
1 Chapter 1: Diagonalization of matrices

1.1 Definitions

Let E be an n−dimensional space vector over a field K, where K = R or C.
dimE = n, B a basis of E. Let f : E −→ E a linear application (endomorphism of
E), A the square matrix (n× n) associated with f : A = MB(f) = (aij).

1.1.1 Definition 1. Characteristic Polynomial of a Matrix

If A is an n× n matrix, the characteristic polynomial P (λ) of A is defined by:

P (λ) = det(A− λIn)

1.1.2 Definition 2. Eigenvalues and Eigenvectors

If A is n× n matrix, a number λ is called an eigenvalue of A if there is V ∈ E such
that:

AV = λV

In this case, V is called an eigenvector of A corresponding to the eigenvalue λ.

Example. If A =

[
3 5
1 −1

]
and V =

[
5
1

]
then AV =

[
20
4

]
= 4

[
5
1

]
= 4V

So λ = 4 is an eigenvalue of A with corresponding eigenvector V .

Theorem. Let A be an n× n matrix.

1. The eigenvalues λ of A are the roots of the characteristic polynomial P (λ) of
A.

P (λ) = 0

2. The λ− eigenvectors X are the nonzero solutions to the homogeneous system

(A− λI)X = 0

1.1.3 Definition 3.

Let A be n× n matrix and λ an eigenvalue of the matrix A. The set

E(λ) = {V ∈ E,AV = λV }

is called the eigenspace of A associated to the eigenvalue λ in which E(λ) is vector
sub-space of E. Its dimension (dimE(λ)) is called the the geometric multiplicity of
λ.
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1.1.4 Definition 4. Similarity and Diagonalization

If A,B are two n × n matrices, then they are similar if and only if there exists an
invertible matrix P such that:

A = P−1BP

1.1.5 Definition 5. Trace of a matrix

If A = (aij) is an n× n matrix, then the trace of A is

trace(A) = tr(A) =
n∑

i=1

aij

Lemma. Properties of a trace For n× n matrices A and B, and any k ∈ R,

1. tr(A+B) = tr(A) + tr(B)

2. tr(kA) = k.tr(A)

3. tr(AB) = tr(BA)

Theorem. Properties of similar matrices If A and B are n×n matrices and
A,B are similar, then

1. det(A) = det(B)

2. rank(A) = rank(B)

3. tr(A) = tr(B)

4. PA(λ) = PB(λ)

5. A and B have the same eigenvalues.

Proof. 1. We have B = P−1AP , then det(B) = det(P−1AP ) = det(A)

4. PB(λ) = det(B − λIn) = det(P−1AP − P−1λP ) = det[P−1(A − λIn)P ] =
det(P−1)× det(A− λIn)× det(P )
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1.1.6 Definition 6. Digonalizable

Let A be an n × n matrix. Then A is said to be diagonalizable if there exists an
invetible matrix P such that

P−1AP = D

where D is a diagonal matrix.

Proposition. Let λ1 and λ2 be two distinct eigenvalues (λ1 ̸= λ2) of A, then

E(λ1) ∩ E(λ2) = {0}

Proof. If V ∈ E(λ1) ∩ E(λ2), then AV = λ1V = λ2V i.e. (λ1 − λ2)V = 0.
Since λ1 ̸= λ2, then we have V = 0

1.1.7 Definition 7. Diagonalization

A square n× n matrix A is diagonalizable if A is similar to a diagonal matrix, i.e.

A = PDP−1

for a diagonal matrix D and an invertible matrix P .

Proposition. Let A be an n× n matrix. We suppose that P (λ) have k distinct
roots λ1, λ2, ..., λk. If E = E(λ1)⊕ E(λ2)⊕ ...⊕ E(λk), then A is diagonalizable.

Proof. For i = 1, 2, ..., k, we choose the basis Bi of E(λi). The basis B′ = ∪i=k
i=1Bi of

E consists of the eigenvectors of A associated with the eigenvalues λ1, λ2, ..., λk, then
the matrix D = MB′(f) is diagonal.

