1 Chapter 1: Diagonalization of matrices

1.1 Definitions

Let E be an n-dimensional space vector over a field K, where $K=\mathbb{R}$ or \mathbb{C}.
$\operatorname{dim} E=n, B$ a basis of E. Let $f: E \longrightarrow E$ a linear application (endomorphism of $E), A$ the square matrix $(n \times n)$ associated with $f: A=\mathbb{M}_{B}(f)=\left(a_{i j}\right)$.

1.1.1 Definition 1. Characteristic Polynomial of a Matrix

If A is an $n \times n$ matrix, the characteristic polynomial $P(\lambda)$ of A is defined by:

$$
P(\lambda)=\operatorname{det}\left(A-\lambda I_{n}\right)
$$

1.1.2 Definition 2. Eigenvalues and Eigenvectors

If A is $n \times n$ matrix, a number λ is called an eigenvalue of A if there is $V \in E$ such that:

$$
A V=\lambda V
$$

In this case, V is called an eigenvector of A corresponding to the eigenvalue λ.
Example. If $A=\left[\begin{array}{cc}3 & 5 \\ 1 & -1\end{array}\right]$ and $V=\left[\begin{array}{l}5 \\ 1\end{array}\right]$ then $A V=\left[\begin{array}{c}20 \\ 4\end{array}\right]=4\left[\begin{array}{l}5 \\ 1\end{array}\right]=4 V$
So $\lambda=4$ is an eigenvalue of A with corresponding eigenvector V.
Theorem. Let A be an $n \times n$ matrix.

1. The eigenvalues λ of A are the roots of the characteristic polynomial $P(\lambda)$ of A.

$$
P(\lambda)=0
$$

2. The λ - eigenvectors X are the nonzero solutions to the homogeneous system

$$
(A-\lambda I) X=0
$$

1.1.3 Definition 3.

Let A be $n \times n$ matrix and λ an eigenvalue of the matrix A. The set

$$
E(\lambda)=\{V \in E, A V=\lambda V\}
$$

is called the eigenspace of A associated to the eigenvalue λ in which $E(\lambda)$ is vector sub-space of E. Its dimension $(\operatorname{dim} E(\lambda))$ is called the the geometric multiplicity of λ.

1.1.4 Definition 4. Similarity and Diagonalization

If A, B are two $n \times n$ matrices, then they are similar if and only if there exists an invertible matrix P such that:

$$
A=P^{-1} B P
$$

1.1.5 Definition 5. Trace of a matrix

If $A=\left(a_{i j}\right)$ is an $n \times n$ matrix, then the trace of A is

$$
\operatorname{trace}(A)=\operatorname{tr}(A)=\sum_{i=1}^{n} a_{i j}
$$

Lemma. Properties of a trace For $n \times n$ matrices A and B, and any $k \in \mathbb{R}$,

1. $\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$
2. $\operatorname{tr}(k A)=k \cdot \operatorname{tr}(A)$
3. $\operatorname{tr}(A B)=\operatorname{tr}(B A)$

Theorem. Properties of similar matrices If A and B are $n \times n$ matrices and A, B are similar, then

1. $\operatorname{det}(A)=\operatorname{det}(B)$
2. $\operatorname{rank}(A)=\operatorname{rank}(B)$
3. $\operatorname{tr}(A)=\operatorname{tr}(B)$
4. $P_{A}(\lambda)=P_{B}(\lambda)$
5. A and B have the same eigenvalues.

Proof. 1. We have $B=P^{-1} A P$, then $\operatorname{det}(B)=\operatorname{det}\left(P^{-1} A P\right)=\operatorname{det}(A)$
4. $P_{B}(\lambda)=\operatorname{det}\left(B-\lambda I_{n}\right)=\operatorname{det}\left(P^{-1} A P-P^{-1} \lambda P\right)=\operatorname{det}\left[P^{-1}\left(A-\lambda I_{n}\right) P\right]=$ $\operatorname{det}\left(P^{-1}\right) \times \operatorname{det}\left(A-\lambda I_{n}\right) \times \operatorname{det}(P)$

1.1.6 Definition 6. Digonalizable

Let A be an $n \times n$ matrix. Then A is said to be diagonalizable if there exists an invetible matrix P such that

$$
P^{-1} A P=D
$$

where D is a diagonal matrix.

