Universiy of M’sila

Faculty of Mathematics and Computer Science

' Department of Mathematics
dluuoll - wabihig 2000 daoly

Université Mohamed Boudiaf - M'sila

DISTRIBUTIONS & SOBOLEV ESPACES

F(R" | Z(22)
(R") Vo € DR (S + T, pharg = (SB T, )erg
Vo € Zk(2) : (T, p)| £ M.Pm(p) :
a*p o)
e } il il . = f-,,.fr-"‘
/ / - }“‘rnul " [ / d“il }“rnul ”

v,
Schwartz _/]R:a (u(:rjd;’j{ ) + wilz)p(e )) dr =0

Soholev

T |z] <1

@ fo) = | f@)e gy PO)= { 0 bl 2 1
ﬂ supp f ={x € Q: f(z) # 0} Vo € SR : (@ ¢} = (u, 3)

Written by

SAADI ABDERACHID

Intended for first-year Master’s students

* Partial Differential Equations and applications.
* Functional analysis.

* Mathematical and Numerical Analysis.




CONTENTS

Bibliographie
Notations
Introduction

1 Recaps and Supplements

1.1 Banach spaces . . . . . . . . . . .
1.2 Topological vector spaces . . . . . . . . . . ...
1.3 Functionals, topological duals . . . . . . .. .. ... ... .
1.4 Fréchet spaces . . . . . . . ..
1.5 Regular function spaces . . . . . . ... L
1.6 The space Z(Q2) of test functions . . . . . ... ... ... L.
1.7 Some mainresults. . . . . .. ...
1.8 Lebesgue spaces . . . . . . . ..
1.9 Measure of Radon . . . . . . . . . .. .
1.10 Regular domains , integration on the boundary . . . .. ... .. .. .. ..
Exercises . . . . . . .
Exercise Solutions . . . . . .. ..o

Distributions: Definitions and Properties

2.1 Definitions and examples . . . . . . ...
2.2 Properties and Results . . . . . . . . ... ... ... o
2.3 Derivation . . . . . ...
2.4 Operators on Distributions . . . . . . . .. .. ..o
2.5 Supports of distributions . . . . . ... .. Lo L
Exercises . . . . . . .
Solutions of exercises . . . . . . . . . ...

11
12
13
14
15
16
17
19
20
22
23
25
26



Distributions and Sobolev espaces Master 1 PDFE and applications

3 Convolution product 55
3.1 Convolution of functions . . . . . . . . . . ... 56
3.2 Mainresults . . . . . . .. 60
3.3 Convolution of a function with a distribution . . . . . . . . . ... ... ... 62
3.4 Tensor product . . . . . .. L 65
3.5 Convolution of two distributions . . . . . . . . . ... ... ... ... ... 68
3.6  Convolution equations: . . . . . . . . . . . . . . ... 71
Exercises . . . . . . .. 74
Solutions of exercises . . . . . . . . . . ... 75

4 Fourier Transform 82
4.1 Fourier transformation for functions . . . . . . . . . ... ... 83
4.2 Rapid Growth, Slow Decay . . . . . . . . .. ... L 91
4.3 tempered distributions . . . . ... ..o 93
4.4  Fourier transform for tempered distributions . . . . . .. . ... ... ... 97
Exercices . . . . . . .. 100
Solutions of exercises . . . . . . . . . ... ... 101

5 Sobolev spaces 106
5.1 Espace W™P(QQ) . . . . . .o 107
5.2 Inequalities and Sobolev embeddings . . . . . . . . ... ... ... L. 114
5.3 Thespace WoP(Q) . . . . . . . 117
54 Thespace WP (Q) . . . .. ... 118
5.5 Sobolev spaces with fractional order, trace theorem and Green’s formula . . 120
Exercises . . . . . . .. 121
Solutions of exercises . . . . . . . . . ... ... 122

Unwversity of Msila 2 Saadi Abderachid



BIBLIOGRAPHY

[1] R.A. Adams, Sobolev Spaces , Academic press, London, 1975.
[2] M.A. Al-Gwaiz, Theory of ditributions, Marcel Dekker, New york, 1992.

[3] G. Binet, Une introduction a la théorie des distributions, Université de Caen - UFR

de Sciences.
[4] H. Boumaza, Théorie des distributions, U.P.N Sup Galilée, 2015-2016.
[5] H. Brezis, Analyse fonctionnelle . Masson, Paris, 1987 .

[6] J. Chevalier, Analyse fonctionnelle appliquée (2- distributions), Université de Liége,
1998.

[7] R. Dautry & J. L. Lions, Analyse mathématique et calcul numérique . Masson,
Paris, 1985.

[8] W.F. Donoghue, Distributions and Fourier transforms, Academic press, New York,
1969.

[9] F.G. Friedlander, Introduction to the Theory of distributions, Cambridge University
press, 1998.

[10] J. Garsoux, D. Ribbens, Espaces vectoriels topologiques et distributions , Dunod,
paris, 1963.

[11] O. Goncharova, Distributions and Fourier transforms, Part 01, Winter term, 2001-
2002.

[12] D.S. Jones , The Theory of generalised functions, Cambridge University press, 1982.

[13] V. Khoan, Distributions, Analyse de Fourier, Opérateurs aux dérivées partielles, tome
01 et 02, Vuibert, Paris, 1972.



Distributions and Sobolev espaces Master 1 PDFE and applications

[14] A. Kolmogrov, S. Fomine Elément de la théorie des fonctions et de I’analyse fonc-
tionnelle, Edition Mir, Moscou, 1974.

[15] P. A. Raviart & J. M. Thomas, Introduction a 'analyse numérique des équations

aux dérivées partielles. Dunod, Paris, 1998.

[16] O. Rioul , An Théorie des Distributions, transformée de Fourier, convolution, TELFE-
COM ParisTech.

[17] J.I. Richards & H.K Youn, Theory of ditributions, Cambridge University press,
2007.

[18] L. Schwartz , Théorie des distributions, Hermann, Paris, 1966.

[19] R. S. Strichariz , A Guide to Distribution Theory and Fourier Transforms, CRC
press, USA, 1994.

[20] M. Tucsnak, Distributions et équations fondamentales de la physique.

[21] S. Salsa, Partial differential equations in action from modelling to theory. Springer-
Verlag, Italy, 2008.

[22] C. Zuily, Eléments de distributions et d’équations aux dérivées partielles, Dunod,
Paris, 2002.

[23] C. Zuily, Problems in distributions and partial differential equations, Hermann, Paris,
1988.

University of Msila 4 Saadi Abderachid



NOTATIONS

r = (x1,29, - ,x,) : Element of R” (n € N*).
2| = /23 + -+ 22 : Norm of 2 € R".

() : Non-empty open set of R".

I' = 09) : Boundary of €.

Q: Closure of €.

|u|g: Norm of a vector u in the normed vector space E.

a=(ag,ag, - ,a,) € N*: Multi-index.
la] = a3 + ag + -+ + ay,: Length of o € N™.
x® =af'ry? - a8, al = aq!- - !t Multi-index notation and factorial.
a,f € N": o < fif and only if for all ? {1,--- ,n}: a; < B;.

al
a, f € N such that a < 3: C’g = m
r,y € R™ (z+y)* = Znga’Byﬁ.

Ba

a €N f:Q — R |a|-differentiable: D*f = 0*f = 02y --- 0% x, f.
aeN" f g:Q— R |a|-differentiable: D*(f.g) = Z CPDP DAy

Bl
a.e: Almost everywhere.

E'’: Dual of a vector space E.

(,): Dual pairing.

—: Weak convergence.

—: Continuous injection.

supp f: Support of a function f.

f: The symmetry of the function f.

To. Translation operator with vector a.

x: Convolution product.

®: Tensor product.

F(f) = #: Fourier transform of the function f.
F(f): Conjugate Fourier transform of the function f.



INTRODUCTION

The theory of distributions, as well as Sobolev spaces, are powerful mathematical tools for
studying functions and solving partial differential equations in cases where classical methods
of differentiation and integration do not apply or where there is difficulty in applying them.
They play an essential role in many areas of mathematical physics, from wave theory to
quantum mechanics, through numerical analysis.

Distribution theory generalizes the concept of a function by allowing the consideration
of mathematical objects that are more general than continuous or differentiable functions.
Distributions can include impulses, step functions, discontinuous functions, and other math-
ematical objects. Distributions are defined using continuous linear operators that associate
a test function with a distribution.

Sobolev spaces are function spaces that allow quantifying the regularity of functions,
especially those that are not necessarily continuous or differentiable in the classical sense.
They are defined by introducing norms that take into account the derivatives of the function.
More precisely, Sobolev spaces, denoted as W*P, include functions whose first & derivatives
in the distributional sense are in the space LP.

In 1893 and 1894, O. Heaviside proposed symbolic calculus rules for operators used
to solve problems in mathematical physics. These symbolic calculations worked well for
engineers who used them in a broad sense but were not always mathematically rigorous.

In this context, P. Dirac published an article in 1926 titled «L’interprétation physique
de la dynamique quantiquey, where he introduced his famous symbol denoted as . Dirac

stated that § is a function defined as follows:

6(ﬁ):Oifx7£0,
/ d(z)dr = 1. 1)

o

Furthermore, for any smooth function ¢ and any real number a, we can write:

/_ " o()8(a — 2)dx = (a). 2)

o0
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P. Dirac acknowledged that what he called a "function" is not in the strict sense of a

function. Indeed, when ¢ is treated as a function, it is equal to 0 almost everywhere, leading

+00 too
to / d(z)dz = 0, which contradicts / d(z)dr = 1.

o0

—00
To resolve this dilemma, P. Dirac suggested that the quantity ¢ could be interpreted as
a limit of a sequence of functions. This seems more reasonable. For example, the sequence
of functions {f;}7° which defined as:

0« o[>,
+o00
verify the condition fj(x)dz = 1. Following L. Schwartz (1945), we choose a continuous
o X
function ¢ that is zero outside a finite interval | — a,a] (a > 0) and contains [——,, —_} for
J J

sufficiently large j. We have:

: f(a)ola)de =1 / el

Let v be an antiderivative of ¢ on | —a,al. Then:

ey =2 [w (1) y (—l)] e0) ()

—oo 2 J J

1
Let h = —, and we obtain:

j
“+o0 h — —h e
m. A fi@)e()ds = lim ¥(h) 2:( ) = ¢/(0) = (0) = /_OO pdo,

where ¢ is the Dirac measure, defined in (2.1).

This means that the density measure of {f; jzoj’ converges to the Dirac measure, and
through translation, we can establish equation (2).

P. Dirac also defined the successive derivatives of d, denoted as ¢’,0”,... L. Schwartz
justified how to find these successive derivatives but in a more general framework than
measures, which is what we call distributions. He published this in 1946 in an article titled
«Généralisation de la notion de fonction, de dérivation, de transformation de
Fourier et applications mathématiques et physiques». In this article, he provided the
following two definitions:

7

Définition 1: & sera l’ensemble des fonctions ¢(zq,--- ,x,) de n variables réelles,
indéfiniment dérivables et nulles en dehors d’ensemble bornés. A chaque fonction ¢
correspond un «noyaur, ensemble compact, dont le complémentaire est le plus grand

ensemble ouvert sur lequel ¢ = 0.
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Définition 2: On appellera «distribution» de ’espace & n dimensions toute fonc-
tionnelle ou forme linéaire T'(y) définie pour toute les ¢ de @, et vérifiant de plus
la condition de continuité suivante: Si une suite des fonctions ¢;, ont leurs noyaux
contenus dans un compact fixe et si elles convergent uniformément vers 0, ainsi que

chacune de leurs dérivées, alors les T'(y;) convergent vers 0.

Later on, L. Schwartz published his famous book «Théorie des distributionsy» (Theory
of Distributions) in the mid-1960s of the last century.

In a different context, among the classical results of the calculus of variations, we find the

Dirichlet principle: the variational integral / |Vu|*dz has a minimum for certain functions

belonging to the class €(£2) where Q2 is a bou%ded domain R"™. This principle was used by B.
Riemann without mathematically satisfactory justification, but in 1870, K. Weierstrass noted
that the existence of minimizing functions for variational integrals is not always guaranteed.
A first rigorous proof of the Dirichlet principle was introduced in 1900 by D. Hilbert
for functions u € €(Q) N €1(2), taking a trace g on 9. This marked the first steps in
the development of Sobolev spaces. It is worth noting that later on, the Dirichlet principle
became related to boundary value problems for the Poisson equation:
—Au=f : in €,
{ u=gqg : on O0f. (4)

If w is a solution of the problem (4), then v minimizes the Dirichlet energy:

Bw = [ (3190 - faete) ) de

There have been further developments on the Dirichlet principle, including the work of
Bippo Levy, G. Fubini, L. Tonelli, O. M. Nicodym, K. O. Friedrichs, and others.
In 1934, J. Leray, in his article titled «Sur le mouvement d’un liquide visqueux

emplissant I’espacey, introduced a new term, the «quasi-dérivée» (quasi-derivative):

Soit deux fonctions de carré sommable dans R® u et u,. Nous dirons que u; est la

quasi-dérivée de u par rapport a x; quand la relation

/RS (U(flf)g;i (z) + U,i(x)ga(x)) dr =0,

sera vérifiée; rappelons que dans cette relation ¢ représente une quelconque des fonc-
tions admettant des dérivées premiéres continues qui sont, comme ces fonctions elles-

mémes, des carrés sommables sur R3.

In 1935, S. L. Sobolev introduced a theory of general solutions to the wave equation, de-
fined as L!-limits of € solutions of this equation. He introduced the concept of continuous

linear functionals on spaces of continuously differentiable functions (later called «distribu-

University of Msila 8 Saadi Abderachid
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tions of finite order») and announced an existence theorem for a solution to a large class of
hyperbolic equations.

In 1938, S. L. Sobolev provided a clear definition of weak derivatives and introduced the

spaces known as Sobolev spaces:

Appelons espaces L, I'espace fonctionnel linéaire qui est formé de toute les fonctions de

n variables réelles p(z1, - - - , x,) dont les dérivées partielles jusqu’a l'ordre v existent et
sont sommables a la puissance p > 1 dans chaque partie bornée de l'espace xy,- - , x,.
0%

La dérivée est définie comme une fonction qui satisfait 1’équation

Oaxl s 8"%”

9%p a@/J
[ g Crtn // RN

quelque soit la fonction 1 continue ayant des dérivées jusqu’a l'ordre v s’annule en

dehors d’'un domaine borné D.

Later, S. L. Sobolev replaced the notation L, with W;", which is closer to the current
notation WP, The theory of Sobolev spaces has indeed developed rapidly since the 1950s.

As previously mentioned, Sobolev spaces are constructed from Lebesgue spaces, which
are Banach spaces. Therefore, the reader is encouraged to deepen their understanding of
the topological and analytical properties inherent in Banach spaces. Additionally, it would
be beneficial to become familiar with well-established theories such as the Hahn-Banach
theorem, the Banach-Steinhaus theorem, and other related concepts in Hilbert spaces.

On the other hand, the theory of distributions is based on spaces of regular functions
and their dualities, presenting a specific topological structure that can be quite complex. If
the reader wishes to delve further into this notion, we recommend consulting the two works
[10] and [13], as well as other references dealing with topological vector spaces. However, it
is entirely appropriate to provide some incentives here to pique the reader’s interest in these
spaces.

It is evident that all elements of the space €*(K), where K is a compact subset of
R™, are bounded functions, along with their partial derivatives up to order k. This space
has the structure of a normed vector space with the norm defined as Z SlTp‘ | D f(z)].

zeK,|a|=Fk
Unfortunately, this property is generally not obtained for the Space]sC %m( ), where ) is
an open subset of R". We need a topological structure that preserves the properties of
these spaces. For example, if a sequence {f;}°} consists of functions from €™ (2) and
converges to a function f in this topology, it is necessary that f € €"(2). Furthermore, it
is necessary that if F'is a neighbourhood of f and G is a neighbourhood of g, then F'+G is a
neighbourhood of f+¢ and AF'is a neighbourhood of A f, where X is a real or complex number.

The required topology is constructed from families of semi-norms  sup |D®f(z)|, where
€K, |a|<m

K are compacts contained in ). It is a locally convex topology (i.e., for every f € €™ (2),

there exists a system of convex neighbourhoods of f, which is equivalent in this case to

University of Msila 9 Saadi Abderachid
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the existence of a system of convex neighbourhoods of 0). For more details, the reader is
encouraged to consult Section 1.5, as well as the two works [10] and [13].

In addition to topological concepts, we motivate the reader to explore fundamental no-
tions of algebra, mathematical analysis, integration theory, as well as Lebesgue spaces for a
deeper understanding of distribution theory and Sobolev spaces.

This booklet is organized into five chapters. The first chapter provides reviews and
supplementary information on essential concepts necessary for understanding the subsequent
chapters. The second chapter introduces definitions and properties related to distributions.
The third chapter discusses convolution and its properties. The fourth chapter is dedicated
to the Fourier transform. Finally, the fifth chapter covers Sobolev spaces. Each chapter
concludes with a series of solved exercises.

I sincerely hope that this booklet will be of great value to Master’s students, especially
those taking courses in functional analysis, numerical analysis, and partial differential equa-
tions. My dearest wish is that this work may enrich the national university library, even if

only to a small extent.

M’sila, September 21, 2023, corresponding to Rabi’ al-Awwal 6, 1445 AH.
Saadi Abderachid.
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CHAPTER 1

RECAPS AND SUPPLEMENTS

This chapter appears to serve as a foundation for the upcoming chapters by providing a
review and supplement of key concepts necessary to understand the material that will be
covered later. Here is a summary of what will be covered in this chapter:

Banach Spaces: These are complete normed vector spaces where the notion of convergence
is defined.

Topological Vector Spaces: These spaces combine both a vector structure and a topology,
allowing for discussions of continuity and convergence in a more general framework.

Duality and Weak Topology: This concept pertains to topological vector spaces and their
dual spaces, as well as the notion of weak and weak™ topology.

Spaces of Regular Functions: These spaces are often used to study regularity properties
of functions.

Test Function Space: This is a space of functions specifically designed for studying dis-
tributions and distribution theory.

Lebesgue Spaces: These spaces are used to study measurable functions and Lebesgue
integrals, convolution products, and Fourier transformations.

Radon Measure: This is a topological vector spaces of measure, often used in functional
analysis and harmonic analysis.

Regular Domains: These are regular subsets of a space, often used in the context of
integration.

Boundary Integral: This concept pertains to integrating functions over the boundaries
of domains.

It should be noted that this chapter does not delve into proof details but rather briefly
presents key definitions and results. Those looking to deepen their knowledge are encouraged
to consult the references mentioned in the booklet for more detailed information and complete

proofs

11
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1.1 Banach spaces

We will encounter many examples of Banach spaces (Lebesgue spaces, Sobolev spaces, etc.),
which necessitates briefly discussing some of the characteristics of Banach spaces.

Let E be a vector space over R or C.

Definition 1.1 : Let p: E — R be a mapping.

i) We say that p is a semi-norm if:
*) p is homogeneous, i.e., for all A € R and all z € E: p(Azx) = |A|p(z).
In particular, p(0) = 0.

**) p satisfies the triangle inequality, i.e., for all x € E and all y € E we have:
p(z+y) < plz) +py).

ii) If, in addition: for all x € E, if p(x) =0, then x = 0, we say that p is a norm on E.

Definition 1.2 : A normed vector space is defined as the pair (E,||.||) consisting of a vector

space over R and a norm defined on E.

Definition 1.3 : Two norms ||.|[1 et ||.||2 de E are called equivalent if there exists o > 0
and > 0 such that
Ve e E:allli <2 < Bl

Proposition 1.1 : A normed vector space (E, | - ||) is a metric space where the distance d
1s defined by:
d(ﬂ?,y) = ||JI - Z/Havxyy SN

Proposition 1.2 : Open and closed balls are convex. We say that (E, ||-||) is locally conver.