Examples Find the characteristic polynomial, eigenvalues and eigenvectors of the
matrices:

1. A =

[
3 5
1 −1

]

2. A =

1 2 −3
1 4 −5
0 2 −2


Solution.
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1. P (λ) = (λ− 4)(λ+ 2)
λ1 = −2 and λ2 = 4

V1 =

[
−1
1

]
and V2 =

[
5
1

]
2. P (λ) = −λ(λ− 1)(λ− 2)

λ1 = 0,λ2 = 4 and λ3 = 2

V1 =

11
1

, V2 =

13
2

 and V3 =

12
1


1.2 Sufficient condition for a matrix to be diagonalizable

Proposition. An n× n matrix with n distinct eigenvalues is diagonalizable.

Proof. We have P (λ) = (−1n)(λ−λ1)(λ−λ2)...(λ−λn), where λ1, λ2, ..., λn n distinct
eigenvalues of A and V1, V2, ..., Vn the n eigenvectors associated with λi.
AV1 = λ1V1

AV2 = λ2V2

.

.

.
AVn = λnVn

We can prove that B′ = (V1, V2, ..., Vn) is a basis of E by induction:
We prove that the set (V1, V2, V3, ..., Vk+1) is linearly independent of E.

α1V1 + α2V2 + ...+ αkVk + αk+1Vk+1 = 0 (1)

We have A(α1V1 + α2V2 + ...+ αkVk + αk+1Vk+1) = 0, then
α1AV1 + α2AV2 + ...+ αkAVk + αk+1AVk+1 = 0

α1λ1V1 + α2λ2V2 + ...+ αkλkVk + αk+1λk+1Vk+1 (2)

From (2)− λk+1(1):
(λ1 − λk+1)α1V1 + (λ2 − λk+1)α2V2 + ...+ (λk − λk+1)αkVk = 0
Since the set (V1, V2, ..., Vk) is linearly independent of E by induction hypothesis, then
(λ1 − λk+1)α1 = (λ2 − λk+1)α2 = ... = (λk − λk+1)αk = 0 (because λk are distinct).
Therefore α1 = α2 = ... = αk = 0
By (1) we have αk+1Vk+1 = 0, then αk+1 = 0
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1.3 Necessary and sufficient condition for diagonalizability

Proposition 1. Let A be an n× n matrix, then

dim(E(λ1)) ≤ m1

where λ1 is an eigenvalue of A multiplicity m1.

Proof. Let (e1, e2, ..., er) the basis ofE(λ1), then we can find the basisB = (e1, e2, ..., er, er+1, ..., en)
of E.
The matrix A is similar of the matrix A′ of the form

A′ =



λ1

λ1

. . .

λ1

A1

0 A2



P (λ) = det(A− λIn) =



λ1 − λ
λ1 − λ

. . .

λ1 − λ

A1

0 A2 − λIn−r


= (λ1 − λ)rdet(A2 − λIn−r)

Then m ≥ r, where r = dimE(λ1)

Proposition 2. Let A be an n×n matrix. Then A is diagonalizable if and only if:

1. P (λ) is factored.

2. For each eigenvalue λi of A, dim(E(λi) is equal to the multiplicity of λi

i.e.
dimE(λi) = mi, i = 1, ..., k
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Proof. By induction, the sub-spaces E(λi), i = 1, ..., j, verify

E = E(λ1)⊕ E(λ2)⊕ ...⊕ E(λk)

for j = 1, ..., k
Denote Sj = E(λ1)⊕ E(λ2)⊕ ...⊕ E(λj)
It is sufficient to demonstrate that Sj ∩ E(λj+1) = {0}
Let V ∈ Sj ∩ E(λj+1), then 

V = V1 + V2 + ...+ Vj

and

AV = λj+1V

(3)

For (3), we have AV = AV1 + AV2 + ...+ AVj, then

λj+1V = λ1V1 + λ2V2 + ...+ λjVj (4)

For (4)− λj+1(3), we have

0 = (λ1 − λj+1)V1 + (λ2 − λj+1)V2 + ...+ (λj − λj+1)Vj

Using induction hypothesis, we get V1 = V2 = ... = Vj = 0
Since

∑n
i=1 dimE(λi) =

∑n
i=1 mi = n, we see that E = ⊕k

i=1E(λi). Then A is diago-
nalizable and we write:

D =



λ1

. . .