Proposition. Let λ_{1} and λ_{2} be two distinct eigenvalues $\left(\lambda_{1} \neq \lambda_{2}\right)$ of A, then

$$
E\left(\lambda_{1}\right) \cap E\left(\lambda_{2}\right)=\{0\}
$$

Proof. If $V \in E\left(\lambda_{1}\right) \cap E\left(\lambda_{2}\right)$, then $A V=\lambda_{1} V=\lambda_{2} V$ i.e. $\left(\lambda_{1}-\lambda_{2}\right) V=0$.
Since $\lambda_{1} \neq \lambda_{2}$, then we have $V=0$

1.1.7 Definition 7. Diagonalization

A square $n \times n$ matrix A is diagonalizable if A is similar to a diagonal matrix, i.e.

$$
A=P D P^{-1}
$$

for a diagonal matrix D and an invertible matrix P.

Proposition. Let A be an $n \times n$ matrix. We suppose that $P(\lambda)$ have k distinct roots $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$. If $E=E\left(\lambda_{1}\right) \oplus E\left(\lambda_{2}\right) \oplus \ldots \oplus E\left(\lambda_{k}\right)$, then A is diagonalizable.

Proof. For $i=1,2, \ldots, k$, we choose the basis B_{i} of $E\left(\lambda_{i}\right)$. The basis $B^{\prime}=\cup_{i=1}^{i=k} B_{i}$ of E consists of the eigenvectors of A associated with the eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$, then the matrix $D=\mathbb{M}_{B^{\prime}}(f)$ is diagonal.

Examples Find the characteristic polynomial, eigenvalues and eigenvectors of the matrices:

1. $A=\left[\begin{array}{cc}3 & 5 \\ 1 & -1\end{array}\right]$
2. $A=\left[\begin{array}{lll}1 & 2 & -3 \\ 1 & 4 & -5 \\ 0 & 2 & -2\end{array}\right]$

Solution.

1. $P(\lambda)=(\lambda-4)(\lambda+2)$
$\lambda_{1}=-2$ and $\lambda_{2}=4$
$V_{1}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ and $V_{2}=\left[\begin{array}{l}5 \\ 1\end{array}\right]$
2. $P(\lambda)=-\lambda(\lambda-1)(\lambda-2)$
$\lambda_{1}=0, \lambda_{2}=4$ and $\lambda_{3}=2$

$$
V_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], V_{2}=\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right] \text { and } V_{3}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]
$$

1.2 Sufficient condition for a matrix to be diagonalizable

Proposition. An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.
Proof. We have $P(\lambda)=\left(-1^{n}\right)\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right) \ldots\left(\lambda-\lambda_{n}\right)$, where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} n$ distinct eigenvalues of A and $V_{1}, V_{2}, \ldots, V_{n}$ the n eigenvectors associated with λ_{i}.
$A V_{1}=\lambda_{1} V_{1}$
$A V_{2}=\lambda_{2} V_{2}$
$A V_{n}=\lambda_{n} V_{n}$
We can prove that $B^{\prime}=\left(V_{1}, V_{2}, \ldots, V_{n}\right)$ is a basis of E by induction:
We prove that the set $\left(V_{1}, V_{2}, V_{3}, \ldots, V_{k+1}\right)$ is linearly independent of E.

$$
\begin{equation*}
\alpha_{1} V_{1}+\alpha_{2} V_{2}+\ldots+\alpha_{k} V_{k}+\alpha_{k+1} V_{k+1}=0 \tag{1}
\end{equation*}
$$