Definition 1.4 : We say that a normed vector space (E,|| - ||) is uniformly convex if for

every € > 0, there exists 6 > 0 such that for all x,y € Bg, we have:

1
3|z 1-0=to-ul <=
Proposition 1.3 : A linear map f : E — F is continuous if and only if there exists M > 0
such that for all © € E we have: || f(z)||r < M||x| g

As a result, every continuous linear map is Lipschitz.

Definition 1.5 : We denote by L(E; F) the space of continuous linear mappings from E to
F. The topological dual of E is called the dual space and is denoted by E' = L(E;R) It is

the space of continuous linear functionals on E.

Proposition 1.4 : The quantity || f|| = supM = sup ||f(z)]|lr = sup ||f(x)|F is

4 lzlle =1 lellp<1
a norm on L(E; F).

University of Msila 12 Saadi Abderachid
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Definition 1.6 : We say that a normed vector space is a Banach space if it is a complete

metric space.

Theorem 1.1 : If F' is a Banach space, then L(E; F) is a Banach space.

In particular, E' is a Banach space.

Theorem 1.2 (Banach-Steinhaus) : Let E and F' be two Banach spaces, and let {f;};en
be a sequence of linear maps from E to F. If {fj(x)}jen is a bounded sequence, then it is
uniformly bounded, i.e.,

EIM>0,Vj€N:supM§M.

w20 |7llE
Definition 1.7 (compact linear operator) : In the context of normed vector spaces E
and F, an operator A is said to be compact if the image of the unit ball Bg(0,1) in E is

relatively compact in F. This means that the set A(Bg(0,1)) has a compact closure in F.

Remark 1.1 : If A is a compact operator from E to F then: for any bounded sequence

{u;};27 in E, we can extract a subsequence {u;x} such that A(u;y) converge in F.

1.2 Topological vector spaces

Topological vector spaces are vector spaces equipped with a topological structure that is
compatible with the two internal operators, addition (+) and scalar multiplication (-), of
these spaces. Among these spaces, we find, for example, spaces of regular functions and
their dualities.

Let E be a vector space over R or C.

Definition 1.8 : We say that E is a topological vector space if it is equipped with a topological

structure having the following properties:

i) The addition (z,y) — x +y is a conltinuous mapping from E x E to E.

ii) The scalar multiplication (A, x) — \-x is a continuous mapping from R x E (C x E) to
E.

Example 1.1 FEvery normed vector space is a topological vector space. Open balls form a

fundamental system of neighborhoods for this space.

The topology of a normed vector space is invariant under translation and scaling; there-
fore, this topology can be generated using neighbourhoods of the origin 0.

Among the methods for constructing topological vector spaces, there are two approaches:

Method 1: We define a fundamental system of neighbourhoods of 0 by specifying a
family of semi-norms. An example of such a fundamental system is open balls.

Method 2: We construct a family of subspaces equipped with topologies of the type
mentioned above. This method uses the concept of an inductive limit of locally convex

spaces. It is the method applied, for example, to the space Z(€2).

University of Msila 13 Saadi Abderachid
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Definition 1.9 : We call a topological vector space a locally convex space if 0 has a system

of convex neighbourhoods.

Definition 1.10 : Let E be a topological vector space. We say that a set A C E is bounded
if, for every neighborhood V' of 0, there exists n € N such that

VAER: A\ >n=AC\V.

We say that E is locally bounded if it contains at least one non-empty and bounded open set.

1.3 Functionals, topological duals
Definition 1.11 : We call functional any numeric function f, defined on a vector space E.
Proposition 1.5 :

1. Fvery linear functional on a topological vector space of finite dimension is continuous.

2. Every linear functional on a topological vector space that is continuous at a point is

continuous over the entire space.

Theorem 1.3 : Let f be a linear functional on a topological vector space E. Then, f is
continuous on E if and only if there exists a neighbourhood V' of O such that the functional

f is bounded on V.

Definition 1.12 : Let E be a topological vector space. We call the dual of E and denote it

as E', the space of continuous linear functionals on E.

Definition 1.13 : Let E be a locally convex and separated topological vector space. We call
the bidual of E and denote it as E”, the dual space of the space E'.

Let E be a separated, locally convex topological vector space, and let E’ be its topological

dual.

Definition 1.14 (strong topology of E') : We equip E' with a separated and locally convex
topology, called the strong topology, by considering the fundamental system of neighbourhoods
of 0 as follows:

{r e A |f(x)] < M}, M >0, A bounded.

There exists an injection of F into E”, denoted by 7. If 7(E) = E” and 7 is continuous
with respect to the strong topology of E”, we say that F is reflexive. In this case, the
spaces E/ and E” are isomorphic.

University of Msila 14 Saadi Abderachid
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Definition 1.15 (weak topology of E) : The weak topology on a topological vector space

E consists of a fundamental system of open neighborhoods of 0 in the form:
{reE:|filx)] <M} M>0,i=1--- n.

This topology is the weakest (least fine) topology such that linear functionals are continuous.

We say that a sequence {r;}22, converges weakly in £ to x € F, denoted as r; — ,

if for every f € E’, we have f(x;) converging to f(x).

Definition 1.16 (weak topology of E' (weak*)): We equip E' with a topology called the
weak topology of E' by considering the fundamental system of neighbourhoods of 0 as follows:

{(fEE |flx) < M},M>0,i=1,--,n.

We say that a sequence of linear functionals { f;}52, converges weakly™ in E' to f € £’

if for every x € E, we have f;(x) converging to f(x).

1.4 Fréchet spaces

Definition 1.17 : A locally convex space is said to be metrizable if it is equipped with an
increasing family of semi-norms {p;};en (i.e. Vo € E,Vj € N: p;(z) < p;j11(x)), such that:
for all j € N:p;(f) =0 if and only if f =0.

Proposition 1.6 : Let {«;};en be a sequence of strictly positive real numbers such that the

series Z a; converges. Let E be a locally conver and metrizable space. We denote by {p;}jen
JjEN
the family of semi-norms on this space. The function d: E x E — R defined by:

V(fig) € B? 2 d(f.g) =} ajmin(Lp(f = 9))

1s a distance on B.

Definition 1.18 (Fréchet space ) : We say that a locally convex, metrizable space equipped
with the topology defined by the above distance is a Fréchet space if it is complete.

Proposition 1.7 : Let E be a Fréchet space with the family of semi-norms {p;}en, F a
Fréchet space with the family of semi-norms {qx}ren, and L a linear map from E to F.

Then, L is continuous if and only if:

VkeN,dc> 0,5 e NNVe € E: q,(L(x)) < cpj(z).
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Theorem 1.4 (Hahn-Banach) : Let E be a topological vector space, G a subspace of E,
and p a map from G to R satisfying:

VA > 0,Vz € E: p(Az) = Ap(x), Ve, y € E:p(z+vy) < p(x)+ ply).
Let g be a linear map from G to R satisfying:
Vo e G g(e) < p(x).
Then, there exists a linear extension f of g to E satisfying:
Ve eG:g(e) = f(x), VeekE: f(z) <px).

Corollary 1.1 : Let E be a normed vector space, G a subspace of E, and g € G' with the

norm: ||glle = sup |g(x)].
z€G, ||z <1

Then, there exists an extension f € E' de g with || fllg = ||9]lc -

Theorem 1.5 (Banach-Steinhaus) : Let E be a Fréchet space with the family of semi-
norms {p;}jen, F a Fréchet space with the family of semi-norms {qi}ren, and let {L} :

E — F be a family of continuous linear maps. Suppose that for every x € E, the sequence

{Lo(2)} is bounded in F. Then:
Vk e N,dc> 0,5 € NVo € E,Va : qu(La(z)) < cpj(x).

Corollary 1.2 : Let E be a Fréchet space, and F' a metrizable locally convex space, and let
{L;} : E — F be a sequence of continuous linear maps. Suppose that for every x € E, the
sequence {L;j(x)} converges in F' to an element L(z). Then:

1. The map L : E — F, which associates x € E with the element L(x), is linear and

continuous.

2. x; = x in E implies that L;(z;) — L(x) in F.

1.5 Regular function spaces
Let €2 a non-empty open set of R™.

Definition 1.19 : Let f: Q — R, and k € N. We say that f is of class €*(Q) if and only
if Df exists and is continuous for every multi-index o such that |a| < k.
If f € €%(Q) for every k € N, we say that f is of class €>°().

Proposition 1.8 Let K C () be a compact set, and let m < k be two natural numbers. The
quantity: Pn(f) = sup  [D°f(x)], f € €*(%),

la|<m,zeK
defines a semi-norm on €*(Q2).
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We equip the space €*(2) with a topological structure compatible with successive
derivatives up to k, using a family of semi-norms { Px ,, }, where K ranges over the set
of compacts included in €2, and m ranges over the set {0,1,..., k}.

The space (), endowed with the above topological structure, is a topological vector
space that is locally convex and separated. Moreover, €%(2) is a Fréchet space.
Similarly, we equip €*°(£2) with a topological structure. Therefore, the topological

vector space €>°(1) is a locally convex, separated, and Fréchet space.

We provide a practical definition of convergence in ¢*(Q2), where k € N U +oo:

Definition 1.20 :

i) Let k € N. We say that a sequence of functions {f;} in €*(Q) converges to f in €*(Q)

if for every compact set K C ) and for every natural number m < k, we have:

lim Pg..(f; — f) =0.

Jj——+o0

ii) We say that a sequence of functions f; in €°°(2) converges to f in €>°(Q) if for every

compact set K C Q and for every natural number m, we have:

Jj—+oo

1.6 The space Z((2) of test functions

Let 2 a non-empty open set of R™.

Definition 1.21 : Let [ be a function defined almost everywhere (a.e.) on Q.
"The null open set of f is defined as the largest open set Oy such that f =0 a.e.”
"The support of f, denoted as supp f, is defined as R™ \ Oy, the complement of Oy.

Proposition 1.9 We have: supp f = {z € Q: f(x) # 0}

Definition 1.22 : Let K C 2 be a compacte set and let m € N.

i) 272(R) is the space of functions in €™ (2) with compact support included in K.
ii) 2™(Q) is the space of functions in €™ (), with compact support included in €.
iii) k() is the space of functions in €>°()), with compact support included in K.

iv) 2(Q) is the space of functions in € (S2), with compact support included in €.

Remark 1.2 :

1. 2(Q) s called the space of test functions.
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2. Sometimes the following notations are used:
H(Q) or €(Q) for the space 2°(Q).
65" (Q) for the space 2™(Q).
©5°(QY) for the space D(12).

Example 1.2 : Let @ be the function defined by: { wgmi
¥
We can prove that ¢ € Z(R).

Proposition 1.10 : 2(Q2) = U DK (Q).

KCQ, Kcompact

Proposition 1.11 :
1. If o€ 2(Q) et p € €°(Q), then: b € D(Q).

2. If o, € P(Q) et A\, u € R, then: Ao+ pp € 2(Q).

We equip the space Z(Q2) with a topology called the strict inductive limit topology of
Fréchet spaces of the type Pk (Q2), where K ranges over compacts in 2. The topology
defined on the spaces Zk (1) is induced by that of €>°(£2).

We can then provide a characterization of convergence in the space Z(f2) as follows:

Definition 1.23 : We say that a sequence of test functions (y;) converges to ¢ in Z2(Q) if
there exists a compact set K C € such that:

1. suppp; € K for all j and supp ¢ C K.

2. For allm € N we have: lim Pk ,,(¢; — ) =0.

J—+00

Definition 1.24 : We say that a sequence {p, j:o‘f in 2(R™) is a regularization sequence if

for every j € N, there exists ¢j (¢; = 0 as j — +00) such that:

p;j =0, / pj(x)dr =1,  suppp; C B(0,¢;).

Such a function ¢, is called a «pic» function on B(0,¢;).

Y

Example 1.3 : Let ¢ € Z(R") such that supp € B(0,1), and we define p = S () da”
gn Y(2)dx

We have supp p C B(0,1).

1

For any positive sequence (g;) tending to 0, we define pj(x) = —p <£)
e o\ g
i J

It can be verified that this sequence is a reqularization sequence. This family is called an

«approximation of the identity».

Definition 1.25 : Let T : 2(2) — R be a linear functional. We say that T is continuous
if: For every sequence {@;}72) converging to o in 2(X2), the sequence {T(p;)} converges to
T(p) in R.
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1.7 Some main results

Let  be a non-empty open set of R™.

—+00

Proposition 1.12 : There always exists a sequence (called exhaustive) of compacts { K}y

m ) such that:

0
1. VjeN:K; € Kjy (K; C Kjp),

+oo
2. Q=|]JK;
j=0

Theorem 1.6 (Urysohn Lemma) : Let K, F be two disjoint sets in R", where K is com-
pact and F is closed. Then, there exists p € P(R™) such that:
i) 0<p<1,
ii) ¢ =0 in a neighbourhood V de F,
iii) ¢ =1 in a neighbourhood W de K.
Corollary 1.3 : Let K be a compact set of 2, Then, there exists ¢ € Z(R™) such that:
i) 0<p <1,
ii) ¢ =1 in a neighbourhood of K (we can choose it to be compact).
Definition 1.26 : Let {Qj};ﬁff be an exhaustive sequence of open sets in €, i.e
*¥) Vi eN:Q; € Qi (9 C Qjpa),
+oco
) 0=]9.
5=0
We say that a sequence {p; j:o‘f in 2(R™) is a truncation sequence on ) if, for every j:
i) 0<¢; <1,
ii) ¢; = 1 in a neighbourhood of Q.
Proposition 1.13 : Fvery open set admits a truncation sequence.

Theorem 1.7 (partition of unity) : Let K be a compact set included in a finite union of

open sets {0}, Then, there exists a family of functions {@;}I., such that:
i) ¢ € 2(),

N
iii) Y ¢ =1.
j=1
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1.8 Lebesgue spaces

We equip R"™ with the Borel (or Lebesgue) sigma-algebra and the standard Lebesgue measure

dx = dxidxy - - - dx,. Let Q be a non-empty open set in R”.

Definition 1.27 : Let f be a measurable function on Q2. We say that f is Lebesque integrable
if [ is measurable and/ |f(z)|de < +o0.
Q

We denote by L1 (Q) the space of Lebesque integrable functions on .

We denote by L'(2) the quotient space .£1(€)/ ~, where ~ is the equivalence relation
defined as follows:
For f,g € ZY(Q), f ~ g if and only if f = g a.e on Q.
We equip L'(2) with the following norm: || f|| 1) = / |f(z)|dx.
Q

Definition 1.28 Similarly, the space LP(Q)) (where p > 1) is the space of equivalence classes
of measurable functions f such that |f|P € L*(Q), i.e., / |f(z)Pdx < 400
Q

We equip LP(§2) with the following norm: || f||zr@) = (/ |f(x)|de> v
Q

Definition 1.29 The space L*>(X2) is the space of equivalence classes of measurable functions
f such that esssup(f) = inf{c > 0,|f] < ¢ a.e on Q} < +o0.

We equip L*(£2) with the following norm: || f||z~@) = esssup(f).

Definition 1.30 The space L (2) (where p > 1) is the space of equivalence classes of
measurable functions f such that f € LP(K) for every compact subset K C €.

Theorem 1.8 :
1. The space LP(Q2) for 1 < p < oo, equipped with the norm |.||r(q), is a Banach space.

2. The space L*(2) is indeed a Hilbert space, equipped with the inner product:
F.9€ Q) () = [ fla)aa)de.

3. The space LP(Q) (1 < p < 00) is uniformly convez.

4. The space LP(2) (1 < p < 00) is reflezive.
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5. The space LP(Q2) (1 < p < o0) est separable.
6. L' (Q) and L>®(Q) are not reflexive Banach spaces. L>(2)is not separable.

1 1

Theorem 1.9 (Hélder’s inequality) : Let p,p" €]1,+00[ such that — + — = 1. Then, for
p p

all f € LP(Q) and g € L¥ (Q), we have f.g € L*(Q). Moreover:

1f-gller@) < 1 fllee@)-l9ll o )
p

p’ is called the conjugate of p, and we have: p' = —
p —
In particular, we have the Cauchy-Schwarz inequality:

For all f,g € L*(Q): [[f.gllzr@) < [fllz2@)- 9]l 2 (@)
Remark 1.3 :
] 1 1 1 1
i) Let p1,po,-+ ,pr € [1,400] and p > 1 such that — = — + — 4+ -+ —. Let f; €
p p1 b2 Pk
L (Q), fo € LP2(Q2),---, fr € LP*(Q), and f = fi.fo.- -+ .fx. Then: f € LP(Q), and
we have the generalized Hélder’s inequality:

[ fllze) < Wfillom -l fellzra ). -+ - Ikl L)

il) If f € LP(Q) N LYNQ) with 1 < p < q < +oo then: f € L"(Q) for allp <r < q and we

have the interpolation inequality:
¥8 € 10,11 ¢ [y < 1 Wi 171130,

Theorem 1.10 : Let p,q € [1,+00] be such that p < q. Then:

1. Lipe(2) C L. ().

loc
2. L1(Q) C LP(Q) if Q is bounded.
Theorem 1.11 : Let f be a measurable function on €2 such that / f(x)dx = 0 for all
A
compact set (open set) A C Q. Then: f=0 a.e on .

Theorem 1.12 (Representation of Riez) : Let p €]1,+oo[, and let ¢ € (LP(Q)), the
dual of LP(Q). Then, there exists g € LP' (Q) (where p' is the conjugate of p) such that:

/f 2)dz,Vf € LP(Q).

We can then identify (LP(£2)) with L' (Q).
One can also identify (L'(Q)) with L>(Q). For ¢ € (L'(Q)), there exists g € L>(f2)
such that:

/f 2)dz,Vf € LY(Q).

We have: L'(Q) C (L*°(€))’, with strict inclusion.
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Theorem 1.13 (dominate convergence of Lebesgue) : Let {f;};en de a sequence of
functions in LP(Q) (p € [1,400[). Assume that:

1. {f;} converges a.e. to a function f.

2. There ezists a function g € LP(2) such that |f;| < g a.e for all j € N.
Then: f € LP(Q) and f; =% 1.

Remark 1.4 One can replace the sequence {f;}jen with a family of functions {fi}ic(ap)

where a,b are in the extended real numbers. The limit will be taken at the point ty € [a,b].

Theorem 1.14 : The space () is dense in the space LP(S2) for all p € [1, +o0].

1.9 Measure of Radon
We equip R" with the Borel sigma-algebra B(R™), and let 2 be a non-empty open set in R™.

Definition 1.31 : A Borel measure on S, finite on compacts, is a measure from B(Q2) to

[0, +00] for which we have pu(K) < oo for every compact set K C Q.

Such a measure is regular, i.e., for any measurable set A C 2, we have:

u(A) = inf{u(0),0 D A open set},
= sup{u(K), K C A compact set}.

Definition 1.32 :
i) A Radon measure (signed) is the difference of two Borel measures, both finite on compacts.

ii) We denote by . ()) the space of Radon measures on Q.

Proposition 1.14 : Let f € L}, (). Then, the function A € B(Q) — / f(z)dx defines a

loc
A
Radon measure on €. Such a measure is called absolutely continuous, and f is its density.

Remark 1.5 : We have: L}

loc

example, the Dirac measure o, at the point x, defined by:

{17 2e4

(Q) C A (Q). The space A (Q) is larger than L}, (). For

loc

15 a Radon measure but is not a function.
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Theorem 1.15 (Riesz) : One can identify the space () with the space ' (Q2), the
topological dual of the space () of continuous functions with compact support in €, in

such a way that:

Ve #(2),3c, > 0,Yp € #(Q),VK C Q (compact) :

zeK

/ sodu‘ < ¢ sup |p(z)].
K

The space (), considered as the dual of £ (2), is a Fréchet space.