λ1

λ2

. . .

λ2

. . .

λk

. . .

λk



6



Examples.

1. A =

 0 1 −1
−1 2 −1
−1 1 0


P (λ) = −λ(λ− 1)2

P (λ) = 0 ⇒

{
λ1 = 0,m1 = 1

λ2 = 1,m2 = 2

E(λ1) = E(0) =< V1 >, where V1 =

11
1

 and dimE(λ1) = 1 = m1

E(λ2) = E(1) =< V2, V3 >, where V2 =

13
2

, V3 =

12
1

 and dimE(λ2) = 1 =

m2 = 2.
Then the matrix A is diagonalizable.

2. A =

1 2 −3
2 5 −7
1 3 −4


P (λ) = −λ(λ− 1)2

P (λ) = 0 ⇒

{
λ1 = 0,m1 = 1

λ2 = 1,m2 = 2

E(λ1) = E(0) =< V1 >, where V1 =

11
1

 and dimE(λ1) = 1 = m1

E(λ2) = E(1) =< V2 >, where V2 =

13
2

 and dimE(λ2) = 1 ̸= m2 = 2

Then the matrix A isn’t diagonalizable.
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2 Chapter 2: Triangulability of matrices

Example 1. Consider the matrix A =

1 2 −3
2 5 −7
1 3 −4

, then
P (λ) = −λ(λ− 1)2

P (λ) = 0 ⇒

{
λ1 = 0,m1 = 1

λ2 = 1,m2 = 2

E(λ1) = E(0) =< V1 >, where V1 =

11
1

 and dimE(λ1) = 1 = m1

E(λ2) = E(1) =< V2 >, where V2 =

13
2

 and dimE(λ2) = 1 ̸= m2 = 2

Then the matrix A isn’t diagonalizable.

What to do if matrix A is not diagonalizable?
Therefore, we use triangulation:

2.1 Proposition

Let f : E → F a linear map and A the matrix of f , we suppose the characteristic
polynomial P (λ) of f (or A) is factored in K[λ]. Then f (or A) is triangulable.

Proof. By induction over dimE: the result is true for the space of dimension 1.
Suppose they are true for spaces of dimension ≤ n− 1 and let E be a space of
dimension n.
Let P (λ) = (λ− λ1)(λ− λ2)...(λ− λn) in K[λ], (K = R or C).
We suppose that the eigenvalues λi are not necessarily distinct. We denote V1,
an eigenvector associated with λ1 (i.e f(V1) = λ1V1).
By the incomplete basis theorem, there exists a basis B′ of E where
B′ = (V1, e2, e3, ..., en) then the matrix A′ has the form

A′ = MB′(f) =


λ1 a12 . . . a1n
0 a22 .
0 . .
. . .
. . .
0 an2 . . . ann
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The family B1 = (e2, ..., en) is a basis of the subspace F =< e2, ..., en > of E.
We denote g : F → F , the linear map such that the associated matrix is

A1 =


a12 . . . a1n
. .
. .
. .

an2 . . . ann

 = MB1(g)

Then P (λ) = (λ1 − λ)× det(A1 − λIn−1)
i.e. P (λ) is factored and since dimF = n − 1, by induction hypothesis, there
exists a basis B2 = (V2, ..., Vn) of F such that MB2(g) is upper triangular. We
get

MB′=(V1,V2,...,Vn)(f) =


λ1 a12 . . . a1n

λ2 . . . .
. . .

. .
λn


Remark.
1/ If A is triangulable, the diagonal of the matrix T = MB′(f) are the eigen-
values of A.
2/ All matrix of A ∈ Mn(C) is triangulable.

Corollary.
tr(A) =

∑
i λi

det(A) =
∏

i λi

Remark.
We can triangulate the matrix A of Example 1.

