0
A= Mp(f) =
_0 QAn2 Qnn |




The family B; = (e, ..., e,) is a basis of the subspace F' =< e, ..., e, > of E.
We denote g : F' — F', the linear map such that the associated matrix is
a2 . . . Qip

Al = . . = MBl(g)

Apo2 . . . QApp
Then P(A) = (A — ) x det(Ay — Al,,_4)
i.e. P(\) is factored and since dimF = n — 1, by induction hypothesis, there
exists a basis By = (V4,...,V,) of F such that Mpg,(g) is upper triangular. We

get
12 . . . QAin
D
Mp—w; va,..vi)(f) = oL O
An
Remark.

1/ If A is triangulable, the diagonal of the matrix T' = Mpg/(f) are the eigen-
values of A.
2/ All matrix of A € M, (C) is triangulable.

Corollary.

tr(A) =3\
det(A) =T[; \i

Remark.
We can triangulate the matrix A of Example 1.
( 1]
Vi=|1| =e+ex+e3
_1_
We consider the basis B’ of E where 1]
Vo= 13| =e1 + 3ea + 2e3
_2_
\Va =€

1 11
Because |1 3 0|=2—-3=-1+#0
1 20



612‘/5)
And § eg = =2V1 + Vo + V3
e3 =3V — Vo —2V;

0 0 —1
Then T = MB’(f) =10 1 1 = P 1AP
00 1
fV)=MVi=0
Where ¢ f(V2) = Vo = V)
f(V) = fler) =er+2ea+es==Vi+ Vot Vs
00 -1
Finally, "= |0 1 1 | is the upper triangular matrix,
0 0 1
111 0 -2 3
P=(WVWVV)=|1 3 0| and P (ejeqe3) = |0 1 —1
120 1 1 =2

2.2 Annihilating polynomials

Let E a vector space over K and R € K[\
R()\) = an)\” + an,l)\”_l + ...+ (12)\2 + al)\l -+ ao)\o
If f € Endk(E), we denote R(f), the linear map of E defined by
R(f) = anf™ 4+ an 1 f"" + ...+ aof? + ar f' + agid
or R(A) the matrix
R(A) = CLQAn + an_lA"*I + ...+ CLQA2 + alAl + aol,
Where f* = fofo..of
—_—

k times

Remark.

We have P(f) o Q(f) = Q(f)o P(f).

2.2.1 Definition.

Let f € Endg(E), the polynomial R € K[)] is called annihilating polynomial
of fif R(f) =0 (or R(A) =0).

10



2.3 Cayley-Hamilton theorem

Let f € Endi(E) and P()) the characteristic polynomial of f (or A).
Then

P(f)=0
(or P(A) =0). i.e P(\) annihilates f (or A).

Proof. We suppose K = C, in this case f (or A) is triangulable.
Let B' = (V1, V4, .., V,,), a basis of E such that

)\1 a192 . .. Qi
Ao azz . . gy

Mp/(f) =
An

We have f(V1) = M Vi = (Aid — f)(V1) =0 and

PO\ = det(T — ML) = (A — N (da — A)eeeOhn — )

Then P(f) = (Mid — ) ...0 (Anid — f) and

P(f)(V1) = (Mgid— f)o...o(Ayid— f)o(Aid— f) (V1) = 0. Therefore, P(f)(V}) =
0

P(£)(V2) = Ogid — £) 0. 0 (\yid — f) o (\rid — f) 0 (i — £)(Va) = (\sid —
f)o...o(Ayid — f)0(Aid — f)(—a2V1) = 0. Therefore, P(f)(V2) =0

We can similarly show that P(f)(V3) =0

By induction, we find P(f)(V;) =0,Vi = 1,...,n. Finally, P(f) = 0.

O
Example.
4 1 -1
A=1|-6 -1 2
6 1 1

P\) =det(A—XI3) = (2= X)(1—=X)?=—-X3+4)\2 =5\ +2
Since det(A) = P(0) =2 # 0, A is invertible.

By the Cayley-Hamilton theorem, we have P(A) = 0

ie —A3 +4A%2 —5A 4213 =0. Then —A3 +4A% — 54 = 2[5 =

Therefore,

1 5
1 _ L0 0
A —2A 2A+213
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