1.10 Regular domains , integration on the boundary

Let €2 a bounded open set of R™ and let I' = 0f2 the boundary of 2. @, @, and @, are
defined as follows:
Q:={x eR": |2| < 1;|z,| < 1}
Q: ={(2',x,) eR": |2'| < 1,0 <z, < 1}

Qo :={(2,0) e R" ' x {0} : |2'| < 1;}

Definition 1.33 : We say that Q is of class €* if for every x € T, there exists a pair (U, p),
where U is an open set in R™ containing x, and ¢ € €*(U) is a diffeomorphism from U to
Q such that for ¢ = =1, we have:

1. 9 € 65Q);
2. (,D(Uﬁ F) = Qo,’
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Definition 1.34 : We denote by v(z) the outward unit normal vector at point x € T'. If u

is a sufficiently reqular function defined on Q, we have the normal derivative of w on I':

ou
a—vu'l/

7

Here, Vu is the gradient of the function u, and” -7 represents the dot product between the
gradient and the unit normal vector v. This expression represents the normal derivative of

u with respect to the outward normal direction on the boundary I.

Remark 1.6 : IfQ) is of class €%, one can extract a parameterization x; = ¢(y1, Y2, - - -, Yn_1),

where ¢ is of class €. In this case, I' is the graph of ¢ in an orthonormal coordinate system,

- (V¢(y)7 _1)
Y = .
V14 (Vo(y))?
We can say that the boundary of an open set of class €* has a parameterization by a function

of class €*.

and we have:

Definition 1.35 : ) is Lipschitz if I' has a parameterization by a Lipschitz function.

Proposition 1.15 : Suppose that Q is of class €*. We can always decompose I' into a
disjoint union, such that T'; is the graph of a function ¢; in an orthonormal coordinate

system as described in the previous remark. We define the line integral for a function f
defined on I" as follows:

[ o) =3 [ f o)/ T+ (Vo

Theorem 1.16 | Ostrogradsky formula | : Let Q be a bounded open set of class €*, and
I its boundary. Let F be a vector field, i.e., a function in €*(Q) with values in R™. Then:

/Q div F(2)dx /F Fa)v(@)do(z).

This equation represents a relationship between the divergence of the vector field over the

domain ) and its line integral over the boundary T'.

Corollary 1.4 | Green formula ]: Let Q be a bounded open set of class €1, and T its
boundary. Let u be a function in €%(,R) N €*(Q,R), and v be a function in €*(Q,R).
Then:
/v(x)Au(a;)dx+/Vv(x).Vu(x)dx:/v(m)@(x)da(x).
Q 0 r ov
This equation represents a relationship involving the Laplacian, gradients, and normal deriva-

tives of the functions u and v over the domain 2 and its boundary I.
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Exercises

Exercise 1.1 : Consider the function ¢ defined on R as follows:

1
e 1-22 : x| <1
s@(l’)z{ o

0 Dozl >1
We define the sequence of functions {p;}/25 as follows: ¢;(x) = ¢(jz).
1. Is p; € €*(R)?
2. Provide the support of ¢;.

3. Prouvide a generalization of p to R".

1
Exercise 1.2 : Let ¢ € 2(]0,2[) such that ¢ > 0 and ¢ =1 on [5, g} Let sequence of
functions (¢;)jen defined by: Vj € Z,Vx € R : ¢;(x) = p(x + j).
1. Consider the function 1 defined as follows: (x) = Z ©i(z).
jez

Is Y well-defined? Is ) > 07

2. Consider the sequence of functions (u;) defined as follows:

VjeZ Ve eR:uj(x) = goj(x)'

Is uin P(R™)?

Does it satisfy the relation: Yx € R : Zuj () =17
jez

Exercise 1.3 : Let K C R" be a compact set, and let ¢ € P(R™). Are the following two

implications true?
1. v =0 in a neighbourhood of K = suppvy C (R"\K).
2.9 =0o0on K = suppy C (R"\K).

Exercise 1.4 : Let ¢ € Z(R™), h € R"\{0}.

ol + th) — olz)
t

For all t € R* we set: p(z) =

1. Show that ¢, € Z(R™) for allt # 0

2. Show that as t tends to 0, ¢, converges in P(R™) to a function that we will determine.
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Exercise 1.5 : Consider the sequence of functions {f;}]°5 in Z(R) defined by:

! ! 2] < j
— X — . T
filwy=4 2P\ T1- 2 /

0 Coz| >

Show that, for each k > 0, the sequence of functions {f](k) ;;Oi’ converges uniformly on
every compact set K to a function f € P(R) which will be specified.

Do we have convergence in 2(R)?

Exercise Solutions

Solution 1.1 :

e oz <1 () — ol in
@(x)—{o C>1 pi(z) = p(jz).

1. To show that ¢; € €>*(R), it is sufficient to demonstrate that ¢ € €< (R).
tis clear that ¢ is of class €>° on R\{—1,1}. We show that ¢ is infinitely differentiable
at the points —1 and 1. We have: limlgo(w) = lirr% o(x) =0.
T—— z—

Making the change of variable y =

on | —1,1], we find:

1 — a2
1 = 1 pu— 1 _y pum—
Jim o) = i pla) = i ¢ =0
— (-1 — (1
i 2@ o) L el) —e)
z——1 z+1 z—1 r—1 .
Making the change of variable y = . 5 on | —1,1[, we obtain:
lim p(z)= lim p(z)= lim e ¥ =0.
=51 31 y—Foo
Therefore, ¢ is continuous on R.
e o) el e
z—s_1 r+1 =51 x—1
Making the change of variable y = T wn the right neighbourhood of —1 and y =
x
wn the left neighbourhood of —1, we obtain:
— (-1 — (1 u?
lim —go(x) (1) = lim —go(x) (1) = lim ye 21 =0.
z—=5—1 r+1 -1 r—1 Yy—>r+o0
2z S
.. . T awaf 1-22 |$| <1
Therefore, o est is differentiable on R and we have: ¢'(x) = (1—a2)
0 Dozl >1

Following the same method, we find that ¢ € €>*(R), and therefore, ¢; € €= (R).

2. We have: supp ¢ = [—1,1] and pour tout x € R: z € supp g, iff jo € [-1,1].
1

1
Then, supp p; = [——,, —1.
JJ
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1
L e =lel> ¢ z]] < 1
3. Generalization of ¢ to R": p(x) = .
@ 0 =l =1

13
Solution 1.2 : ¢ € 2(]0,2]), > 0,0 =1 sur {5, 5}, Vi€ ZNVr eR:pj(x) =¢(x+j).

—
=

b | = — — — — ]
P 1

bo| Gof-————- - — -
i

1 () =) pi(x),z €R.
jET
Let j € Z. since suppp C|0,2[, we have for all x € R : ¢;(z) =0 if j < —x ou
j > 2—ux. Hence: Y(z) = Z ©;(x), i.e, ¢ is defined.

—r<j<2—z

13
There exists always j € 7 such that j + x € [5, 5} Then, ¥(z) > p(1) =1 > 0.

2. Vj € LNz R uy(x) = f;((;)).
since p; € D(R™) et Y € €°(R™),¢ >0, Then, u € P(R")?

Z@j(if?)

. wilx) = SOJ'(‘T) — J€L = 77/)(1‘) =
Ve eR: jEZZ i (@) jGZZ () () ¥(z) -

Solution 1.3 : K C R" compact, ¥ € Z(R™).

1. ¢ =0 in the neighbourhood of K = supp v C (R™\K) true, indeed:
Assume that 1 = 0 in the neighbourhood of K. Then: there exists an open set O O K
such that v =0 on O. Then, O included in the null open of 1.
Then, supp v C R™\O C (R"\K).

2. =0 on K = suppy C (R"\K) false. Here’s a counterexample:
Consider ¢ € P(R"™) such that suppp C B(0,2) and ¢ = 1 on B(0,1). Setting:
Y(x) = 0(z).0(x), ot O(x) = 22 + - - + 22.
€ P(R") and » =0 on the compact set K = {0}, but suppy D B(0,1).
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Solution 1.4 : p € 2(R"),h € R"\{0}.Vt € R* : () = o+ tht) - <P($)'

1. The functions: © — p(x +th) and © — p(z) belong to Z(R™) with t being a constant
with respect to x. Therefore, ¢, € P(R™) for all t # 0.

2. We have: Pr% oi(z) = ¢, (z), where @), is the derivative of ¢ in the direction of the
%
vector h. Since ¢ € P(R"), then ¢}, € Z(R™). Furthermore, supp ¢}, C supp .

Fort small enough, we can find a compact set K C R™ such that supp ¢; C K, and of
course, supp ), C K.

Finally, for any m € N, we have:
lim Py (01(7) — ¢'h(w)) =limt =0 sup  [D%(pi(z) — ¢ ()] = 0.

z€K,|a|<m

Therefore, if t tends to 0, @¢ converges in Z2(R™) to ¢),.
Solution 1.5 : {f;}jen sequence of functions de Z(R) defined by :

1 1 | |< )
—exp | — 5 b
fi(x) =4 2 2 /

J

0 Cozl >

Consider the function @, defined as follows:

1
— : 1
o) = eXp( 1—x2> =l <

0 Cojxl>1

1
Similar to the exercise 1.1, we can show that ¢ € Z(R). Furthermore, we have f; = E(pogn

where gj(x) = f Therefore, f; € Z(R) and supp f; = [—],]]-
J
1
For any k € N, we have: f](k) = WSOUC) o gj. Therefore, jEIJPOO fj(k) (z) = 0.
Let K be a compact set in R. We have:

k
sup | £ (x) — 0] =
reK

Therefore, for each k > 0, the sequence of functions {fj(k)} converges uniformly on every

o supx € K|p®) o gj| — 0 as j — +oo.

compact set K to the function f = 0.
However, since supp f; = [—7, j|, we cannot find a compact set K that contains all the

supports of the sequence {f;}. Therefore, there is no convergence in Z(R).
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CHAPTER 2

DISTRIBUTIONS: DEFINITIONS AND
PROPERTIES

In this chapter, we provide the definition of a distribution, differentiation, along with some
examples and properties. First, we provide a brief motivation.

The Dirac delta function on R is defined as follows:

5(A) = { (1) gzﬁ’ (2.1)

and the function of Heaviside H defined by:

{228

can be considered as Radon measures on R, i.e., continuous linear functionals on J# (R).
I) Let f € L}, (R) be a differentiable function such that f’ € L}, .(R). Then, both f and

loc loc

f’ can be considered as Radon measures. Thus, for any ¢ € J# (R), for £ small enough, we
consider the perturbation f.(z) = f(z + ¢) of f, which is also in L (R). The Dominated

loc

Convergence Theorem of Lebesgue (Theorem 1.13 and Remark 1.4) allows us to write:

> fate) - fl@)

lim1 { +Oof(x + e)o(z)dr — +OO f(x)gp(x)dx} = lim o(z)dx
e—0 ¢ o oo e=0 J_ o £
+oo
= [ r@pta

We have: lim fe=)_ ', in Z'(R) = . #(R).

IT) H € L},.(R), but it is not differentiable in the usual sense. We will seek an alternative

notion of differentiation for H. Let ¢ € J# (R).
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On the other hand, for ® as an antiderivative of ¢ and € > 0 sufficiently small, we have:

<HE _Ha 90>

too H(:v+5)—H(x)g0

lim —= = lim (x)dx
e—0 ) e=0 J_
1 +oo +oo
= lim - [ H(z +¢e)pdr — H(x)godm}
e—=0 g oo oo
1 +o0 400
= lim - [/ wdx —/ H(CB)QOC[I:|
e—0 & e 0
1 0
= il_r)l(l) -/ o(x)dx
) - a9
e—0 £
= ¢(0)
= 4p).

We say that H’ exists in the weak sense on J# (R), and we write: H' = 4.
IT) Let 0. be the perturbation of § for £ small enough. Then, for ¢ € J# (R), we have:

i 0= = 090) . (e) = @(0)
e—0 I e—0 g

This limit exists only for differentiable functions with compact support, i.e., for o € 2*(R).
Therefore, § is not a measure. Specifically, &' € (Z2*(R))’.

Following this pattern, 47,63, ... belong to the spaces (Z%(R)), (2*(R)), .. ..

The space that encompasses all of these spaces is called the space of distributions, it
is the topological dual of Z(R).

[ In the following, €2 is a non-empty open set in R".

2.1 Definitions and examples

Definition 2.1 : We call a distribution on 2 any continuous linear form on the vector space
2(9Q).

In other words, a linear form T : 2(Q2) — R is a distribution if and only if:

For every compact set K C €2, there exist m € N and M > 0 such that:

Vo € Ix(Q) : (T, )| < M.Prm(e), (2.3)

where T(p) is denoted by (T, ) (duality bracket).
We denote by 2'(Y) the space of distributions on Z(L).

Definition 2.2 (convergence in 2'(SY)) : We say that a sequence of distributions {T;}, %
converges to T in P'(2) if:

Vo € 2(Q), lim (T}, ¢) = (T, ¢)
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Proposition 2.1 : Let T;7% be a sequence of distributions. Suppose that the numerical
=

sequence (T, @) converges to a limit {(p). We define a linear form T as follows:
Vp e 7(Q) : (T, ¢) = Up).
Then, T' € 2'(Q2).

Proof: One can simply apply Corollary 1.2 of the Banach-Steinhaus theorem, considering
the space Z(f2) as a Fréchet space and R as a Banach space (hence, locally convex and

metrizable). =

Definition 2.3 (order of distribution ): If T € Z'(R2), we know that for every compact
set K C QQ, there exist m € N and M > 0 such that

Vo € D () : (T, )| < M.Pg n(p)

If m is independent of K, we say that the distribution T is of finite order.
The order of T is the smallest m that satisfies this property.

Remark 2.1 : It can be shown that a distribution of order m is a continuous linear form on
2™(Q), and conversely, if we equip the space 2™ (§2) with the topological structure generated
by the family of semi-norms Py ;(2) (where 0 < j < m), it is easy to see that if T is a
distribution of order m on Q, then T € (2™(2))" and the inverse.

We denote by & (2) the space of distributions of order m. This space can be equipped
with either the strong topology or the weak topology (see §1.3)

Remark 2.2 : Radon measures on ) are distributions of order O on ().

Definition 2.4 (positive distribution ): We say that a distribution T on § is positive
if:
Vo e () :p20=(T,p) =0

Example 2.1 : The functional defined by (T, ) = 0 for all p € 2(2) is the zero distribution
on €.

Example 2.2 : Let c € R, and let T be the functional defined as follows:

Vo e 2(0Q) : (T, ) = /Qc.gp(x)dx.

T is the constant distribution that equals ¢ on P(Q); it is a Radon measure.
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Indeed, consider K C Q as a compact set and ¢ € P (). We have:

(T.g)| = / cp(e)d

< e / () |dz

= |c|. | le(@)|dz
K
< el mes(K). sup |p(x)]
zeK
= |c|.-mes(K).Pko(p).

Example 2.3 : The Dirac measure o, at the point a € R™ is defined as follows:

Vip € Z(Q) - (0o, 0) = ¢(a)

dq 18 a Radon measure (in particular: dy = 0).
Indeed, let K C Q) be a compact set and ¢ € Pk (). Then cases:
if a € K, then, |¢(a)| < sup |o(z)],
zeK

If a ¢ K, we have |p(a)| =0 < sup |¢(z)].
zeK
Hence:
000, 0| = lp(a)l

sup ()]
rzeK

= Pkolp).

IN

Example 2.4 : Consider the distribution T' defined for any point a € R™ and for any o € N”
as follows:

Vo € 2(Q) : (T, p) = D0(a)

T is a distribution of order m < |a| (it can be shown that m = |a).
Indeed, consider K C € as a compact set and ¢ € Dk (). As before:

|D%p(a)|
sup [D%p(z)]
zeK

(T’ #)]

IN

IN

sup sup |Dp(z)]
2eK |BI<lol

PK7\04|(90>'

Now, let » € D(Q) such that (a) = 1 (the function v exists according to the Urysohn’s
lemma, see Theorem 1.6). We define po(x) = (x — a)*(x) for all x € Q. Then, for all
B € N" such that || < |a|, we have:

Digy(x) = > CID%(x—a)*.D"y(x)
V<8
= Y Oz —a)’7.D"(x)

<B
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Then: DPpy(a) = 0 pour |8 < |a| et DPpy(a) = 1.
We deduce that |(T, po)| = Pk ja|(®0), hence: T is of order |c|.

Example 2.5 : Let f € L} .(Q). We can associate a distribution Ty defined as follows:

Yo € D(Q) : Ty, ) = / f(@)o(@)dz

The distribution T is a Radon measure on Q. Writing |(Ty, ©)| = |{f, ¢)| for ¢ € 2(Q).
Indeed, consider K C ) as a compact set and ¢ € D (). Then:

[Ty )| =
< x)|dx

< sup\so |/|f )|z
= HfHLl )-Pr o).

Example 2.6 : The Heaviside function H defined by (2.2) belongs to L}, .(R), and it defines

a distribution on Z(R). It is a Radon measure.

Example 2.7 : For f € L} (R?), we define:

+o0 +o0
Vo 9B (Tg) = [ Flz, (. y, 0)dedy
T is a Radon measure, known as the simple layer distribution with density f.

Indeed, consider K C Q as a compact set and ¢ € D (Q). Let K' = KN (R? X 0), which
is a compact set in R?. Then:

ol = [ [ st 0y

+oo +oo
S/ / f(x,y)p(z,y,0)|dedy

- / (e y)pla, v, 0)|dady
y

< sup |e(z,y,2)] | |f(z,y)|dedy
(z,y,2)EK K’

= [[fllzr ) -Pro(e)-

Example 2.8 : For f € L}, .(R?), we set:

5 +o0  pH4o0 (990
Voe 9®) ()= [ [ 13w 0dudy

T is a distribution of order 1, called the double layer distribution with density f.
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Indeed, consider K as a compact set in Q, and ¢ in D (). Let K' = K N (R? x {0}),

which is a compact set in R%. Then:

ol = | s y)‘g—“”(x 0 0)dc

+o0o +oo
< / / xy (z,y,0)|dxdy

= [ e -

< s ey )| / (2, y)|dady
(z,y,2)EK K’

= [[fllzr & Pra(e).

Now, let » € Z(R) be such that ¥(x,y,z) =1 in a compact neighbourhood Ky of (0,0,0) (¢

exists according to Urysohn’s lemma, see Theorem 1.6).

0
Setting: @o(x,y,z) = zt(x,y,2). Then: %(m,y,O) =¢(z,y,0) =1 on K.

We deduce that Pk, 1(p) > 1.
Thus, T" is of order 1.

Example 2.9 : The Cauchy principal value distribution vpi is a distribution of order 1
defined as follows:
4G

lz|>e ¥

Vo € Zk(R) : (vp1, @) = lim

e—0
Indeed, let a > 0, K C [—a,a] be a compact set and p € P (R).
1
Setting: (z) = / ¢'(tz)dt. Therefore, 1(0) = ¢'(0) et @ = @ + (x) for x # 0.
0

[ ] e [
N ] [O”M
{—@]H e
- o(2)dz.

|z|>e

Hence, (vpi,¢) = lim @
“ |z|>e x

e—0

dr = lim Y(z)dr = /a Y(z)de
|z|>e —a

e—0
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Noting that/ W(x),dx exists because 1 is continuous, then

[(vp1, )| = ‘/ U(z

= ‘// '(tx)dtdx
< / / \(,0 (tz)|dtdz

< 2asup|y'(x
zeK

= QCLPKJ(SD)

So, vp1 is a distribution of order less than or equal to 1.

To show that vpi is of order 1 see exercise 2.2

T is a singular distribution.

sure is a singular distribution.

If we can express a distribution 7" on {2 in the form / f(z)p(x),dx, we say that T is

Q
a regular distribution, and f is the associated function to T'. Otherwise, we say that

For example, the Heaviside function defines a regular distribution, and the Dirac mea-

2.2 Properties and Results

Proposition 2.2 : Let (f;) a sequence in L'(R™) such that for all j € N:
1. f; >0 and s fi(x)dx =
2. supp f; C B(0,¢;) where jli){rnoo g;=0. for all j € N.

Then: f; — § in Z'(R™).