We have $A\left(\alpha_{1} V_{1}+\alpha_{2} V_{2}+\ldots+\alpha_{k} V_{k}+\alpha_{k+1} V_{k+1}\right)=0$, then $\alpha_{1} A V_{1}+\alpha_{2} A V_{2}+\ldots+\alpha_{k} A V_{k}+\alpha_{k+1} A V_{k+1}=0$

$$
\begin{equation*}
\alpha_{1} \lambda_{1} V_{1}+\alpha_{2} \lambda_{2} V_{2}+\ldots+\alpha_{k} \lambda_{k} V_{k}+\alpha_{k+1} \lambda_{k+1} V_{k+1} \tag{2}
\end{equation*}
$$

From (2) $-\lambda_{k+1}(1)$:
$\left(\lambda_{1}-\lambda_{k+1}\right) \alpha_{1} V_{1}+\left(\lambda_{2}-\lambda_{k+1}\right) \alpha_{2} V_{2}+\ldots+\left(\lambda_{k}-\lambda_{k+1}\right) \alpha_{k} V_{k}=0$
Since the set $\left(V_{1}, V_{2}, \ldots, V_{k}\right)$ is linearly independent of E by induction hypothesis, then $\left(\lambda_{1}-\lambda_{k+1}\right) \alpha_{1}=\left(\lambda_{2}-\lambda_{k+1}\right) \alpha_{2}=\ldots=\left(\lambda_{k}-\lambda_{k+1}\right) \alpha_{k}=0$ (because λ_{k} are distinct).
Therefore $\alpha_{1}=\alpha_{2}=\ldots=\alpha_{k}=0$
By (1) we have $\alpha_{k+1} V_{k+1}=0$, then $\alpha_{k+1}=0$

1.3 Necessary and sufficient condition for diagonalizability

Proposition 1. Let A be an $n \times n$ matrix, then

$$
\operatorname{dim}\left(E\left(\lambda_{1}\right)\right) \leq m_{1}
$$

where λ_{1} is an eigenvalue of A multiplicity m_{1}.
Proof. Let $\left(e_{1}, e_{2}, \ldots, e_{r}\right)$ the basis of $E\left(\lambda_{1}\right)$, then we can find the basis $B=\left(e_{1}, e_{2}, \ldots, e_{r}, e_{r+1}, \ldots, e_{n}\right)$ of E.
The matrix A is similar of the matrix A^{\prime} of the form

$$
\begin{aligned}
& A^{\prime}=\left(\begin{array}{llll|l}
\lambda_{1} & & & & \\
& \lambda_{1} & & & A_{1} \\
& & \ddots & & \\
\hline & & & \lambda_{1} & \\
\hline & & 0 & & A_{2}
\end{array}\right) \\
& P(\lambda)=\operatorname{det}\left(A-\lambda I_{n}\right)=\left[\begin{array}{cccc|c}
\lambda_{1}-\lambda & & & & \\
& \lambda_{1}-\lambda & & & A_{1} \\
& & \ddots & & \\
& & & \lambda_{1}-\lambda & \\
\hline & 0 & & & A_{2}-\lambda I_{n-r}
\end{array}\right] \\
& =\left(\lambda_{1}-\lambda\right)^{r} \operatorname{det}\left(A_{2}-\lambda I_{n-r}\right)
\end{aligned}
$$

Then $m \geq r$, where $r=\operatorname{dim} E\left(\lambda_{1}\right)$
Proposition 2. Let A be an $n \times n$ matrix. Then A is diagonalizable if and only if:

1. $P(\lambda)$ is factored.
2. For each eigenvalue λ_{i} of $A, \operatorname{dim}\left(E\left(\lambda_{i}\right)\right.$ is equal to the multiplicity of λ_{i} i.e.