We consider the basis B′ of E where



V1 =

11
1

 = e1 + e2 + e3

V2 =

13
2

 = e1 + 3e2 + 2e3

V3 = e1

Because

∣∣∣∣∣∣
1 1 1
1 3 0
1 2 0

∣∣∣∣∣∣ = 2− 3 = −1 ̸= 0
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And


e1 = V3

e2 = −2V1 + V2 + V3

e3 = 3V1 − V2 − 2V3

Then T = MB′(f) =

0 0 −1
0 1 1
0 0 1

 = P−1AP

Where


f(V1) = λ1V1 = 0

f(V2) = λ2V2 = V2

f(V3) = f(e1) = e1 + 2e2 + e3 = −V1 + V2 + V3

Finally, T =

0 0 −1
0 1 1
0 0 1

 is the upper triangular matrix,

P = (V1V2V3) =

1 1 1
1 3 0
1 2 0

 and P−1(e1e2e3) =

0 −2 3
0 1 −1
1 1 −2


2.2 Annihilating polynomials

Let E a vector space over K and R ∈ K[λ]
R(λ) = anλ

n + an−1λ
n−1 + ...+ a2λ2 + a1λ

1 + a0λ
0

If f ∈ EndK(E), we denote R(f), the linear map of E defined by
R(f) = anf

n + an−1f
n−1 + ...+ a2f

2 + a1f
1 + a0id

or R(A) the matrix
R(A) = a2A

n + an−1A
n−1 + ...+ a2A

2 + a1A
1 + a0In

Where fk = f ◦ f ◦ ... ◦ f︸ ︷︷ ︸
k times

Remark.
We have P (f) ◦Q(f) = Q(f) ◦ P (f).

2.2.1 Definition.

Let f ∈ EndK(E), the polynomial R ∈ K[λ] is called annihilating polynomial
of f if R(f) = 0 (or R(A) = 0).
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2.3 Cayley-Hamilton theorem

Let f ∈ Endk(E) and P (λ) the characteristic polynomial of f (or A).
Then

P (f) = 0

(or P (A) = 0). i.e P (λ) annihilates f (or A).

Proof. We suppose K = C, in this case f (or A) is triangulable.
Let B′ = (V1, V2, .., Vn), a basis of E such that

MB′(f) =


λ1 a12 . . . a1n

λ2 a23 . . a2n
. .

. .
λn


We have f(V1) = λ1V1 ⇒ (λ1id− f)(V1) = 0 and
P (λ) = det(T − λIn) = (λ1 − λ)(λ2 − λ)...(λn − λ)
Then P (f) = (λ1id− f) ◦ ... ◦ (λnid− f) and
P (f)(V1) = (λ2id−f)◦...◦(λnid−f)◦(λ1id−f)(V1) = 0. Therefore, P (f)(V1) =
0
P (f)(V2) = (λ3id− f) ◦ ... ◦ (λnid− f) ◦ (λ1id− f) ◦ (λ2id− f)(V2) = (λ3id−
f) ◦ ... ◦ (λnid− f)0(λ1id− f)(−a12V1) = 0. Therefore, P (f)(V2) = 0
We can similarly show that P (f)(V3) = 0
By induction, we find P (f)(Vi) = 0,∀i = 1, ..., n. Finally, P (f) = 0.

Example.

A =

 4 1 −1
−6 −1 2
6 1 1


P (λ) = det(A− λI3) = (2− λ)(1− λ)2 = −λ3 + 4λ2 − 5λ+ 2
Since det(A) = P (0) = 2 ̸= 0, A is invertible.
By the Cayley-Hamilton theorem, we have P (A) = 0
i.e −A3 + 4A2 − 5A+ 2I3 = 0. Then −A3 + 4A2 − 5A = −2I3 ⇒
A[−A2 + 4A− 5I3] = −2I3 ⇒ A[1

2
A2 − 2A+ 5

2
I3] = I3

Therefore,

A−1 =
1

2
A2 − 2A+

5

2
I3
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