Proof: Let ¢ € Z(R"). since supp f; C B(0,¢;) we have:

o) = | f(a)de = / fi(0)dr = 1,
R™ (0,5)

(firp) = - fi(@)p(z)de = /B(O ')fj(x)@(l')dx.
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We deduce that:

) =00l = |[ ez o0

_ / o it - / fi(@)p(0)

B(0,e5)

< f(@)le(e) — 9(0)|dz
B(O,aJ)

< s o) - @(0) / 1f(2)de
2€B(0,¢5) B(0.5)

= s fe(x) — @(0)].
wEB(O,Ej)

For all j € N, there exists z; € B(0,¢;) such that sup |p(z)—¢(0)| = |p(z;)—¢(0)| (since
x€§(0,€j)

B(0,¢) is a compact set and ¢ is continuous). Moreover, we have: 41121 ¢(z;) = ¢(0). Then:
Jj—+oo

0< lim [(fj, ) — (0,¢)| < lim |p(z;) — ¢(0)] = 0.

Jj—+oo Jj—+oo

Hence, the result. m

Theorem 2.1 (Lemma of Dubois-Reymond) : Let f € L}, .(Q2), and Ty be the distribu-

loc

tion defined as follows:

Vo € D(Q) : (Ty.p) = / f (@) o) dz

The following two properties are equivalent:
i) Tf =01 @/(Q),
ii) f=0 a.ein .

Therefore, if f,g € Li,(Q), then f = g almost everywhere on Q if and only if Ty = T,,.

loc

Proof: The implication ii) = i) is immediate. We will now prove the implication i) = ii).

First Method: Let K C € be a compact set. We define dx = d(K,C.). Choose
£ < 0k, and let xx be the characteristic function of K.

Consider a sequence {1;}jen C Z(€2) where 0 < ¢; <1, 9¢; =1 on K, and suppy; C
B(0, ). (The existence of such a sequence follows from the Urysohn’s Lemma, see Theorem
1.6).

The sequence {¢;}j € N converges pointwise to xx. Consequently, {f - 1;};en converges

pointwise to f - xx. Moreover, we have |f - ;| < f - xk.
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By the Dominated Convergence Theorem (Theorem 1.13), we can write:

| f@te = [ 1@ te)is = im_ [ f@)5@a =0

Since K is arbitrary, we can conclude from Theorem 1.11 that f =0 a.e. on €.
Second Method: Let {K};en be an exhaustive sequence of €2 (see Proposition 1.12).

Define O; = [%. We will show that f = 0 on every open set (O;);en.
Let f; = f,0;, then f; € L'(O;) (because O; is bounded). Due to the density of 2(0;) in
LY(0Oy), for £ > 0, there exists ¢! € 9( Oj) such that |7 — fil|L10,) < e.

Now, let ¢ € 2(0;). Since / fi(@x)eo(x)de = / f(z)p(xz)dz = 0, we obtain:
0

|, et - /ijz() fi@)elw)ds + / ptein) = [ 44 = f@)p

/ijg( 2)ds

j 72
770—6.@(0) Then: |¢| <1and¢ﬁp-L.
n? + (¢2)? n* + (¢2)?
712
So, / L <e.
0\t + (w2
As we let 1 tend to 0, we obtain, according to the Dominated Convergence Theorem (The-

orems 1.13 and 1.4): / 1| < e. Hence:

O;

1 fillero;) < Ifi = Yilliro,) + 192l o, < 2e, Ve > 0.

Then:

< [ 12~ i@ e(@ds < & sup ()]

.’L'EK]'

Let n > 0. Set: ¢ =

This implies that |fj|L1(oj) =0, ie., f =0 a.e. on O;, and consequently, within Kj, for all
j € N. Since {K} is a covering of €2, we can conclude that f =0 a.e. in Q. =

Proposition 2.3 : Let (f;) be a sequence in L*(Q) converge a.e. to a function f.
Assume that there exists a function g € L*(Q) such that f; < g a.e. for all j € N.
Then: f € LYQ) et f; — f in 2'(Q).

Proof: Let ¢ € (). We have: (f;, ¥) /f] Ydz et (f, ) = /Qf(x)dx.

On sais d’aprés théoréme de convergence dominée de Lebesgue (Théoréme 1.13) que f €
LY(9).
According to the Dominated Convergence Theorem of Lebesgue (Theorem 1.13), we know
that f € L'(Q).

Let’s consider the function h; = f;¢. The sequence (h;) is in L'(£2), converges almost
everywhere to the function h = fy, and since ¢ is bounded, there exists M > 0 such that
h; < Mg almost everywhere for all j € N. The function Mg belongs to L'(©2). By applying
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the Dominated Convergence Theorem of Lebesgue (Theorem 1.13), we get:

jggloo th(x)dx:/ﬂh( x)dzx, i.e Jginoo/f] dx—/f

Then: lliin (fj, ) = (f,¢). Hence: f; — fin 2'(2). =
j—+oo

Remark 2.3 : The theorem above remains valid if we consider a sequence in Lj ().

2.3 Derivation

Before providing the definition of the derivative of a distribution, we present the following

important result:

Proposition 2.4 : Let T be a distribution on Q, and let T; (1 < i < n) be the linear
functional on P(2) defined as follows:

dp
: =(T,— ).
Yo € 2(9): (Tig) = (T, 52)
Then, T; is a distribution on €.

Proof: Let K C Q be a compact set, and let ¢ € Pk (). Then, ¢p = %‘@ € Ix(Q).
Therefore, there exist M > 0 and m € N such that:

(T, ¢)| < M.Py () = M.Pg (g%p

) < M. Pg mi1(p)

X

. S0, we have:

(T3, )| = (T, )] < M.Prcnia()-

Therefore, T; is a distribution on €). =

Now, let’s proceed with the next definition:

Definition 2.5 : ForT € 2'(Q), the derivative of T' (with respect to ;) is defined as follows:

Vo € 2(Q) : <§£7¢> _ <T, §—i> (2.4)

Remark 2.4 : According to Proposition 2.4 and Definition 2.5:

1. We can show by induction that every distribution is infinitely differentiable.

T
2. If T is of order m, then 0

1s of order at most m + 1.
8%

Proposition 2.5 : Let T' be a distribution on ). Then:

Ya € N,V € 2(Q) : (DT, p) = (—1)l*l(T, D*y)
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Proof: Let o € N* and ¢ € 2(Q2). Then:

dyp

DT DT,
< ’ S0> < a’xl

)= (=1)"(T, D%¢p).

Finally:
(DT, ) = (D% - .. DT o) = (=1)* - (=1)* (T, D* - - - D) = (—=1)*(T, D1*lp). m

Proposition 2.6 : Let (1}) be a sequence of distributions on Q. If T; — T in Z'(12), then
for any multi-index o, we have D*T; — DT in 9'(Q2).

We say that the differentiation operator is a continuous operator.

Proof: Let a € N” and ¢ € Z(€2). Then: D% € 2(2) and we have:

[(DT5, ) = (DT, )| = || = 1[*(T3, D*¢) — | = 1*(T, D)
|| = 1*({T}, D%) — (T, D*¢)|)]

Jj—+oo
= (T3, D%p) = (T, D*p)| — 0.
Therefore: D*T; — DT dans Z'(€2). m

Example 2.10 : Let f be a differentiable function on ]a,b| such that f' € Lj,.(Ja,b]). For
any ¢ € P(Ja, b)), there exist ag,by such that supp ¢ C [ag, bo] Cla,b[. Then:

(Ty) ) = Tf ©')

_/f

= f(x) (z)dx

ao
bo

= —[f@)e@)]g + [ f(@)p(z)d

ao

= f(ao)plan) — f(bo)elbo) + / | f@)p(e)da
bo 0
= [ P
= <Tf’v‘:0>-
Then: (Tf)/ = Tf/.

Example 2.11 : Let H be the Heaviside function defined in (2.2). For any ¢ € 2(R), there
exists a > 0 such that supp ¢ C [—a,a]. Then:

(H',0) = —(H,¢)
[ oo
_ /0“90

= —le@) —v(a) = ¢(0) = (3, ¢).
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Hence: H' =9.

Example 2.12 : Let f € €' (R\{a}). Assuming that f and f" have a type 1 discontinu-

ity (i.e., the limits liln f(x) = f(a™h), lim . f(z) = f(a”), lim > f'(z) = f'(a*), and
Tr—a

lim - f'(z) = f'(a”) exist and are finite). Let p € Z(R), there exists A > 0 such that

supp ¢ C [—a,a] and —A < a < A. Then:

(Ty), @) = _<Tfiof,>

= - 1@
_ / " ) (@)
- / f@)e (@)do /Afx
— A+/ f(z)p(z)dx — [f /f
- /f r)dr + f(a /f
= (fla*) - / fa
= (Tp9) + (f(a+) f(a m
Then: (Ty)' = Ty + (f(a*) — f(a™))3

The following lemma is important for proving the subsequent theorem:

Lemma 2.1 : Let (a,b) be an open interval in R.
b
1. ¢ has an antiderivative in 2(a,b) if and only Zf/ o(x)dx = 0.
2. If ¢ has an antiderivative in P (a,b), then this antiderivative is unique.

Proof:

1. Suppose ¢ has an antiderivative ¢ € Z(a,b). Then:

/abw(x)dx = /abw’(x)dx = (b) —(a) = 0.

b x
Conversely, assume that / (x)dx = 0, and define ¢(x) = / @(t)dt. Then, o' = ¢.

We will show that supp ¢ is compact. Since supp ¢ is compacat, there exist ag, by such

that supp ¢ C [ao, bo] Cla,b]. This means ¢ = 0 on |a, ag[U]bg, b[. Take x €la, ap|. Then:
x x b

W(z) = / o(t)dt = 0. For z €]by, b|, we have: (x) = / S(t)dt = / o(t)dt = 0.
Therefore(,l supp ¥ C [ag, bo|, so supp v is compact. ‘ ’
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2. Let ¢; and 1, be two antiderivatives of ¢ in Z(a,b). Then, there exists ¢ € R such
that 11 = ¢ + 1. For x ¢ (supp ¢y U), we have: 0 = ¢ (x) = ¢+ 1o(z) = c.
Thus, 11 = v».

Theorem 2.2 : Let (a,b) be an open interval in R.
1. The only distributions T on (a,b) such that T' = 0 are the constant distributions.

2. For any T € P'(a,b), there exists S € P'(a,b) such that S' =T (every distribution

has a primitive).
Proof:
b
1. Let ¢ € Z(a,b) be such that / Y(x)de = 1. Set: (T,¢) = c.

Let ¢ € Y(a,b). We define p = ¢ — . / x)dxz. Then, p € P(a,b), and we have:

/abp(x)dx:/ dx—/¢ dx/ o(z)dz = 0.

Then: there exists 6 € Z(a,b) such that 8" = p. So,

b
(T,¢) - pr./

= T0’+1/J/

= (T,0") + (x)dﬂc

)
b a
= —(T",0) +c. gp(m)dz

I
m\

I
—

¢, p).-

b
2. Let T be a distribution on |a, b[. As before, we define 8’ = p, where p = p—1). / o(x)dx
b a
and / Y(xz)dr = 1 (noting that 0 is unique according to Lemma 2.1). We define:
(S, p) = —(T,6). Then, for K €la,b] and ¢ € Pk (a,b), there exist m € N, K’ =
K Usupp#, and M > 0 such that:

[(S;0)] = KT,0)|
< MlpK’,m(e)
= Mymax{sup |0], sup [0P]}

zeK' zeK' 1<k<m
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Noting that:

0(z) = / " (b

dt+/@/) dt/b (s)ds
- /Is@ |dt+/ ot Idt/|s0 lds
/w |dt+/ it |dt/ o(s)lds
= /\90 )|dt

< 2(b—a)supgex 4],

IN

and  sup 9] < M, sup lo™)| (taking into account that ¢ = 0 outside
ze€K’' 1<k<m zeK,0<k<m-—1

of K).

We then get: |(S,¢)| < M.Pg m-1(p).

Now, let ¢ € Z(a,b). ¢ is a primitive of ¢’ in Z(a,b). Then:
(5", 9) = =(5,¢") = (T, ).

Hence: S is a primitive of 7'

|
. oT
Theorem 2.3 : Let T € Z'(R") such that for alli =1---n we have: o 0.
L
Then: T is constant.
= 0, so T depends only on zs,...,z,. Thus, step by step, we can

prove that T' is constant. m

2.4 Operators on Distributions

Definition 2.6 (restriction of distribution) : Let T be a distribution on Q2. For any open
subset w of 1, we define the restriction T, of T as follows:

Vo € D(w) i (T, ) = (T, ¢).

The restriction of a distribution to w is indeed a distribution on w. This is because if
we take K C w as a compact set, we have K C (2, and for any ¢ € Zk(w), we also have
© € Dk(Q). Then, there exists M > 0 and m € N such that |(T, )| < M Pk, (p).

Definition 2.7 (translation of a distribution) : Let T be a distribution on R™, and let

a € R". The translation 7,,T by the vector a is defined as follows:
Vp € -@(Rn) : <TaT7 <P> = <T7 T—a90>7

where T_ap(x) = p(z + a) for all x € R™.
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If we take a compact set K C R" and ¢ € Zk(R"), then K, = z+a,z € K is
also a compact set, and 7_,9 € Pk, (R"). Therefore, (T,7_,p) makes sense, and

consequently, 7,7 is a distribution on R".

Example 2.13 : Let ¢ € Z(R"). Then:

<Ta57 90> = <67 T—a@) = (p(a) - <5a7 90>' 50, T40 = 0q.

Definition 2.8 (dilatation of a distribution) : Let T be a distribution on R™. The dila-
tion Ty with scale factor A # 0 is defined as follows:

Vo € D(R™) : (T, @) = |\™(T, p1),

1
X

where: go%(x) = p(Az),Vr € R?

If we take a compact set K C R™ and ¢ € ZK(R"), then K\ = A\z,z € K is also a
compact set, and p1 € P KAR"). Therefore, (T, g0%> makes sense, and consequently,

T) is a distribution on R".

Example 2.14 : Let ¢ € P(R"). Then:
(Ox, 00 = A" (0, 1) = [AI"0(0) = [A[*(3, ). So, ox = [A["0.

Definition 2.9 : We denote @ as p_1, i.e., p(x) = o(—x) for all x € R™.
Let T be a distribution on R™. The symmetry of T is the distribution T defined as follows:

Vo € D(R") : (T, ) = (T, ).

1. We say that T is even if T = T.
2. We say that T is odd if T = —T.

3. We say that T' is homogeneous of order m € Z if for every A > 0, we have:
TN = X""T.

Example 2.15 :

1. We have: 6 =6, i.e § is even.
2. Since 6\ = |A\|"3, we deduce that 0 is homogeneous of order n.

Definition 2.10 (product of a distribution by a function) Let T' be a distribution on
Q, and f € €>°(Q). We define f.T as follows:

Vo e 2(Q) : (f.T,¢) = (T, f.0).
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If we take a compact set K C Q and ¢ € PDk(Q), then f.p € Pk(2). Therefore,

(T, fe) makes sense, and consequently, f.T" is a distribution on €.

Remark 2.5 :

1. If T is a distribution of order m, and f € €, then f.T is a distribution of order less

than or equal to m.

2. In general, we cannot define the product of two distributions (see exercise 2.7).

Example 2.16 : Let p € Z(R™) and f € €< (R"). We have:
(f.0,0) = (0, f.¢) = [(0).0(0) = f(0).{, ). Then: f.0 = f(0).0.

Proposition 2.7 : Let {f;}72) € €°(Q) and {f;}]2 C 2'(Q) be two sequences such that
fi—=fin€>Q) and T; — T in 2'(2). Then, f;.T; — f.T in 2'(Q).

Proof: : Let p € 2(Q2), and let K C Q be a compact set such that suppp C K. Then,
supp(f;) C K and supp(fy) C K.

Since f; = fin €>(Q2) and fjp, fe € €>(2), we have jEIJZlOO Prm(fi0— fe) =0 for all
m € N. The convergence is in Z(f2) since K is fixed.

Since T; — T in 2'(Q), (T}, f;.¢) tends to (T, f.). According to the Banach-Steinhaus

theorem (Corollary 1.2), the convergence is in 2'(X2). =

2.5 Supports of distributions

Definition 2.11 : The null open set set of T € 2'(QQ) is the largest open set O C ) such
that:
Vo € 2(0): (T, ) =0

The support of T (suppT) is '\ O.

Suppose there exists a non-empty open set where 7' = 0, and consider a family (O;);c; of
open sets where 7' = 0. Let’s define O = U O;, which is an open set. Let ¢ € 2(0O). Then,
iel
K =suppp C O = UOi‘
iel
The family (O;);e; is a covering for the compact set K, so we can extract a finite covering

(0;)iL;. According to Theorem 1.7 (partition of unity), there exists a family (6;)_, where

N N
8, € 2(0;),0<0; <1,and 2«9]- = 1. Then, for any = € Q, we have: p(z) = Zej(:c)go(x),
j=1 j=1
and for all 1 < j < N, 0;.90 € 2(0;). Therefore:
N N
(To) =(T. Y _0;.0) =D (T,0;6) =0.
j=1 j=1
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Then O is the null open set of T" and supp7 = Q \ O.

Example 2.17 :

1. Let ¢ € 2(R"™) such that supp p C (R™\ 0). Then: (J,¢) = ¢(0) = 0. Thus, the null
open set of § is included in R™\0. This inclusion is strict because if we take oo € Z(R™)
such that ¢ = 1 in the neighbourhood of B(0,1), we have (0,¢) = ¢(0) = 1 # 0.
Therefore: supp d = {0}.

2. Let p € P(R) such that supp ¢ C|] — 00,0[. On a:
+o0o
(H,p) = / o(x)dx = 0. Then: the null open set of H est is included in | — oo, 0].
0

11
Let (¢;)jen be a sequence of functions in Z(R) such that ¢ > 0 et o =1 on l——, —] .Then:
n’'n

n 1
(H,p) > / pla)de =~ #0.
0
We deduce that the null open set of H is | — 0o,0[. Then: supp H = [0, +0o0].

Proposition 2.8 :

1. Let T be a distribution with compact support on S, and let ¢ € P(2) such that p =0
in the neighbourhood of supp T (i.e., suppp NsuppT = 0). Then: (T, p) = 0.

2. The support of T, denoted supp T, is the smallest closed set F' such that: if ¢ € D(Q)
and ¢ = 0 in the neighbourhood of F', then: (T, ¢) = 0.

Proof:

1. Since supp ¢ Nsupp T = @) we have: supp ¢ C (R™ \ suppT’) = O the null open set of
T. Then: ¢ € 2(0), which lead to: (T, ¢) = 0.

2. Let Fy be the smallest closed set that satisfies the property: If ¢ € Z(Q), and ¢ =0

in the vicinity of Fp, then (7', ) = 0.

It is clear that supp T satisfies the property, and if F; and F5 satisfy the property, then
Fi N F, and F U F; also satisfy the property.

Assume that Fy C supp 7 with strict inclusion. Then, there exists xy € supp T such
that . ¢ Fj. since Fj is a closed set we have: d(xg, Fy) = 2r > 0. Then: B(xg,r)NFy =
0 et Go =suppT N B(xg,7) # 0.

It results that Go U Fy C suppT et Fy C (Go U Fy) with strict inclusion, which
contradicts the fact that Fj is the smallest closed set satisfying the property.

Remark 2.6 : If we replace ¢ = 0 in the neighbourhood of suppT with o = 0 on supp T,

the proposition above does not hold. For example, we have suppd = 0, but if v € Z(R) such
that v = 1 in the neighbourhood of 0 and p(z) = xy(x), then ¢ = 0 on suppd
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Let T" be a distribution with compact support on €2. Then, T is of finite order m, and for
any neighbourhood of a compact set K C 2, there exists a positive constant M such that
for all p € Z2(Q0), we have |(T, p)| < M.Pk ().