$$
\operatorname{dim} E\left(\lambda_{i}\right)=m_{i}, i=1, \ldots, k
$$

Proof. By induction, the sub-spaces $E\left(\lambda_{i}\right), i=1, \ldots, j$, verify

$$
E=E\left(\lambda_{1}\right) \oplus E\left(\lambda_{2}\right) \oplus \ldots \oplus E\left(\lambda_{k}\right)
$$

for $j=1, \ldots, k$
Denote $S_{j}=E\left(\lambda_{1}\right) \oplus E\left(\lambda_{2}\right) \oplus \ldots \oplus E\left(\lambda_{j}\right)$
It is sufficient to demonstrate that $S_{j} \cap E\left(\lambda_{j+1}\right)=\{0\}$
Let $V \in S_{j} \cap E\left(\lambda_{j+1}\right)$, then

$$
\left\{\begin{array}{l}
V=V_{1}+V_{2}+\ldots+V_{j} \tag{3}\\
\text { and } \\
A V=\lambda_{j+1} V
\end{array}\right.
$$

For (3), we have $A V=A V_{1}+A V_{2}+\ldots+A V_{j}$, then

$$
\begin{equation*}
\lambda_{j+1} V=\lambda_{1} V_{1}+\lambda_{2} V_{2}+\ldots+\lambda_{j} V_{j} \tag{4}
\end{equation*}
$$

For (4) $-\lambda_{j+1}(3)$, we have

$$
0=\left(\lambda_{1}-\lambda_{j+1}\right) V_{1}+\left(\lambda_{2}-\lambda_{j+1}\right) V_{2}+\ldots+\left(\lambda_{j}-\lambda_{j+1}\right) V_{j}
$$

Using induction hypothesis, we get $V_{1}=V_{2}=\ldots=V_{j}=0$
Since $\sum_{i=1}^{n} \operatorname{dim} E\left(\lambda_{i}\right)=\sum_{i=1}^{n} m_{i}=n$, we see that $E=\oplus_{i=1}^{k} E\left(\lambda_{i}\right)$. Then A is diagonalizable and we write:

$$
D=\left[\begin{array}{llllllllll}
\lambda_{1} & & & & & & & & & \\
& \ddots & & & & & & & & \\
& & \lambda_{1} & & & & & & & \\
& & & \lambda_{2} & & & & & & \\
& & & & \ddots & & & & & \\
& & & & & \lambda_{2} & & & & \\
& & & & & & \ddots & & & \\
& & & & & & & \lambda_{k} & & \\
& & & & & & & & \ddots & \\
& & & & & & & & & \lambda_{k}
\end{array}\right]
$$

Examples.

1. $A=\left[\begin{array}{ccc}0 & 1 & -1 \\ -1 & 2 & -1 \\ -1 & 1 & 0\end{array}\right]$
$P(\lambda)=-\lambda(\lambda-1)^{2}$
$P(\lambda)=0 \Rightarrow\left\{\begin{array}{l}\lambda_{1}=0, m_{1}=1 \\ \lambda_{2}=1, m_{2}=2\end{array}\right.$
$E\left(\lambda_{1}\right)=E(0)=<V_{1}>$, where $V_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and $\operatorname{dim} E\left(\lambda_{1}\right)=1=m_{1}$
$E\left(\lambda_{2}\right)=E(1)=<V_{2}, V_{3}>$, where $V_{2}=\left[\begin{array}{l}1 \\ 3 \\ 2\end{array}\right], V_{3}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$ and $\operatorname{dim} E\left(\lambda_{2}\right)=1=$

$$
m_{2}=2 .
$$

Then the matrix A is diagonalizable.
2. $A=\left[\begin{array}{lll}1 & 2 & -3 \\ 2 & 5 & -7 \\ 1 & 3 & -4\end{array}\right]$
$P(\lambda)=-\lambda(\lambda-1)^{2}$
$P(\lambda)=0 \Rightarrow\left\{\begin{array}{l}\lambda_{1}=0, m_{1}=1 \\ \lambda_{2}=1, m_{2}=2\end{array}\right.$
$E\left(\lambda_{1}\right)=E(0)=<V_{1}>$, where $V_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and $\operatorname{dim} E\left(\lambda_{1}\right)=1=m_{1}$
$E\left(\lambda_{2}\right)=E(1)=<V_{2}>$, where $V_{2}=\left[\begin{array}{l}1 \\ 3 \\ 2\end{array}\right]$ and $\operatorname{dim} E\left(\lambda_{2}\right)=1 \neq m_{2}=2$
Then the matrix A isn't diagonalizable.