Proof: Let K be a compact neighborhood of supp 7', and let y € Z(Q2) such that supp x C K
and y = 1 in a neighborhood of supp 7.

Now, consider p € Z(Q2). We have ¢ — x - ¢ = 0 in a neighborhood of supp 7. Thus,
(T, — xp) = 0, which implies (T, ) = (T, x¥).

There exists My > 0 and m € N such that for all ¥ € Zx(Q), we have |(T,¢)| <
My.Pg (). Since x - ¢ € Pk (), we have:

(T, o) = (T, x-9)| < Mo Prn(x-0) < M.Pre ().

Notably, m depends only on K, which is fixed (a neighbourhood of suppT"). Therefore, we
conclude that 7' is of finite order. m

We use this result to extend the duality bracket (.,.) 4 4 as follows:

Definition 2.12 (Duality Bracket (.,.)s ¢): We denote by &(2) the space of €>(12)
functions, and by &' () the space of distributions with compact support. For any T € &'(Q2)
and p € &(Y), we define:

(T, ) e = (T, xp)9,9,

where x € P(Q) with x =1 in the neighbourhood of supp T. We write: (€>°(Q2)) = &'(Q).

This result is independent of the choice of x because if we take y; and x2 in Z2(2) such
that xy; = x2 = 1 in the neighbourhood of suppT’, we have: xi.p = x2.¢ = 0 in the
neighbourhood of supp 7. Therefore, we have: (T, x1.¢ — x1.¢) = 0, which implies:

(T, x1-0) = (T, x2-9)-

Theorem 2.4 : The canonical injection of &' () into P'(Q2) is continuous.
We set: 8'(Q2) — 2'(Q).

Proof: Let’s denote by i the map from &”(Q2) into 2’(2) defined as follows:
VT e&'(Q):4(T)="T.

his map is linear, and if 7" € &'(Q2) such that i(7T") = 0, then for all ¢ € Z(Q2), we have
(T, ) = 0. Therefore, for all ¢ € &(2) and x € Z(f2), we have:

(T, p)er e = (T, x.) = 0.

This implies that T = 0, i.e., 7 is injective.
Now, consider a sequence {7} }jen C &”(£2) converging to 0 in &”(€2). Then, for all p € &'(Q),

we have (T}, ¢) g » converging to 0.
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However, we also have: (T}, ) s = (I}, x.¢)2,2 = (T, ) converging to 0 for all ¢ €

2(Q2). Therefore, i is continuous. m

Exercises

Exercise 2.1 : We define the following functional on Z(R):

Vo€ I(R): (pf . 0) = lim [/| 2A2) gy 520

e—0 T g

Show that pf% defines a distribution on R.

Exercise 2.2 : The purpose of this exercise is to show that the distribution vp1 s of order
1. By contradiction, we assume that vpi is of order 0 (we know from ezample 962.9 that vps
is of order less than or equal to 1). ’ ’
Let ¢ € 2(R), be an even function such that ¢ > 0, = 1 in the neighbourhood of 0. Let
a > 0 such that supp ¢ C K = [—a,a]. We know that (vp1,p) < 2aPk1(p).
Consider the sequence of functions (y;);en, defined a;follows: @;(z) = p(x) arctan(jx).

1. Show that there exists M > 0 such that for every j € N we have: sup |¢;(z)| < M.
zeK

2. Calculate ¢(0). What can we conclude about PK, 1(p;)?

3. Deduce.

Exercise 2.3 : The goal of this exercise is to show the existence of distributions of infinite
order. Consider the functional T defined on Z(R) as follows:

Vo € D(R): (T, 0) = > o®(k).

00
k=0

1. Show that T defines a distribution on R.

11
2. Suppose that T is of finite order m. Let 1y € Y Q ~33 D such that 1¥g > 0 and

(m+1)!
i) For A > 1, define: ¢(x) = p(ANax — (m +1))).

1 3
Show that p € €°(R) and supp ¢ C K,, = {m +-,m+ —} .

o =1 on {—%, ﬂ Define ¥(x) = o(x).

2 2
it) Show that (T, p) = A™*1.

iii) Show that there exists My > 0 such that: X" < My Z M sup [ ®)].
k=0
iv) Show that X is finite.

v) Conclude that T is of infinite order.
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Exercise 2.4 : Let {T}}en be the sequence of distributions associated with the locally inte-

grable functions sm(]x).
T
: L T sinx T
Show that T; converges to § as j tends to infinity (Note: / dr = 5)
0 x

Exercise 2.5 : Let T' be the functional defined on Z(R) as follows:

Vo e P(R) : (T, p) = /|> In |z|.p(z)dz.

Injz| : |z|>
Consider the sequence of functions { f;};en defined as: f;(x) =
SInG) ¢ el <

S S =

1. Show that T defines a distribution on R, denoted as In |x|.
2. Show that f; € L}, (R) for all j € N.
3. Show that f; — In|z| in Z'(R).
4. Show that (In|z]) = ups.
Exercise 2.6 :
1. Calculate TUpL and x.9.
2. Calculate (xInz), £.6%) for k > 1.
3. Solve the equation T =0 in Z'(R).

Exercise 2.7 : Consider the sequence of functions { f;};en defined as follows:

1

j Y A 0,—,

fi(z) = 1
0 . X ¢ 0,—_

J

Let T; = f; be the corresponding distributions.
1. Show that T; — 0 as j — +o0.
2. Find the expression for (f;.T;, ) for all ¢ in Z'(R).

3. Show that (f;.T;,p) — +00.
(take ¢ € Z(R) such that o =1 in the neighbourhood of 0).

Exercise 2.8 :
1. Calculate (f.T),(fT)", where f € €°(R) and T € Z'(R).

2. Calculate (Ty + Ty, ), for Ty, Ty € Z'(R™) and ¢ € 2() ot Q@ = R™\(suppT; U
supp 1s).
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Solutions of exercises

Solution 2.1 : Vp € Z(R) : (pf1 o) = hH(l] {/ %das - 2@} :
e |z|>e
Let o € Z(R). On a:

/ %dm - /_a“‘)g)dw/_m@(””)d
|z|>e ) _‘[OM} —c B {&] +/ o' /OO gp’(x)dx

_ oo plze) ¢'(2)
9 e |z|>e T
Then:
x? e—0 € 5 lzj> T € /

— lim {_w(—6)—s@(0)+w(—€)—s@(0) N sO(fr)dx}

e=0 —€ € o> T
= SO+ +lm [ EDg,

e—0 |z|>¢ x

= lim So(x)dx

e—0 |:IJ|>€ X
— (op1, )

As vp1 defines a distribution on R and since ¢’ € P(R), we deduce that pfa defines a

distribution on R.

Solution 2.2 : ¢ € Z(R) is an even function such that ¢ > 0, ¢ =1 in the neighbourhood
of 0, and a > 0 with supp p C K = [—a,al.
@;(z) = ¢(x)arctan(jx) for j € N.
1. We have: sup |p;(x)| = sup | arctan(jz).o(z)| = gsup lo(x)| < M.
zeK

zeK TeEK
h . / . jg&(l‘) / . Th . / _ A
2. We have: ¢);(r) = T+ 2 + ¢'(x) arctan(jz). Then: ¢;(0) = jo(0) = j.

There exists jo € N such that sup [0 (z)| = jo > M > sup |p;(z)|.
reK TeK
Then: P 1(pj) = j pour j > jo.

3. Since Pk 1(p;) = Sup |©5(w)], we deduce that the order of vp1 is 1.

Solution 2.3 : Vp € Z(R Z ©

1. Let K C R be a compact. There exists j € N such that K C [—j,j]. Let ¢ € Pk (R).
Then: supp p*) C [~7], 7] for all k € N, i.e o*) (k) = 0 pour tout k > j, which lead to:

J

- [

<(G+1) sup [ ()] = ( + 1) Pr().

rzeK,k<j
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Then: T defines a distribution on R.

2. Suppose that T est d’ordre m.

m+1
e (|-55|) oz 0m=10n |4 4] v = )

i) A>1Lp(z) =y — (m+1)).
since p € €*(R) Then: ¢ € €°(R).
11
From the definition of ¢, x € supp ¢, it implies that \(x — (m + 1)) € ] 35
1 1 11
Then: (z — e |-— —|c|=2=| (si 1.
hen: (x — (m + ))6] 2)\’2)\[C] 2,2[ ( since A > 1.)

1 3 1 3
Hence: x € {m+§,m+§]. So, suppy C K,,, = {m+§,m—l—§].

1 3
ii) Since suppp C K,,, = [m + §,m + 5] , we deduce that

() = g™ D+ 1) = NG (0) = AL,

iii) We assumed that T' est d’ordre m, then: there exists My > 0 such that:

X = (T, )] < Mic > sup o] = M > A sup 9],

k=0 k=0

iv) Since A > 0, for all k < m we have: \¥ < \™. Then: N < My \™ Zsup [ ®)].
k=0

hence: A < M. Zsup 1™ So, X is finite.
k=0
v) If we let X\ tend to infinity, we have a contradiction with X being finite. Therefore,

T is of infinite order.

+OO . .
Solution 2.4 : Vo e R: (T}, ) = / Sm(jx)SO(ﬂ?)d% JjeN

0 X

400 - 4o -
We have: / ST gy = 2/ Y0t = 1. Then: ©0(0) = /
- 0

o T x
We change the variable t = jx, we obtain:

+00 il T gint t T s
/ sin(jz) o(z)dz = / &90 (_) dt = / Smxgp (E) dx. Then:
oo T oo T J —00 T J

(T5.0)~ G = | [T (B ar- [T

T sin

©(0)dz.

™

—00

T J e T

[ () )

IN

+oo 3
< / sin o f — »(0)| da
oo TT J
+00
o () v [ 2
J —c0 X

- el (2) 0]
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® (%) — @(0)' = 0, we deduce that T; converge to § where j — +o00.

Since lim sup
J—+oo
Injz| : |z|>

Solution 2.5 : Vo € Z2(R) : (T, ) = /|> In|z|.o(x)dz, fi(r) = { “n(j) : || <

LSS =

1. Lete > 0 be small, and K C R be a compact . there exists a > 1 such that K C [—a, a].
Let ¢ € Ik (R), Then:

(T,o) = /| il

= In |z|.p(z)dx
e<|z|<a
= 1n|x\.<p(x)da:+/ In|z|.o(x).
e<|z|<1 1<z|<a
On one hand: / In|z|.o(x)| < sup |o(x)]. In|z|dx < M Pk o(p).
1<|z]<a 1<[2l<a 1<[al<a
On the other hand, according to the mean value theorem, there exists e < |x| < || < 1
l—2z 1-2
such that |In|z|| = —Injz|=In1 —In|z| < <
| ] ]

1—2z

then: / In |z|.p(z)dz < / p(z)de,
e<|z|<1 e<|z|<1 ||
and this last term can be treated as vpi. .

Then: T defines a distribution on R, on la note par In|z|.

2. The function fjis continuous for all j € N. Then: f; € L}, .(R) for all j € N.

3. We can write: Vo € Z(R) :< In|z|,p >= / In |z|.p(z)dz, then:

() — (ln 2], @) = / —Injp(z)de < Inj / ’ ()| dz.

o<}
11
Applying the mean value theorem, there exists x; € [——, =| such that
JJ
1
J 2 2Iny
/1 |p(a)|dx = ;Iw(%‘ﬂ- Then: |(fj,¢) — (Inz|, )| < ; o (5]
Since @ 1s continuous: 'liin lo(x;)] = |@(0)]. Then:
Jj—+oo

. . 2Iny
< o) — < 2oz = 0.
0= Tm |{fie) = {mlel, o)l < Tim —=lp(z;)] =0
Hence: f; — In|z| in Z'(R).

4. Let ¢ € 2(R). We have: {(In|z|),p) = —(In|z|,¢’) = —/ In|z|.¢' (x)dz.

|z|>e
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There exists a > € such that supp ¢ C [—a,a]. Then:

—/ In |z|.¢ (x)dx
|z|>e

—/ ln|x|.g0’(:r;)dx—/ In |z|.¢'(z)dx

= el [ A el e+ [0
= Ine(p(e) — p(—€)) + /| ) D) g,

We have: p(e) —p(—e) = 2e¢/(0)+0(e), then: limIne(p(e) —p(—¢)) = lim 2ec¢’(0)

e—0

0. So,
1 / — 1 QO(LU)d — 1 .
((In|z[)’, @) = lim e @ (vp1,¢)

which lead to: (In|z|) = vp1.

Solution 2.6 :

1. Let ¢ € Z(R). Then:
*) <$'Up%730> = <Up$7$-4p>
= lim x.—so(x)dx
e—0 |z|>e €T
= lim o(z)dx
e—0
|z|>e
“+oo
= p(x)dx
= (1,¢).
1
Then: x.v,— = 1.
x
%) (2.0, ) = (0,2.9) = 0.
Then: x.6 = 0.
2. Let ¢ € Z(R). Then:
*) <(x1n$>/7§0> = _<$'1n$790/>
= —(Inz,z.¢)
+o0o
= —lim x.Inx.@ (x)dx
e—0

3 +oo

lim[(1 + Inx)p(x)]F> + lim

e—0 £—

+ +0o0
/ o(z)dr + / Inz.
0

(H, ) + (Inz, ¢).
Hence: (xlnz) = H +1Inz.

(x)dz

e—0

(1+Inz)p(x)dx
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%) (2.0 o) = (§%) 2.p)
(=D)*(Inz, (z.9)*)

k
= (=D*) Ci@) Mo
i=0

= (=1)"Cr¢'(0)
Then: 2.0 = (—1)* k&'

3. From the first question, if T' =6 then: T = 0.
So, if T'=c.d (c € R) then: 2T = 0.
Now, assume that xT = 0, then:
for all p € D(R) we have: (x.T,p) = (T, z.0) =0.

Let (¢;) € Z(R) such that supp p; C } —%, %[ et p; =1 on {—2%,, %} :

From Proposition 2.8, we obtain suppT = {0}. Then: there exists k € N et ¢ € R
such that T = c.6®).

However, according to the second question, 6™ is different from 0 when k > 1.
Therefore, the solutions to the equation T = 0 in Z'(R) are distributions of the form

c.0 (where ¢ € R).

1
j - xze |0,=

Solution 2.7 : f;(x) = 14 JEN.T; = f;
0 : =z ¢ O,T
J

1. Let o € Z(R). Then:

(T ) — 6.0 = |s /  p(w)di — (0)

Applying the mean value theorem, there exists x; € [0,1j] such that:

i 1
j/ = j.~o(z;)
0 J !
j—+oo

(T3, 0) = (0, 0)| = [o(z;) = 0(0)] — 0.

Hence: T; — 6 when j — +oo.

Then:

1

2. Let ¢ dans Z'(R). We have: (f;.T;, ) = (T}, fj.) = jQ/J o(x)dx.

0

11
3. Let p € P(R) such that ¢ >0 et p =1 on [——,, —,] .Then:

j’J
1 1
o [7 o [T oo
(f5- Ty, ) :JQ/ o(z)dr > 32/ dr =j — +00.
0 0
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Hence: (f;.T};,¢) — +o00.

Solution 2.8 :

1. Let p € Z(R), then: ((f.T),¢) = —(
We have: (f.p) = f.© + fl.p. Then:

((£T), @)

which lead to: (f.T) = f.1T + f'.T.
Then:

T, f.¢').
—(f.T,¢)
_<T7 f90/>
—(T, (f.0) — f'0)
—(T, (f.)) + (T, ")

(fT) = (f.T' + f.T) = £.T" + 2f'.T + f'.T.

2- <T1 +T2790> = <T17g0> + <T2,§0> = O
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CHAPTER 3

CONVOLUTION PRODUCT

The role of the convolution product is to regularize certain functions with bad behaviour. In
this chapter, we will generalize the convolution product, which is defined on functions. We
begin with a brief motivation.

Let P and @ be two polynomials of degree p and ¢, taking values in R or C, given by:

P(zx) = zp: a;’, Qx) = ibjxj.
=0 =0

The product of P and @ is given by:

ptq J

(P.Q)(x) = apbj_pr’

=0 k=0

We extend the two sequences (a;) and (b;) by adding zeros towards Z and still denote them

as (a;) and (b;). The two polynomials P and () define two formal power series:

P(z) = Z a;z’, Q(x) = Z bz’

jez jez

Thus, the product P x () is given by the formal power series Z c;r!, where
JEL

J
C; = E ak.bj,kx].
k=0

The series E c;x’ is called the product of the series E a;x’ and E bja’.
JEZ JEZ JEL
We can now consider two arbitrary absolutely convergent power series E a;x’ and
JET
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Z bjxj . Then, the product of these series is also absolutely convergent.
ez
A similar result is obtained when replacing (a;) and (b;) with integrable functions f and

/f y)dy,

which called the convolution product of f and g.

g, resulting in the quantity

3.1 Convolution of functions

Definition 3.1 : Let f,g € L}, .(R"). The convolution product de de f et g, denoted as f g
15 the function defined by:

(fxg)(@)= | fly)glz—y)dy, x €R". (3.1)
Rn
Proposition 3.1 : If f x g exists we have:

1. fxg=gxf

2. supp(f * g) C supp f + suppg.
Proof: Suppose that f x g exists.

1. Let x € R", then: )
(fxg)x)= [ fly)glx—y dy—/ f)-g(x —y)dy, - - - dy,.

Making the Change of Varlable z=x—y, we obtaln

/+ Fo = 2).g(2)(—dz) -+ (—dz).

—+o00

Then: (f *g)(x /+OO OOf (x — 2).9(2)dz - - f(x—z) g(z)dz.
Hence: (f*g)( = (9% (=)

2. Let x ¢ (supp f + suppg). Thus: fur all y € supp f we have: =z —y ¢ suppyg, i.e
(f * g)(x) = 0.

0

—_——
So: the null open set of f % g contains C5aPP/+5uPPg

Then: supp(f * g) C supp f + supp g.

/ 1 1

Proposition 3.2 : Let f € LP(R"),g € LV (R") (1 < p < 400, —+— =1 oup’ = +oo sip =
p p

1), then: fxg is defined everywhere, bounded, Moreover: || f*g||poomn) < HfHLp(Rn).HgHLp/(Rn).
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Proof: Suppose that f € LP(R"), g € LP(R"). Si 1 < p < +00, By the Hélder’s inequality:

1
7

rea@l < ([ \f(y)|”dy>;- ([ tate = an)’

- (/. \f(y)|”dy>;- ([ tatran)”.

So, [(f * g)()| < [[fllcr@)- 19l Lo @my-
If p=1 then: p’ = +00 and we have:

=

(F *)@) < Nl | 17y = 1l Lol

Then: fxg is defined everywhere, is bounded, and we have: || fxg||zoo®n) < || fllro@n)- [l 1o gn)-
n

Remark 3.1 :
i) If p €]1,+o0| then: f g est continue.

ii) Sip,q € [1,4+00], f € LP(R™), with a compact support, g € Li (R™), then: f x g is

loc

continuous.

Proposition 3.3 : Let f,g € L'Y(R"), then: f*g € LY(R"™) et on a:

[ o= ([ swi)-([ s

/n(f * g)(z)dx = / . f(x —y)g(y)dudy.

By applying the Fubini’s theorem, we obtain:

Proof: We have:

| a@ide= [ s—uds [ atuay

However, we have: / flz —y)dx = f(z)dz. So,
Rn

n

[ oo = [ sws. [ g

n

[
" 11 ‘
Proposition 3.4 : Let p,q € [1,4+00] such that — + — > 1, then: f * g defined a.e. in R".
p g
1 1 1
Moreover, if — = — 4+ — — 1, then: (f * g) € L"(R™) and we have:
r P g

If* gllor@ny < 1 flze@n)-1lgl| Lany-
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1
T

S =

Proof: By writing: [ /(y)g(x — y)| = ([f®)Pla( — 9)|9)7.(|fW))r 7. (Jg(x —y)|7)a .
Now, since |f[P € L*(R"™), |g|? € L*(R™) on a: |f|P * |g|? € LY(R").