2 Chapter 2: Triangulability of matrices

Example 1. Consider the matrix $A=\left[\begin{array}{lll}1 & 2 & -3 \\ 2 & 5 & -7 \\ 1 & 3 & -4\end{array}\right]$, then $P(\lambda)=-\lambda(\lambda-1)^{2}$
$P(\lambda)=0 \Rightarrow\left\{\begin{array}{l}\lambda_{1}=0, m_{1}=1 \\ \lambda_{2}=1, m_{2}=2\end{array}\right.$
$E\left(\lambda_{1}\right)=E(0)=<V_{1}>$, where $V_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and $\operatorname{dim} E\left(\lambda_{1}\right)=1=m_{1}$
$E\left(\lambda_{2}\right)=E(1)=<V_{2}>$, where $V_{2}=\left[\begin{array}{l}1 \\ 3 \\ 2\end{array}\right]$ and $\operatorname{dim} E\left(\lambda_{2}\right)=1 \neq m_{2}=2$
Then the matrix A isn't diagonalizable.

What to do if matrix A is not diagonalizable?
Therefore, we use triangulation:

2.1 Proposition

Let $f: E \rightarrow F$ a linear map and A the matrix of f, we suppose the characteristic polynomial $P(\lambda)$ of f (or A) is factored in $K[\lambda]$. Then $f($ or A) is triangulable.

Proof. By induction over dimE : the result is true for the space of dimension 1. Suppose they are true for spaces of dimension $\leq n-1$ and let E be a space of dimension n.
Let $P(\lambda)=\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right) \ldots\left(\lambda-\lambda_{n}\right)$ in $K[\lambda],(K=\mathbb{R}$ or $\mathbb{C})$.
We suppose that the eigenvalues λ_{i} are not necessarily distinct. We denote V_{1}, an eigenvector associated with λ_{1} (i.e $f\left(V_{1}\right)=\lambda_{1} V_{1}$).
By the incomplete basis theorem, there exists a basis B^{\prime} of E where $B^{\prime}=\left(V_{1}, e_{2}, e_{3}, \ldots, e_{n}\right)$ then the matrix A^{\prime} has the form
$A^{\prime}=M_{B^{\prime}}(f)=\left[\begin{array}{cccccc}\lambda_{1} & a_{12} & \cdot & \cdot & \cdot & a_{1 n} \\ 0 & a_{22} & & & \cdot \\ 0 & \cdot & & & \cdot \\ \cdot & \cdot & & & \cdot \\ \cdot & \cdot & & & \cdot \\ 0 & a_{n 2} & \cdot & \cdot & \cdot & \cdot \\ n n\end{array}\right]$

The family $B_{1}=\left(e_{2}, \ldots, e_{n}\right)$ is a basis of the subspace $F=<e_{2}, \ldots, e_{n}>$ of E. We denote $g: F \rightarrow F$, the linear map such that the associated matrix is
$A_{1}=\left[\begin{array}{ccccc}a_{12} & \cdot & \cdot & a_{1 n} \\ \cdot & & & \cdot \\ \cdot & & & \cdot \\ \cdot & & & \cdot \\ a_{n 2} & \cdot & \cdot & \cdot & a_{n n}\end{array}\right]=M_{B_{1}}(g)$
Then $P(\lambda)=\left(\lambda_{1}-\lambda\right) \times \operatorname{det}\left(A_{1}-\lambda I_{n-1}\right)$
i.e. $P(\lambda)$ is factored and since $\operatorname{dim} F=n-1$, by induction hypothesis, there exists a basis $B_{2}=\left(V_{2}, \ldots, V_{n}\right)$ of F such that $M_{B_{2}}(g)$ is upper triangular. We get
$M_{B^{\prime}=\left(V_{1}, V_{2}, \ldots, V_{n}\right)}(f)=\left[\begin{array}{cccccc}\left.\begin{array}{|lllll}\lambda_{1} & a_{12} & \cdot & \cdot & \cdot \\ & \lambda_{2} & \cdot & \cdot & \cdot \\ 1 n \\ & & & \cdot & \cdot \\ & & & \cdot & \cdot \\ & & & & \lambda_{n}\end{array}\right]\end{array}\right.$

Remark.

1/ If A is triangulable, the diagonal of the matrix $T=M_{B^{\prime}}(f)$ are the eigenvalues of A.
2/ All matrix of $A \in M_{n}(\mathbb{C})$ is triangulable.

Corollary.

$\operatorname{tr}(A)=\sum_{i} \lambda_{i}$
$\operatorname{det}(A)=\prod_{i} \lambda_{i}$

Remark.

We can triangulate the matrix A of Example 1.
We consider the basis B^{\prime} of E where $\left\{\begin{array}{l}V_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=e_{1}+e_{2}+e_{3} \\ V_{2}=\left[\begin{array}{l}1 \\ 3 \\ 2\end{array}\right]=e_{1}+3 e_{2}+2 e_{3} \\ V_{3}=e_{1}\end{array}\right.$
Because $\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & 3 & 0 \\ 1 & 2 & 0\end{array}\right|=2-3=-1 \neq 0$

And $\left\{\begin{array}{l}e_{1}=V_{3} \\ e_{2}=-2 V_{1}+V_{2}+V_{3} \\ e_{3}=3 V_{1}-V_{2}-2 V_{3}\end{array}\right.$
Then $T=M_{B^{\prime}}(f)=\left[\begin{array}{ccc}0 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]=P^{-1} A P$
Where $\left\{\begin{array}{l}f\left(V_{1}\right)=\lambda_{1} V_{1}=0 \\ f\left(V_{2}\right)=\lambda_{2} V_{2}=V_{2} \\ f\left(V_{3}\right)=f\left(e_{1}\right)=e_{1}+2 e_{2}+e_{3}=-V_{1}+V_{2}+V_{3}\end{array}\right.$
Finally, $T=\left[\begin{array}{ccc}0 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$ is the upper triangular matrix,
$P=\left(V_{1} V_{2} V_{3}\right)=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 3 & 0 \\ 1 & 2 & 0\end{array}\right]$ and $P^{-1}\left(e_{1} e_{2} e_{3}\right)=\left[\begin{array}{ccc}0 & -2 & 3 \\ 0 & 1 & -1 \\ 1 & 1 & -2\end{array}\right]$

2.2 Annihilating polynomials

Let E a vector space over K and $R \in K[\lambda]$
$R(\lambda)=a_{n} \lambda^{n}+a_{n-1} \lambda^{n-1}+\ldots+a_{2} \lambda_{2}+a_{1} \lambda^{1}+a_{0} \lambda^{0}$
If $f \in E n d_{K}(E)$, we denote $R(f)$, the linear map of E defined by
$R(f)=a_{n} f^{n}+a_{n-1} f^{n-1}+\ldots+a_{2} f^{2}+a_{1} f^{1}+a_{0} i d$
or $R(A)$ the matrix
$R(A)=a_{2} A^{n}+a_{n-1} A^{n-1}+\ldots+a_{2} A^{2}+a_{1} A^{1}+a_{0} I_{n}$
Where $f^{k}=\underbrace{f \circ f \circ \ldots \circ f}_{\mathrm{k} \text { times }}$

Remark.

We have $P(f) \circ Q(f)=Q(f) \circ P(f)$.