By applying the generalized Holder’s inequality, taking into account the relationship:

1 1 1 1 1 ,
~+(-—==)+(~-—~) =1, we obtain:
r p T q T
q

[ V@t < ( [ 150t - y>|qczy)i (/. |f(y)|”dy)1€ (/. |f<y>|qdy>”

Then:

1—-Pk 1-4

(5 9) @) < 1P g1 @ 1LF oy 19

Integrating with respect to z, we obtain:

- |(f * g)(@)"dx < [LF1P 191l o ) [ F 1o oy - 19 1 o ey

But: [[[f]” #1912 @ry < IFIPNlerny- gl er@ny = 1 Lo @ny- 119l Lagny-
So, || f*g

L@y < oy 191 Lo gy ™

Proposition 3.5 : Let k € N, f € L (R"),g € €*(R"), supp f ou supp f be compact,
then: f*g e €*R"™), and for all a € N such that |a| < k we have: D*(f x g) = f * D%.

Proof:

i) Case where supp f is compact:
Since g € €*(R"), for all || < k, the function D%g is bounded on any compact set
(locally bounded). It follows that f * D%g is continuous.

The function x — D%g(xz — y) is dominated, and by applying the theorem of differen-

tiation under the integral sign, we obtain the result.

ii) Case where supp g is compact:
Since f € L} and D%g is bounded, then f x D%g is well-defined and continuous.

loc

For the equality D(f % g) = f x D*g, we refer to [13], tome 1, p. 122.

Proposition 3.6 : Let {¢;}jen be a reqularization sequence (see definition 1.24) and f €
Ll

loc

(R™). The sequence {f;} = {p; * f} is called a regularized sequence, and it satisfies:
1. For all j € N we have: f; € €>*(R").

2. If f € € (R"), then f; — f in €<(R").

3. If f € 2(R"), then f; — f in Z(R").

4. If f € LP(R™), then f; — f in LP(R™).
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Proof: According to Definition 1.24, ¢; € Z(R"), and there exists 0 < e; — 0 such that:

w; >0, supp ¢; C B(0,¢;), /( )goj(:v)d:v = / @;(z)dr = 1.
B 0,4 "

fi(x) = (¢ x f)(x) = . fW)ei(x —y)dy.

1. For any k& € N, we can consider ¢; € €*(R") with compact support. Then, according
to Proposition 3.5, f; € €*(R"), and since k is arbitrary, it follows that f; € €°>°(R").

2. Let K C R"™ be a compact set and m € R™. For |a| < m, there exists jo € R™ such
that for all j > jo, we have B(0,¢;) C K. Then:

|D*(fi)(x) = D*f(x)] = [D*(f *@;)(x) — D*f(x)]
(D] * pj)(2) = D*f ()|

= | [ st [ rwremal
— | [0 ste = - D)
_ / D f(x —y) — D f(z)]-¢;(y)dy

— Z |Df(x —y) — D*f(x)|.0;(y)dy

(Ovaj)
< sup [D%f(z—y)—Df(z)| vi(y)dy
yEB(O,Ej) B(Ov‘ej)
< sup |[D%f(z—y)—D"f(z).
yE€B(0,e5)

Therefore, sup |[D*(f;)(x) — D®f(z)| < sup sup |D*f(x —y)— Df(zx)|.

z€K z€K yeB(0,c5)
Due to the continuity of D*, we have lim sup |D“f(z —y) — D“f(z)| = 0.
0yeB(0e;)
Therefore, lir% sup | D*(f;)(x) — D* f(x)| = 0, which implies that f; — f in €>°(R").
e~Uzek

3. Since f € Z(R"), there exists K C R" such that supp f C K, and supp ¢,; C K for all
j € R™ (this is possible because ¢ — 0). Since f; — f in €*°(R"), we have: f; — f
in 2(R"),

4. Let € > 0. From the density of J# (R") in LP(R") (see theorem IV.12 in [5]) there exists
a fixed g € Z(R™) such that || f — g||r@n) < €.
Using similar arguments as in 2., the sequence (¢, * g) converges to g in . (R"), i.e
(p; * g) converges to g uniformly on any compact set.
We have: supp(p; * g) C supp ¢; +supp g C K, where K is a fixed compact. Then:

j—>+oo

74 0=0l o = [ 163%0)(0) —g()Pds < mes()sup (g, ) (x) ~g(0) —+ 0
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By writing: ¢; « f — f = (@; * (f —9)) + (¢j * g — g) + (f — g), it follows:

i * f = fller@y < llgs * (f = Dlle@) + 0 * g — gllr@m + 1 = 9llz0@n
< Nejllr@ny-llf = glle@ny + les * g = glle@n) + 1 f = gllon)
= 2||f = glleown) + [0 * g = gllon)
< 3¢

Therefore, ¢; * f tends to f in LP(R™).

This completes the proof. m

3.2 Main results

These results play an important role in the definitions related to the convolution product

between distributions.

Definition 3.2 (convolution-compatible family) :

i) Two closed sets F' and G C R™ are said to be convolution-compatible if:

VR>0,3p>0:(z e FAyeGA|lz+y|<R)= (x| <pAlyl <p).

ii) A finite family of closed sets (Fj)jeq C R™ is said to be convolution-compatible if:

D

el

VIC JVYR>0,3p>0:((j)icr € F; A < R)= (|lzi| < pyiel).

Example 3.1 : Suppose that A is closed, and B is compact. Since B is compact, there
exists v > 0 such that for all y € B, we have |y| <r. Let R >0, x € A, and y € B such
that |x +y| < R. We have:

lz| =]z +y—y| <|r+yl+ |y <r+Rand |yl <r <r+R.

Therefore, A and B are convolution-compatible.

Example 3.2 : Consider the finite family {[a;, +00[}icr in R.

Let R > 0 and let z; € [a;,+00] such that le < R. We have:

icl
OSZ(xz—al)S ZZL‘Z + Zai <R+ ZCLZ‘ .
el i€l i€l el

Then: a; < x; < R+ Zai . There exists p; such that |z;| < p;.
icl
We can set: p = max p; and find that : |x;| < p pour tout i.
(S

Therefore, the family ([a;, +00|)ier is convolution-compatible.

University of Msila 60 Saadi Abderachid



Distributions and Sobolev espaces Master 1 PDFE and applications

Example 3.3 : Consider the two intervals [a,+oo] and | — 0o,b]. There exists ng € N
such that for all n > ng, we have n > a and —n < b. Therefore, n + (—n) = 0 < R for
any R > 0, but n tends to 400, so it is unbounded. Hence, [a,+00] and | — 0o, b] are not

convolution-compatible for any a,b € R.

Proposition 3.7 : If F' and G are two convolution-compatible closed sets, then F + G 1is

closed.

Proof: : Let z; + Yijern be a sequence in F' 4+ G that converges to z € R™. This means
that the sequence {x; 4+ y;} is bounded, i.e., there exists R > 0 such that z; +y; < R for all
jeN.

Since I’ and G are convolution-compatible, there exists p > 0 such that z; < p and
y; < p for all j € N. Both sequences are bounded, so we can extract two sequences {z;;}
and {y;;} such that {z;;} converges to = and {y;;} converges to y. Therefore, {z;; + y;i}
converges to x + y, and by the uniqueness of limits, we deduce that z =z +y € F + G.

Hence, F' 4+ G is a closed set in R". m

Theorem 3.1 (Distributional Derivative Under the Bracket ) : Let p € ((RPT), T €
&' (RP). The function:
f: RT — R
y o [y ={T@),¢(zy)
is of class €>(R7?) and for all o € N™ we have: D*f(y) = (T(z), Dyp(,y)).

Proof: Let z € RY et yy € R?. According to the Taylor expansion formula, for A € R?:

q
0
Pl o+ 1) = @l 90) + D 5 i+ Rl o ),
i=0 7"

he 1 N
where R(x,yo, h) =2 |¥2 J/o (1 =t)Dyp(z,yo + th)dt.
The function y —— R(;E_, Yo, h) is of class €, and T is distribution with compact support.

Therefore, there exist M > 0 and m € N such that in the compact neighbourhood K of

supp 1"
(T, R(x,y0, h))| < MPr,n(R) =M. sup sup |D5R(:E,y0,h)|.

[BI<m (z,y)€K

For |h| sufficiently small:

|D5R(l’,y0,h)| S C{1|h|2 sup |D3aD590($7y0)| S CPK,m-‘r?((p)

|| <2

We deduce that [(T, R(x,yo, h))| = o(|h|?).Then:

(T o+ 1) = (T2l + D (T 520+ o BP),
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so, (o +h) = f(wo) + S (T, g—jh T ol|hP).
i=0 v

0 0
Therefore: f is differentiable at the point 3, and we have: 8f = (T, 890'
Yi Yi
Since this holds for all i, we conclude that f € €. The result is then obtained by induction.

Theorem 3.2 (Distributional integration under the bracket ) : Let p € ((RPT), T €
E'(RP). Let P be a compact slab of R. Then:

(1), [ el = [ et an

Proof: Writing P = [a1,b1] X - - X [ag, b,], we obtain:

by by
/w(.,y)dyz/ / (., y)dyr - - - dyg.
P al aq

Let Fin) = (T0), [ ol siees lds) (1<)

a;

Applying the previous theorem, we get:
F;,/(yl) = <T(3}’), 90(7 Y1y Yiy o 7yq)> .

Hence: F(y;) = /yi (T(x), 0, y1, -8, ,Yq)) ds.

aj

Thus, by integrating ¢ times, we obtain the result. m

Remark 3.2 : The compact slab P can be replaced by another measurable set.

3.3 Convolution of a function with a distribution

We can express the convolution product of a function f € L'(R") and a function ¢ € Z(R")

as follows:
(Feele) = [ oo = Iy = () ol =) = (.2

where 7,0(y) = o(z — y).
This brings us back to the following definitions:

Definition 3.3 : Let T € Z'(R"), o € Z(R"). The convolution product T * ¢ is defined as
follows:
Ve e R" : (T xp)(x) = (T, 7,9) . (3.2)

We can extend the previous result in the case where 7" has compact support and ¢ €
¢ (R™). We have the following definition:
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Definition 3.4 : Let T € &'(R™) and ¢ € &(R™). The convolution product T * ¢ is defined
as follows: For all x € R™, (T % ¢)(x) = (T, 7uQ) 1 5.

Theorem 3.3 : Let T € Z'(R"),p € €>(R™) be such that supp ¢ where suppT be a com-
pact. Then:

1. Txp e €2R").
2. For all o € N" we have: D(T x ) =T %« D% = (D*T) * .
3. supp(T * ) C supp T + supp .
Proof: : From the definition: 7 % ¢ is a function defined on R".
1. Since 7, € €>°(R"), we deduce from Theorem 3.1 that T'x ¢ € €>(R").

2. Let YVa € N”, then:
DT x p)(x) = DT, 7p)

= <T7 Da7x¢>
= | = 1/NT, 7. D*p)

= (T, 7.D%p)
= (TxD%p)(x)

On the other hand:

DT xp)(x) = DT, 1)
= (T, D7)
= | = 1[NT, 7. D*p)
= (DT, 7,)
= (DT x¢)(x)

hence: D*(T x @) =T * D% = (DT * .
3. Using arguments analogous to the proof of Proposition 3.1, part 2.

Theorem 3.4 : Let T € Z'(R"), ¢, and ¢ € €>°(R") such that either supp T is compact,
or supp ¢ and supp ) are both compact. Then:

1. (Txp)x1h =T % (px1)
2. (Txp, ) = (T, 0 %)

Proof: We have:
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1. On one hand:

On the other hand:

Tx(px)(z) = (T(2), (¢ *¥)(x - 2))

_ <T(z), / oz — 2 — t)w(t)dt> |

Using the change of variable t = = — y, we get:

/R" 90<1' —Z— t)¢(t)dt = /n Sp(y — Z)@ZJ(QT _ y)dy

Therefore: T x (p x ) (x) = /Rn oy — 2)v(x — y)dy.
which leads to: (T ) x1¢ =T * (@ *x ).

(T @, 9) = (T ) ()¢ (x)dw

n

(T'(y), oz —y))¢(x)de

n

= (1) [ eta = ).
y) (px¥)(y))-

I
——

Il
|

Then: (T x p, ) = (T, p * ).
]
Proposition 3.8 : Let T € '(R"), ¢ € Z(R"). Then:
1. VaeR": 7, Txp=Tx71,0 = 1a(T % )
2. (T,p) = (T + £)(0)
Proof: Let T' € ¢'(R"), ¢ € Z(R").

1. Let a € R™. On one hand:

.1 *p(x) =
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On the other hand:
To(T * p)(x) =

Il
N N N N N/
S
<
—~
¢
_I_
<
|
8
~—
~

Then: 7,7 x o =T x 1,0 = T,(T * )
2. <T7 30> = <T7 TOQ0> = <T7 TO:()O> = (T * @) (0)
No, we will extend the convolution product de which defined on &'(R") x &(R™) to
7' (R™) x &(R™) as follows:

Definition 3.5 : Let T' € 2'(R"),¢» € &R") be such that supp T, supp v are convolutes.
Let (v;) C 2(R™) be a regularization sequence. For any ¢ € Z(R™), we put:

(T*¢,¢> <T*wj790>'

= lim
j—+oo

The following result becomes a consequence of the convolution product:

Theorem 3.5 : The space 2(X2) is dense in P'(S).

3.4 Tensor product
Let U C R™,V C R™ be two open sets.

Definition 3.6 (Tensor product of functions ): Let f : U — R,g : V — R. The
tensor product f ® g of f and g is the function defined on U X V as follows:

V(z,y) eUxV: f@g(x,y) = f(x)g(y)
The following properties directly follow from the definition:

Proposition 3.9 :
1. Iff€£U), ge&V), then: f@ge (U X V).
2. supp f ® g = supp f X supp g.

The following result is important for what follows:

[ 2(U) x 2(V) is dense in 2(U x V).
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Note that if f € L}, (U),g € L,.(V) et ® € (U x V)then from Fubini’s theorem we

have:
// (f @ g)(z,y)® (v, y)drdy / f()g(y)®(z,y)dzdy
UxV UxV
dm/ 9(y)®(x, y)dy
= [ gy)dy | f(z)®(z,y)dx
174 U
Then:

(f@g,0) = (f(9y),®(,y)) = (g, (f(z), ®(z,.))).

If we have: ®(z,y) = (p @ ¥)(x,y) = p(z).¢(y), then:

(f@g o) = (f ) (g,¥).

We have a result similar to the result above concerning the distributions:

Theorem 3.6 : Let T € 7'(U),S € 2'(V). There exists a uniqgue W € 2'(U x V) such
that for all ¢ € 2(U) and for all p € (V') we have:

(T®S o) =(T,¢).(5¢).

Moreover, we have for any ® € (U x V) :

(W, @) = (T, (S(y), 2(.,y))) = (5, (T(x), ®(x,.))).

Proof: Setting: F(x) = (S(y), ®(.,y)). From Theorem 3.1, we have: F' € €>°(U) and more
preciously F' € Z(U).Consider K = G x H C U x V a compact from R" x R™. Suppose
that ® € P(U x V). Set (W, ®) = (T, F'). Then, there exists M; > 0, My > 0,m; € N et
mo € N such that:

(W, ®)]

(T, F)|
M. sup [F(z)]

la|<may,z€ Ky

Ml- sSup ‘<S(y)7q)<7y)>‘

|a|<mi,zeK1

M;.my  sup sup  |P(x,y)|

|a\§m1,z€K1 |B|§m2,x€K2

S M'PK,ml—i—mQ(q))'

IA

IN

Then: W defines a unique distribution (by definition).
The second formula becomes according to the density of 2(U) x 2(V) in 2(U x V). =
Here’s the translation of the provided the following definition:

Definition 3.7 (tensor product of distributions ): Let T € 2'(U),S € Z'(V). The
tensor product of T and S is the distribution noted by T ® S € 2'(U x V'), and defined as
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follows:
Voe 2(U),Vp e Z(V) : (T @S, @¢) =(T,9).(5,1).

The general formula is given as follows:

Vo e (U x V) (T®S5,0) = (T,(5,0(,y))) = (5,(T, (,.)))

Remark 3.3 : The tensor product remains valid for distributions with compact support by

using the bracket (., .) s &.

Example 3.4 : Let a € R™ and b € R™. For all ® € 2(R™™) we have:

(00, ®) = (da, (6, P(-,9)))

= (04, P(.,0))
= ®(a,b)
= <6(a,b)7 @)
Then: 5(1 & 51, = 5(a,b)-
Example 3.5 : Let ® € 2(R?). Then:
(0o H,®) = (4 <H+7‘1>(-,y)>>
= G ety
)
= ®(0,y)dy

Example 3.6 : Let ® € 2(R?). Then:
(Ho H,®) = (H (H ®(,y)))
+oo
(H, O(., y)dy)
+ooo +o0
= / / O(x,y)dxdy
0 0
<XR3_7 (I)>
Therefore: H @ H = XR? -
Proposition 3.10 : Let T € &'(U),S € &'(V),f € &U) and g € &(V). Then:
1. supp(T' ® S) = suppT X supp S.
2. D¢DS(T ® D) = DT ® DJS.
3. (feg)(T®S) = (fT)® (g.9).
4. The tensor product is associative.

5. The tensor product is not commutative in general.

University of Msila 67 Saadi Abderachid



Distributions and Sobolev espaces Master 1 PDFE and applications

3.5 Convolution of two distributions

Now, let’s generalize the convolution product of functions using another approach, based on
the following distributional formula:
Let f,g € LY(R") and ¢ € 2(R"™). We know that (f x g) € L'(R™) and we have:

(frg,0) = | (fg)
= /E f(z—v)g(y)p(z)dzdy.
n Rn
Using the change of variables x = z — y, we get:
(fxg,0) = / f(@)g(y)e(z +y)dedy
n R’I’L
= dx/ g(y)e(x +y)dy
R
Noting ©*(x,y) = ¢(z + ), we obtain:

(frg.0) = dx/R
= <f( A9(y), e

= <f®g, ).

g(y y)dy
(,y

To generalize this notion to distributions, we need to make sense of the bracket (.®., p>).
This is not immediate because ¢® does not necessarily belong to 2(R?"). For example, if we
take p € P(R) such that supp ¢ is in [0, 1], then: supp > = {(z,y) e R2: 0 <z +y < 1}
is not compact.

N AN
/e
S'H.pf) ?_'j'ﬁ

The bracket (S ® T, p>) makes sense if supp S and supp T' are convolutives in the sense

of Definition ?7?, in this case, we give the following definition:
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Definition 3.8 (convolution product of distributions ): Let S,T € Z'(R") such that
sipp S,supp T are convolutives. We define the convolution product of S T as follows:

Vo € IR : (S*T,0)ar0 = (ST, %)

ou o= (x,y) = o(x +y)

Example 3.7 : Let ¢ € Z(R). There exists a > 0 such that supp ¢ C [—a,al,
i.esupp ™ = {(z,y) € R?: —a <z +y < a}. Then:

\

supp p=

(HxH,p) = <H®H,90A>
= XR27()0

+oo +oo
= / / o(x + y)dxdy
+oo +oo
- dy/
WAIAS

Proposition 3.11 : let a € R",a € N*, S, T € 2'(R") such that sipp S,suppT are convo-

lutives. Then:
1. 6, xT =71,T. In particular 6 x T = 1T =T.
2. 1(TxS)=7,T %S =T=%1,S.
3. DT % S) = DT xS =T % D*S. In particular: D*§ x T = D*T.

Proof: Let ¢ € Z(R"). Then:
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1. Fora e R™:

(00 % T, )

|
S
jS
=
_I_
=

Then: 6, T = 7,7, in particular 6 * T = 7,7 = T.

2. On one hand:

On the other hand:

(1a(T % 5), )

(1a(T % 5), )

Then: 7,(T*S)=7,T+S =T *1,S.

3. On one hand:

(DT *5),¢)

| = (T 5), D)

| = 1T ® S, (D¢)*)
<T’ | - 1|a<S’ Da(p(x + y)>>
<T’ ‘ - 1|a<S’ Da‘pA>

(T, (DS, ¢))

(T @ DS, ™)

(T x DS, ).
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On the other hand:

(DT *8),0) = |=1*(T=*8),D%)

= |- 1"T®S,(D%)?)
(S| = 1A, D*o(z +y)))
(S,| = 1|(T, D**)
(S, (DT, p))
(DT ® S, ™)
(DT % S, p).

Then: D¥(S«T) = DS+« T = S+ D*I. In particular: D« T = D*(6 *T') = D*T.

3.6 Convolution equations:

Definition 3.9 : A convolution equation is defined as any equation of the form AxU =T,

where A and T are known distributions, and U is the unknown.

Example 3.8 : Consider the partial differential equation:

> auDU = f,

laj<m

where a, are real constants, and f is a locally integrable function.
According to Theorem 3.3, we can write: DU = D*(0 « U) = D x U.
Then the equation can be written in the form AxU = f, where A = Z ao D%

laj<m

Definition 3.10 (Elementary solution ): Let A € &' (R™). We say that a distribution

Uy is an elementary solution of A if we have Ax Uy = 9.

Remark 3.4 :
1. The elementary solution doesn’t always exist.

2. If Uy and Uy are two elementary solutions of A, then: Uy = Uy + V' where V is a
general solution of the equation AxV = 0. Indeed, if we set: V = Uy — Uy, we find:

AxV =Ax (U —Uy) =AxU; — Ax Uy = 0.

We assume the following theorem:

Theorem 3.7 (Malgrange — Ehrenpreis) : Fvery partial differential equation with con-

stant coefficients admits an elementary solution.
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Theorem 3.8 : Let A € &'(R"). Suppose that A has an elementary solution ua. Then:
1. For any T € &' (R"), there exists U € Z'(R™) such that AxU =T.

2. Let T € &'(R™). If there exists U € &' (R™) as a solution of the equation AxU =T, it

18 unique, and we have U = Uy * f.

Proof: : Suppose that A € &(R"™) has an elementary solution u4.

1. For any T' € &'(R™), we set: U = Uy x T, then:

AxU =A% (UsxT)=(AxUp)xT =0T =T.

2. Suppose that there exists U € &’(R™) as a solution of the equation A U = T, then:
U=0+U=UpxA)xU=Usx(AxU)=UsxT,

which shows uniqueness.

2]

Example 3.9 : The function w, defied by: w(x) = 5 is a solution of the equation u” = §
dans R. Indeed, Let ¢ € P(R). Then:

W) = (w¢)

+o0
= / %gp”(m)dm

0OO +oo
- [ @it [ @

2 . 2

0 / +oo 7

__ffr ¢(z) [f/r“_/ ¢'l2)

[2“0@ _oo+/_oo y detge] = e
= ¢(0)

1
Example 3.10 : The function wo, defined as: wy(x) = 112|x|7 is an elementary solution of
T

the Laplace operator A in R2.
Indeed, let ¢ € D(R?). Then:

<A’LU2,Q0> = <’LU2,AQO>
1
= lim—/ In |z|.Ap(x)dx.
|z|>e

e—0 27

Using the Green’s formula, we get:

/ In |z|Ap(z)de = / Aln|x|.<p(x)dx—|—/ ln|x|.a—¢da(x)—/ 8ln|x|gpd0(m).
|z|>e |z|>e |z|=¢ ov |z|=¢ v
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where v is the outward normal vector of the set {|z| > €}, i.e., the inward normal vector of

B(0,¢), so v(xy,x2) = —(x1,22).

%) Aln|z| =0 on {|x| > €}, so: Aln|z|.o(z)dx = 0.
|z|>e
) Olfz|  x R _
o x%—l—x%'xl x%%—x%’@_ '
Oln |z 2m ,
Therefore: — Tgpdo(a:) = pdo(z) = (e cosb,esinf)db.
|x|=¢ |x|=¢ 0

According to the mean value theorem, there exists x. such that |x.| =€, and we have:

2
/ p(ecosb,esinf)dd = 2np(z.).
0

Therefore: lim {—/ aln—mgoda(:p)] = 271(0).
|z|=¢

e—0 ov

Op dp Op / i
Y - _ 77 it _ . - <
skokox ) /x|=a In |z| Vdo(x) lna/gc':E [1;1 o + 2 xJ do(x). Then " In |z| Vda(x)
— — < . .
Elné“A'E [ ) $2 } do(x) < M(p).elne

. Oy
Therefore: lli%/ ln|$|$da(x) = 0.

|z|=¢e
Finally, we obtain:

1
(Aws, ) = lim—/ In|z|.Ap(z)dx

|z|>e
= ¢(0)
= (d,).
Example 3.11 : sing the method above, we can show that the function w,, defined as:

RO
21z (n — 2) |z|"2

+oo )
(n>3), and T <g> = / t7 e7tdt.
0

The following results will be given without demonstration:

wy(x) = 18 an elementary solution of the Laplace operator A in R™ for

Theorem 3.9 : Let w be the elementary solution of the operator A. For f € &' (R™), we
define u = w * f. Then:

1. For alln > 2,u is a solution of the equation Au = f, and we have: u € &' (CoPPT).

2. For allm > 3, we have: lim wu(z) = 0.
|| =400

Corollary 3.1 : Let Q C R™ be an open set, and let uw € 2'(2) such that Au = 0. Then:
u e ().

In other words:

Harmonic distributions are harmonic functions.
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Theorem 3.10 : Let P be a differential operator with constant coefficients in R™. Suppose
that P has an elementary solution w € €<(R™). Then: for any f € &' (R"), the distribution

w * f is a solution of the equation Pu = f, and we have u € &' (CoPP/).

Theorem 3.11 : Let the differential operator with constant coefficients be denoted as P,
defined in 2'(R*) as: P,U = U™ + ¢, (U™ ¢, 2U™ 2 4 4 U + coU.
The operator P,, has a unique elementary solution w € 2'(R"), and we have w = H.wy,

where H 1s the Heaviside function, and wq is the unique solution of the initial value problem:

P’wo = O,
w(0)=0,k=0,...,m—2,
wi™V(0) = 1.

Exercises

Exercise 3.1 : Find f g for the follows functions:
1. f(z) = e®, g(x) = H(z),a € R.
2. f(z) =sinz, g(x) = e oI,
3. f(z) = xp(@), 9(x) = 2°.

o flz) = gla) = e,

Exercise 3.2 : Consider the function 6 defined on R by:

0 : |z[>1
1 |zl <1

VxER:G(:L’):{

1. Show that 6 € L'(R).
2. Calculate 0 % 0.

3. Calculate 0 x H, where H is the Heaviside function.

Exercise 3.3 : Let F,G C R" be two closed cone sets, i.e.,
YA>0,Ve e FFVye G: \x € F, Ay € G.
Suppose that (F,G) are convolution-compatible. Prove that F'N (—G) = {0}.

Exercise 3.4 : Let H be the Heaviside function. Determine the distributions:

V(H ® H), A(H ® H), (zH @ y*H).
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Exercise 3.5 : Let H be the Heaviside function. Determine the distributions:
(HxH)', (zHx2*H), (8"« H) (&% vp1)
Exercise 3.6 : Solve the following differential equation in 2'(R):
U" = H.

Exercise 3.7 : Consider the heat operator in R, x R:

0 02
D=5~ 52

Verify that the distribution associated with the function:

1 ( xQ)
ex _——
ov/mt P\ T

1s an elementary solution of the operator D.

E(t,z) =

Exercise 3.8 : Consider the wave operator in R?:

s
T o Oa?

Verify that the distribution associated with the function:

t—]z| >0
t— x| <0,

=N R

E(t,z) =

1s an elementary solution of the operator D.

Solutions of exercises

Solution 3.1 : Let x € R. We will calculate (f % g)(x) in the following cases:
1. f(z)=¢€"g(x) = H(z),a € R.

400
(fxg)(z) = ) (z —y).9(y)dy
= / e )y
oo
— / ea(xfy)dy
0
Then: -
£ a>0
(f*xg)(z)=1 a ’

+o00 : a<O.
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2. f(x) =sinz, g(z) = e~

(f*g)(x) =

Then: (f * g)(z) = cosz.

8. f(x) = xp(®), g(x) = 2.

(f *g)(x) =

f(x —y).9(y)dy

—oo
sin(z — y)e ¥ldy

— o0

0

— — —

+oo
sin(x — y)e’dy + / sin(x — y)e Ydy
0
0
[sin(z — y)e¥] . + / cos(x — y)eldy

—0o0

+oo
—[sin(z — y)e¥]§> — / cos(x — y)e Ydy
0

0 +00
/ cos(z — y)eYdy — / cos(z —y)e Ydy
0

—00
0

[cos(z — y)e¥] . — /_ sin(x — y)e?dy

o0

+oo
+[cos(z — y)eY]§ > — / sin(z — y)e Ydy
0

+oo
2cosx — / sin(x — y)e ¥dy

o0

2cosx — (f *g)(x).

—0oQ0
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0 : Jz|>1

Solution 3.2 : Vx € R: 0(z) = :
1 |z[ <1

400 1
1. We have: / 0(z)|de = / dr =2 < 400.

00 1

Then: 0 € L'(R).

2. Let x € R. . )
w*wu>=/‘ ﬂx—yW@Myz/mﬂx—yMy

00 —1
r+1

Using the change of variable t = x — y, we obtain: (6 x 0)(x) = / O(t)dt.

-1
) Ife+1<—-1ouxz—12>1 then: (9*0)($):O.+1

) Ifr—1<—-1<x+4+1<1 then: (9*9)(;5):/ dt =z + 2.

-1

1
) If -1<z—-1<1<x+1 then: (9*0)@)2/ dt =2 — .
r—1

r+1
*) [f—lgx—lgx—l—lglthen:(9*9)(1:):/ dt = 2.
z—1
3. Let x € R.
+00 +oo
O+ M) = [ - nHEdy= [ oy
—eo 0

Using the change of variable t = v —y, we get: (0% H)(x) = / O(t)dt.
x) If x < —1 then: (0% H)(x) =0. -
*) [f—1<m<1then:(0*H)(x):/ dt =z + 1.

-1
1

x) Ifx > 1 then: (H*H)(x):/ dt = 2.

-1
Solution 3.3 : Suppose that (F,G) are convolutive and let’s prove that F' N (—G) = {0}.
From the definition, we have: {0} C F'N(—G).

Now, let x € F N (—G). This implies that x € F' and —z € G.

Let R > 0. Then, |0| = |z + (—2)| < R.

There exists v > 0 such that: |z| <r and | — x| <r, i.e., |z| <.

As R is arbitrary, r is arbitrary as well, so we have x = 0.
Therefore, F N (—G) = {0}.

Solution 3.4 : 9
VIH® H) = —(H® H),

= (6. ® H(y), H(z) ®0,)
For ® € 2(R?), we obtain:

(V(H @ H),®) — (/Om (0, )dy, /Om (. O)dx) |
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2 2
82(H®H) 82(

— 628$(2)®H(y)—|—]-](w)® Oy?
:5g?®mm+ﬂw®%%2

AH®H) = Ho H)

0”H (y)

For ® € 92(R?), we get:

+0o0 i +o0 o
(A(H® H),®) = /0 %q)(o,y)dy—i-/o a—y@(m,O)dz.
Let ® € 9(R?). Then:

(rH @ y*H,®) = (x ,(2Hd>., )>)

“+00
’/
0

+o0o +oo
= / zy* ®(z, y)dady.
0 0

Therefore: *H ® y>H = l’ZJQXR'i-

Solution 3.5 :
x) (HxH)' =(H=*xH))=(H'«+«H)=(0xH)=H =0.
wx) Let ¢ € P(R). Then:

(xH xy*H,p) = <93H®y2H 90A>

= (ay’ XR%‘P
+oo +o0
= / / zy*o(x + y)drdy.
xxx) 0"« H=(0xH)"=H"=/¢.
ok Kok ) 5*vp1—(5*vp1) (vpr).
Let ¢ € Z(R). Then:
((vpr)', ) = —(up1,¢)
/
= lim —So(x>dx
e=0 |z|>e z

We have:

R
L #00
|z|>e

_ _pl=2) —0(0) | ple) —(0) [/ p), 20
—€ € |z|>e r?
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Then:
R Y
= lim (C_b%;(—ff)_; p(0) | ole) - p(0) lex %dm B Q@D
= —¢'(0) +¢/(0) - lim leba “Oif) dx — 290(60)

= —((f5): )

Hence: § % vp1 = —pfz%.

Solution 3.6 : According to Example 3.9, the function w defined by wo(z) = l%| 1S an
elementary solution of the equation U" = 6. The general solution of the equation U" = 0§ is
W(z) = m + ax + b, where a and b are real numbers, as the function x — ax + b is the
general solution of the equation U" =0 (see Remark 3.4 and Corollary 3.1).

Therefore, the general solution of the differential equation U” = H is W x H.

Let o € Z(R). Then:

(W H,p) = SOA>

_ /+°°/+OO( —|—ax+b) ol + y)dwdy.

+oo _
:// (2a 1>I+25¢(x+y)dxdy

2

—o0 40
“+oo +oo 9 + 1 + 2b
+/ / (20 2)x p(x + y)drdy.
0
) o 02 1 x?
Solution 3.7 : D = Eriir E(t,x) = 2\/Eexp (_4_t> , t>0,x€R.
We have:
do  O%*p
DE = —(FE,—/—+—
< a@) < + 61’2
+oo +<x> 62
= I / <—+w>ddt
+oo +oo
— _lim (/ / Et,z “Ddtdx+/ / E(t,z) ‘pdxdt)
e—0 oo c
2
E
Note that g?, then
+oo +oo +oo +oo [e'e) E
/ E(t,x)%—fdtdx = / E(t,x)p(t, )] *dx — / %—gp(t x)dtdz

= / / a—Egota:dtdx
o0 2
/ / / aazgotxdxdt
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400 ptoo ()0 +oco  ptoo 82 +o0
Therefore: / / E(t, x) dtdx+/ / —— p(t, z)drdt = E(e,x)p(e, z)dx.

Ox oo
We obtain:

. +oo +oo 1 2
(DE, @) = llir(l] - E(e,x)p(e,x)dx = llg(l) 9w exp (——) (e, z)dz

Using the change of variable x = 2y+/¢, we get:

“+o0o
(DE, ¢) _hmT/ e (e, 2yV/E)dy
1 [T .
Knowing that —/ e Vdy =1, we can write:
T

\/—/+mey (£, 2yv/e)dy — ¢(0,0) = \/—/ (£, 2yv/e) — ¢(0,0)]dy

Lebesgue’s dominated convergence theorem (Theorem 1.13 and Remark 1.4) shows that:

hmTfoo (e, 207/Z) — (0, 0)]dy = 0

e—0

Then: .
1 o 2

1 _— -y —= —=

lim NG /_OO eV (e, 2yVe)dy = ¢(0,0) = (3, ).
Hence: DE = 6.
So: the distribution associated with the function E is an elementary solution of D.

1
0* e

Solution 3.8 : D = —— — ——. E(t,z) =4 2 >0

N
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We have:
62 ga
_ g
- <E7 atz> < )
B 1 0 © +o0 +o0 82(;7 32g0
D) ( ) aﬁdtd“/ / o _/0 BT dt)
1 +o00 8@ +o00 ©
= -3 (/ —x,r dx+/0 Y (x x)d:t+/0 e (t,t)dt —/0 %(t, —t)dt)
1 +00 8g0 400 8@ 400 a(p
= -3 (/0 s)ds —I—/0 E(s,s)ds +/0 %(s,s)ds —/O %(s, —s)ds)
1 +oo Oy 1 [T [(0p %)
= —5 (815( )~|—a—(s s)) ds—§/0 (—t(s,—s)—%(s,—s)> ds.
Set: pu(s) = pls.5) et pals) = (s, —s), we get:
oy Oy Oy dp
/ _ - / - _ _ o .
©1(s) = Y (s,s)+ ax(s,s) et @h(s) % (s,—s) e (s,—s). Then:
1 [t 1 [
(DEg) = —5 [ @is—3 [ els)ds
0 0
1 1
= 5¢1(0) + 5»2(0)
= #(0,0)

So: distribution associated with the function E is an elementary solution of the operator D.
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CHAPTER 4

FOURIER TRANSFORM

Among the various tools for the study of partial differential equations, we have the Fourier
transform, which is a fundamental tool that generalizes Fourier series from the periodic case.
Let E be a C-vector space, L a linear operator from E to E, and T' > 0. Consider the

real variable Cauchy problem, with vector-valued solutions in E:

(©) { z((g));yiy(t) ,t€0,T], yo € E.

I) If F is of finite dimension and y, is an eigenvector of L associated with the eigenvalue
Ao, then the function y defined as: y(x) = e*.yp. is a solution to problem (C).

Thus, if yy is a linear combination of eigenvectors ey, es,...er of L, associated with
k

eigenvalues \1, Ao, ..., A\, i.e., yo = E a;.ej, then:
i=1

k
y(x) = aje;.eM,
j=1

is a solution of the problem (C).

Therefore, if we can determine the eigenvalues of L, it is easy to find explicit solutions
to problem (C).

IT) If £ is of infinite dimension, for example, a space of functions on [0, T[xR into C, we

obtain the problem:

©) { Z(gg:ﬁit)m) ,te[0,T], z € R.

We look for eigenvectors of the operator L, i.e., functions y satisfying for certain eigen-

values A the equation: y/(t,z) = Ay(t, x).
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2mijx
of functions in L?
with the norm:

loc

The theory of Fourier series allows us to use the family e; = e" 7 j € Z as a Hilbert basis
of the space L%(R)

(R) and T-periodic functions of R into C, equipped

1({ (2 2
£l 2@ = T (/_T fz(a:)da:> .

So, for all f € L2 (R) we have: f = Zaj(f).ej, where

JEZ.

IIT) Now suppose that E is the space of functions defined on [0, +00[XR, and consider

the same previous problem in [0, +oo[xR. In the case of non-periodic functions, we let T
tend to 400 in the previous problem.

Formally, for T" > 0:

T
1 2T 2 _orijy 2rija
f(w)zgé? (/_Te T f(y)dy) e T .
Vi 2

If T tends to infinity, we obtain:

s =g [ ([ e s eae

—0o0

+00
The quantity /

—00

e~ f(s)ds if it makes sense, is called the Fourier transform of f.

We can extend this to functions defined on R™. In the following, we will study the Fourier
transform and its various properties.

4.1 Fourier transformation for functions
Definition 4.1 : Let f € L*(R"). The Fourier transform of f, a complex-valued function
denoted by ]/”\ or F(f), is defined for all £ € R™ as:

~

FHO=F©) = [ flayeisss,

(4.1)
where x.§ = Z x;& (dot product).

=1

Remark 4.1 : The Fourier transform in L*(R™) is well-defined, linear, and there exists
¢ > 0 such that: Hf”Loo(Rn) S CHfHLl(]R")-
Indeed, let f € L'(R™). For all £ € R", we have:
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fiol = | swea
< [ 1@l
Rn
< 2 Vel

= 2’f’L1(Rn) < 4-o00.
Therefore, F is well-defined, and we have: |J?|L00(Rn) < 2|f|prmny. It is said that F is a

continuous map from L'(R™) to L>(R™).

Remark 4.2 : If f is separable in variables, i.e., f(x) = Hfl(xz), then:

n

J?(l“) = Hﬁ(l’i)-

i=1

Definition 4.2 : We define the conjugate Fourier transform in the same way for f €

F(Ha)= | [f(e)ede. (4.2)
Rn
Example 4.1 : Let [a,b] be an interval. Then, we have:
+00 )
FrE) = (z)e " d
e
< / ey
Finally:
p—iag _ p—ibt
i [l Y
F(Xiaw) (@) = i€
b—a : &E=0

Proposition 4.1 : We have the following properties:

1. If f is an even function, then f 1s an even function.

2. If f is an odd function, then ]/”\ is an odd function.

~

3. If f is a real function, then: f(—¢) = f(ﬁ)
4. If f(—x) = m for all x € R", then ]? 18 a real function.

5. Translation: For any a € R", we have:

Fraf)y=esf  Flewrf) =rf

~

6. Dilatation: F (f (;)) = [\"f(AE) for a nonzero real \.
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Proof: Let f € L'(R).