2.2.1 Definition.

Let $f \in \operatorname{End}_{K}(E)$, the polynomial $R \in K[\lambda]$ is called annihilating polynomial of f if $R(f)=0$ (or $R(A)=0$).

2.3 Cayley-Hamilton theorem

Let $f \in \operatorname{End}_{k}(E)$ and $P(\lambda)$ the characteristic polynomial of $f($ or $A)$.
Then

$$
P(f)=0
$$

(or $P(A)=0$). i.e $P(\lambda)$ annihilates f (or A).
Proof. We suppose $K=\mathbb{C}$, in this case f (or A) is triangulable.
Let $B^{\prime}=\left(V_{1}, V_{2}, . ., V_{n}\right)$, a basis of E such that
$M_{B^{\prime}}(f)=\left(\begin{array}{cccccc}\lambda_{1} & a_{12} & \cdot & \cdot & \cdot & a_{1 n} \\ & \lambda_{2} & a_{23} & \cdot & \cdot & a_{2 n} \\ & & \cdot & & & \cdot \\ & & & & \cdot & \cdot \\ & & & & \lambda_{n}\end{array}\right)$
We have $f\left(V_{1}\right)=\lambda_{1} V_{1} \Rightarrow\left(\lambda_{1} i d-f\right)\left(V_{1}\right)=0$ and
$P(\lambda)=\operatorname{det}\left(T-\lambda I_{n}\right)=\left(\lambda_{1}-\lambda\right)\left(\lambda_{2}-\lambda\right) \ldots\left(\lambda_{n}-\lambda\right)$
Then $P(f)=\left(\lambda_{1} i d-f\right) \circ \ldots \circ\left(\lambda_{n} i d-f\right)$ and
$P(f)\left(V_{1}\right)=\left(\lambda_{2} i d-f\right) \circ \ldots \circ\left(\lambda_{n} i d-f\right) \circ\left(\lambda_{1} i d-f\right)\left(V_{1}\right)=0$. Therefore, $P(f)\left(V_{1}\right)=$ 0
$P(f)\left(V_{2}\right)=\left(\lambda_{3} i d-f\right) \circ \ldots \circ\left(\lambda_{n} i d-f\right) \circ\left(\lambda_{1} i d-f\right) \circ\left(\lambda_{2} i d-f\right)\left(V_{2}\right)=\left(\lambda_{3} i d-\right.$
$f) \circ \ldots \circ\left(\lambda_{n} i d-f\right) 0\left(\lambda_{1} i d-f\right)\left(-a_{12} V_{1}\right)=0$. Therefore, $P(f)\left(V_{2}\right)=0$
We can similarly show that $P(f)\left(V_{3}\right)=0$
By induction, we find $P(f)\left(V_{i}\right)=0, \forall i=1, \ldots, n$. Finally, $P(f)=0$.

Example.

$A=\left[\begin{array}{ccc}4 & 1 & -1 \\ -6 & -1 & 2 \\ 6 & 1 & 1\end{array}\right]$
$P(\lambda)=\operatorname{det}\left(A-\lambda I_{3}\right)=(2-\lambda)(1-\lambda)^{2}=-\lambda^{3}+4 \lambda^{2}-5 \lambda+2$
Since $\operatorname{det}(A)=P(0)=2 \neq 0, A$ is invertible.
By the Cayley-Hamilton theorem, we have $P(A)=0$
i.e $-A^{3}+4 A^{2}-5 A+2 I_{3}=0$. Then $-A^{3}+4 A^{2}-5 A=-2 I_{3} \Rightarrow$ $A\left[-A^{2}+4 A-5 I_{3}\right]=-2 I_{3} \Rightarrow A\left[\frac{1}{2} A^{2}-2 A+\frac{5}{2} I_{3}\right]=I_{3}$
Therefore,

$$
A^{-1}=\frac{1}{2} A^{2}-2 A+\frac{5}{2} I_{3}
$$