1. Suppose that f is even and let £ € R™, on thena:

Fi-0 = [ f)eda

Let’s make the change of variable y = —x, we obtain:
Ff(=§) = f(=y)e™¥4dy
R
= [ twecay
R’!’L
= Ff(&)

Thus, f is an even function.

2. Similarly, we can prove that if f is an odd function, then ]?is an odd function.

3. Suppose that f is a real function, then:

f(=¢ =

>\

Il
%\%\g\%\»
~ = =

~

—

e

N—
I

f(z)e =<dx

(z)e™4dx
(—a:)em'gdx

(y)e ¥tdy

Therefore: fis a real function.
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5. Let a € R™, then:
F(raf)(€) =

- f flz —a)e "4dx
/E fly)e vty

= e | fly)e ¥4dy

Tof (x)e™ " 4dx

So, F(rof) = e ¢,

eia.xf(x>efix.£dx

/
= /R f(x)e_”'(g_a)da:

Hence: F (e f) = 7, f.
6. Let A € R*. Then:

PG - L)

Let’s take the change of variable y = %, we obtain:
n Rn

9 Frd<o [ f(5)er= Ay [ ey
n Rn
So,

T

F(F(5)) =1 [ ey = AT,

Theorem 4.1 (Riemann-Lebesgue Lemma): Let f € LY(R™). Then: [ is a continuous
function and tends to 0 as || tends to infinity.

Proof: Let f € L'(R"™).
%) Let a € R™. Then:

-~ ~

Fle+a) =TI = | f(&) - £(8)]
= /n e_m'xf(:zc)e_m'gda: — . f(x)e_m'fdx

= /n(ei“'z — 1) f(z)e " 4dx

The family of functions z + (e~ —1) f(x)e ™% is a measurable family, converges to 0 as |al
tends to 0, and we have |(e”@% — 1) f(z)e~™¢| < 6|f(x)| for all a,& € R™, and f € LY(R").
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According to the Dominated Convergence Theorem (Theorem 1.13 and Remark 1.4), we

~ ~

obtain: |lig0 lf(E+a)— f(&)] =0.

Thus, ]?is continuous.
xx) Let £ € R™ such that €] is sufficiently large. Then: there exists 1 < i < n such that
|&;| sufficiently large. From the density of Z(R") in L'(R"), we deduce that for € > 0 there
exists ¢ € Z(R") such that || f — ¢[|L1n) < €. Then:

fen = || et
[ e (@) - plada

IN

+

/ e (x)d| .

On one hand:

IN

/ e (f(a) — pla))do

/ e ()~ plo)ldr

2 — d
< 2 [ 1) - plo)lds
= 2/|f — ol @n

< 2e.

On the other hand:

) —ix.£ -0 —ix.£
/ e " p(x)de = [— / ¢ o(x)dxy ... dr;_1driiq .. .dxn} + / ¢ ¢ (x)dx
n Rn_l é’t — 0 n 81‘,

1 Oy

~

1
[F(E)] < 2e+ el

Then:

Dy
lell—>-+o0
I(a@)’ 0
al‘i

Theorem 4.2 : Let « € N*, and let f € L'(R™) such that x*f € L'(R™). Then:

Let € tends to 0, we obtain:

1
i

(&) <

D*f = F((=i)"af).

Proof: The Dominated Convergence Theorem of Lebesgue (Theorem 1.13 and Remark 1.4)
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allows us to write:

~

Dofle) = D [ flr)erSda
= /f(:z:)Do‘e_“'fdx
= f 2)O eI g e nbn g
- f gyertang i gponeTi Ly
= [ e @)
Rn

— F((=i) ).

]

Theorem 4.3 : Let « € N, and let f € L'(R") telle que D*f € L*(R™). Alors:
F(Df) =il f.

Proof: Let 1 <7 <n. Then:

Fon© = [ e

R™ 3%

— / 8f' (z)e ™4dwy ... dx;. .. dwv,

ox;
— f [f(x)e—ix.f}jgd:pl coodry_qdriyy ..o dxy, 96 f(x)e—ix.fdx.

Rn—1 Rn

Since f € L*(R"™), it approaches zero as it goes to infinity, so:

F(0:f)(€) = i&if.

Then:
FDf)E) = F@ ..o
= (&)™ ... (i&)™ f(€)
itlea ().
|

—

Theorem 4.4 (convolution ) : Soit f,g € L'(R™). Alors: f*g= fAﬁ
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Proof: Let f,g € L'(R™). Then:

frxgl§) =

) . f(y)g(z — y)dydzx

fly)e ™dy / gz —y)e 4 dy
f

—_— ~

Therefore: fxg=fg. m

—~

Remark 4.3 : Let f,g € L*(R"). then: f.g € L'(R"™). Moreover, we have: f.g = f* q.

1

Theorem 4.5 (inversion ) : Let f € L*(R™) such that f € L*(R"). then: f = o)
m n

F(f)

Proof: Let £ € R™. then:

1

a D)

1 ~ )
(Qi)n et | F)emedyde

- G L. fe sy

The function (y, &) — f(y)e’® ¢ may not necessarily be integrable, so we cannot apply

the Fubini’s Theorem. However, we can consider, for € > 0 :

L) = s [ st S ayae
We have: . | e |
He) = / T | e
= G fu 0
Set: G.(¢€) = (2;”6“-%—*52?(5).

(G.)e>0 1s a sequence of integrable functions, which converges a.e to the function Gy where

Go(€) = ——e™* f(£). Moreover, we have: |G.| < Gy € L*(R"). The Dominated Conver-

—~

2m)"
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gence Theorem of Lebesgue (Theorem 1.13 and Remark 1.4) allows us to write:

limI.(z) = lim [ G.(z)d

e—0 e—0 R

1 . 62 2
Fuz) = v / e e d

Let’s take the change of variable ( = —¢&, we get:

1

—1z. —% _ .
F.(z) = W/}Rn e Ce d¢ = F.(—=2).

Let’s take the change of variable n = £, we obtain:

Then:

/ Fi(z)dz = / Fi(—z)dz

' 1 - el

— —iz8 o=y
) /n /ne e dédz.

= —1 Fle

e L7 () o

By following arguments similar to those in exercise 4.2, we can show that

len?

F (6—4) (2) = 2Vm)"e ™.

Therefore:

which leads to:

[ Zn()e= [ rou=t

Applying the result follows:
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We consider the sequence (F.)e >0 C L'(R™) such that / F.(t)dt = 1, and let
f € LY(R™). Then, F. * f converges to f in L*(R").

It follows that I. converges to f in LY(R*)......... ().
From (*), (**), and considering that f € L'(R™), we obtain the result. m

Remark 4.4 : There is another definition of the Fourier transform, which is:

~

FIO=F©)= |t (13)

In this case, F~' = F from L'(R") to L*(R"), where:

F(he) = [ fe)em=s. (1.4

4.2 Rapid Growth, Slow Decay

Definition 4.3 (Schwartz space ) :

1. A function ¢ : R" — C is said to have rapid decay if, for every m € N, we have:

lim |z|™p(z) = 0.

|z| =400

2. The Schwartz space . (R™) is the space of functions ¢ € €°°(R™) such that, for every
multi-index o € N", the function D% has rapid decay.

It is evident that the space .(R™) is a vector space.

Remark 4.5 : It is equivalent to say that p € 7 (R™) if the quantities

No(@) = 3 e DPp(a) | ny:

lo<p,|BI<p
are finite for all p.

Indeed, if ¢ € S (R™), then we have ‘ |lim |2*DPp(z)| = 0, so |z*DPp(z)| is bounded
T|—+00
almost everywhere, which implies the boundedness of N, (¢).

Conversely, if N, (¢) is bounded, then |z;2%DPp(x)| is bounded for some i such that ||

tends to infinity (¢ exists since |z| tends to infinity).

;.22 DP
Therefore: | ‘lim |2*DPp(x)] = lim M
x|—+00

=0.

The space .(R") is stable under differentiation and multiplication by polynomials.

Z(R™) is a topological vector space, and its seminorms are given by (N,)pen-
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Definition 4.4 (convergence in .(R")) : We say that a sequence of functions {¢;};en in
L (R™) converges to ¢ € L (R") if for every p € N, we have: 'ligl Ny(p; — ) = 0.
j——+o0

Proposition 4.2 : For all p € .(R") we have: z%p € L*(R"), lim |2%p(z)| = 0, and

|z| =400
there exists constants C,, such that:

Y 12 DPe(@) @) < CpNpnin(9) Vo € L (RY).
la|<p,|BI<p

Proof: Let ¢ € S(R"). It is clear lim |z%p(z)| = 0.

|| =400
Since x%p(z) is bounded, it is locally integrable.

It remains to prove that lim |z%p(x)|dx = 0. We have:
A—rtoo |z|>A
2 .« .. 2 o
/ |:Ea(,0($)|d:1) — / ‘(xl + + fn)x 90(33)|dx
|z|>A lz|>A ||

Since p € ./ (R") we have: (23 + -+ 22)z%p(x) € L®(R"). Then: there exists ¢ > 0 such
that (22 + -+ + 22)2%p(x)| < c a.e. which leads to:

[ et -
|z|>A

2 o e 2 64
[ e i,
|z|>A

|z[?
C A——+oo
|lz|>A ||

Hence, x%p(z) € L*'(R™).

Using the same arguments to prove that:

Y 12 DPe(@) @ < ColNprnia(y) Ve € S(RY).
le|<p,|BI<p
||

Remark 4.6 : Since /(R™) C LY(R"™), we can introduce the Fourier transform in .7 (R™).

Moreover:

The properties of the Fourier transform (derivative, translation, dilation, convolution,

and inversion) are always verified in the Schwartz space .7 (R").

Theorem 4.6 : The Fourier transform maps the space . (R™) into itself, and for every
p € N, there exists a constant C, such that:

Np(@) < CoNpinia(p) Vo € S(R")

Proof: Let £ € R et o, 8 € N*. Then: |€*DS3(&)| = |(3)PI=1 F(D*(2%¢))| and:
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N@) = > €D B(@) ||y

|| <p,|BI<p

= Y I@PED P 0)) | ey

|| <p,|BI<p
> capllD* @0 @)
le|<p,|BI<p
> dslla’ Dl e
|| <p,|BI<p

Cp/\/;;+n+1(go).

IN

IN

IN

Proposition 4.3 (density of 2(R") in #(R")): Let ¢ € S(R™). Then , there exists a
sequence (¢;)jen C Z(R™) such that:

lim N, (p; — @) =

j—+oo
Definition 4.5 (slow decay ) :

1. We say that a function ¢ : R® — C has slow decay if there exist m € N and C' > 0
such that for all x € R™, we have:

o) < C(1+ Ja])™.

2. Oy (R™) is the space of functions p € €< (R™) such that for every a € N, the function
D¢ has slow decay, i.e for all « € N, there exists C,, > 0 et my > 0 such that for
all x € R™ we have:

D f ()] < Ca(l + [a])™

t immediately follows from the above definition:

Theorem 4.7 : Let ¢ € Oy (R™). Then: for all p € . (R"™) we have: .o € S (R").

4.3 tempered distributions

Definition 4.6 : Let u € Z'(R"). We say that u is a tempered distribution, denoted u €
' (R™), if there exists p € N and C > 0 such that:

[(u, 0)| < CN(p) Y € Z(RY). (4.5)

This concept refers to the continuity of the linear form u in the context of the trace
topology from . (R™) to Z(R"). Based on the density of Z(R") in ./(R"), and according
to the Hahn-Banach Theorem (Corollary 1.1), we can extend the duality bracket (., .}y ¢ to
the bracket (.,.) s » as follows:
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Theorem 4.8 (duality extension ) : Let u € %' (R"). The mapping ¢ — (u,p), defined
on Z(R"), uniquely extends to a linear form on . (R™) (denoted as ¢ — (u, ) o) which
satisfies:

[(u, ). 7] S CNy(p) Vo € S (R") (4.6)

This extension of duality identifies ' (R™) with the space of linear forms on .#(R™) that
satisfy an estimate of the form (4.5).

Definition 4.7 (convergence in ./'(R™)) : We say that the sequence (u;) of elements in
L (R™) converges to u in &' (R™) if the following condition holds:

lim (u;, ) = (u,0) Vo € S(R")

Jj—+oo

Using the duality extension (.,.) s & to define the derivative of a tempered distribution
u as follows:
Va € N" Yy € .Z(R") : (D%, ) = (1)1 (u, D%p).

The quantity above is well-defined, and furthermore, we have the following result:

Theorem 4.9 : Ifu € ' (R"), then all its partial derivatives belong to .#'(R™). Moreover,
if u; = u in ' (R™), then D*u; — D% in /' (R").

Example 4.2 :

1. 6 € L' (R™) because for any ¢ € L (R™) we have:
(0, @) = [0(0)] < No(p)-

2. LY(R") € '(R") because for any f € L'(R") and ¢ € /(R") we have:

[(fie)] =

[ @l

IN

||90||L°<>(Rn)/ |f(x)|dx

R"

= HfHLl(R")-/Vo(@)-

3. L>®(R™) C L (R™) because for any f € L®(R"™) and ¢ € L (R") we have:

I(fro)l = . f(x)o(z)ds

< 1/ o / (2| da

| f1l oo @ny- [l L2 @y
= C|fllzee@myNns1().
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4. L*(R") C '(R") because for any f € L*(R") and p € #(R™) we have:

(ol = | [ f@ea

< ([ rw) (/[ sog(x)dx)%

= Wl ([ s (L el oo

2

1+ Hfﬂl!)”;z' 1
< Cillf 2@y (1T + 12"l L1 mm)) 2
= C|fllzz- Ny ().

5. LP(R™) ¢ '(R") (2 < p < +00) because for any f € LP(R") and ¢ € L(R") we
have:

1 1
(19 < Ul M) (54 =1)).

Proposition 4.4 :

1. A distribution with compact support is tempered, i.e &' (R™) C /' (R"™).

2. A tempered distribution is necessarily of finite order

Proof: :

1. Let w € &'(R") and ¢ € Z(R"). Then, ¢ € €>*(R") and there exists a compact
K CR" and m € N et M > 0 such that:

[(u, 0)] < M.Prm(p)
= M. sup [D%(x)|
zeK,|a|<m

M. s [Dop(a)

z€R" |a|<m

< MNu(e).

IN

Then: u € ./'(R").

2. Let u € ./(R") and K C be a compact. There exists C' > 0 such that:
[{w,0)] < CNp(p) Vi € Zi(R).

Hence:

()l <C Y e DPp(@)|im@n Vo € T (R").

|| <p,|B]<p

Since K is a compact, then 2% is bounded, so, there exists C}, > 0 such that for all
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v € Dk (R™) on a:

C Y D)o@y < Cp Y 1D (@)l e

|| <p,|B|<p |B1<p
< M sup |DPp(x)]
zeK,B|<p

Then: [(u, )| < M Pk ,(p).

Therefore: u is with order less to p.

Theorem 4.10 : Let ¢ € Oy (R™). Then:
1. For allu € ' (R™) on a: Y.u € ' (R").
2. Siu; = u dans ' (R™) on a p.u; — fu dans ' (R™)

Proof: Let ¢ € Oy (R™). For any v € N”, there exists C;, > 0 et m., € N such that for all
r € R" on a:
D" (x)] < C(1+ |z])™

1. Let w € Z'(R™) and ¢ € Z(R™). Then: ¢.p € Z(R") and there exists C, > 0,p € N
such that:

[(bu, o) = [{u, p)|

< Cpr@ﬁ@)

= G, > 2D (th.0) ()| o ()
la|<p,|B|<p

= G, Z |C, 97 DV (). DPip ()] oo ()
|| <p,|v|<p,10|1<p

< O Z |2%(1 + |z)™ . DO p()|| poo mmy

|| <p,|v|<p,|0]<p

There exists ¢ € N such that < max{p, |a| +m,} < ¢, which leads to:

[(u, ) <Cp > |2 Dlp(@)l| pemy = CoNy(e)

IA<q,|0]<q
. So, Yp.u € S'(R™).

2. Based on the previous and Theorem 4.9.
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4.4  Fourier transform for tempered distributions

Consider u € L'(R") and ¢ € .(R"). Then: u € L'(R") and we have:

@.¢) = / AE)p(€)de

= fﬂ /n u(z)e " Sp(€)ded.

Let’s take the change of variable (y, () = (&, z), we get:

@or = [ [ w0e oy
u(OPQ)C

R"

A

= (u,®).

Taking into account that for ¢ € .(R") implies that € .#(R™), we can extend the above

result as follows:

Definition 4.8 : Let u € ' (R").

1. The Fourier transform of u is a tempered distribution denoted as u or Fu, defined for
any o € L (R") as: (U, ) = (u,$).

2. The conjugate F of F is defined for any ¢ € .7 (R") as: (Fu, @) = (u, Fp).

It immediately follows from the definition and the properties of the Fourier transform in

S (R™):

Theorem 4.11 (inverse) : The Fourier transform is an isomorphism of .#'(R™) onto itself,
with the inverse F~ = (2r)™F.

Theorem 4.12 (continuity ) : The Fourier transform on %' (R") is continuous. If u; — u
in ' (R™), then: u; — uw in /' (R™)

Example 4.3 :
1. We have: R
(0,0) = (6,9) = &(0)

= / e p(z)d
R

= / l.p(x)dx
R

= (L)

Then: § = 1.
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2. We have:

</1\7 ‘20> =

Hence: 1= F(1), which leads to: (2r)~"1 = (27)"F(1) = (2r) " F(3) = 6.

Therefore: 1= (2m)"0.

Proposition 4.5 : Let u € /' (R"),a € N" and a € R". Then, we have:

1. F(ru) = ™47,
2. F(Du) = ilolgon,
3. 5, = et
4. F(D~§) = ill¢e,
Proof: Let ¢ € .(R"). Then:

1. %)

(F(rau), @)

Therefore: F(t,u) = ™47,
**)

(Fleu),0) =

Therefore: F(e'“*u) = 7,1.

F(e*u) = 1,1.
Dot = F((—i)l*lzu).
F(e'€) = (2m)"d,.

F(z®) = (2m)™il®Des.
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2. %)
(F(D*u), @)y = (D%u,p)
1)l fu, Do)

(
(
= (=1l u, F((—i)*lzp))
(u, F(il*l2%p))

(w, i1z p)

(¢, ).

Therefore: F(D%u) = il*l¢oq.

g

Therefore: D% = F((—i)llzu).

( ) _ efia.&:g: efia.ﬁ‘
(e1€) = 7,1 = (2m)"7,0 = (27)"0,.

0 =
J’.'

4. *) F(D*0) = z|a|£a5 = glolge,
F(z*) = C 1>|a| D1 = (2n)"il* D26,

Theorem 4.13 (convolution ) : Let T € .’ (R") and S € &'(R"), then:

—

TxSe. R et T«5=T.5.
Example 4.4 : We provide two examples used in partial differential equations.
1. Consider in %' (R"™) the Laplace equation:
Au = 0.

Using the Fourier transform, we obtain: Au = 0. But:

—~ "L 0% - 0%u
so-(5) - 2 ()

= Y (—iz;)’u
i=1
= —|z|*u
Then: alRi =0 and suppu = {0}. Therefore: u = Z a,D6.

|a]<meN
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which leads to: u = Z (27m) "an F (D) = Z (21) agiléler = Z ba&”.

|a| <m || <m |a|]<m

Hence: u is a polynomaial.

2. Consider in ' (R"™) the equation:
—Au+Adu=f ouXA>0,feSR")

. Using the Fourier transform, we obtain: F(—Au + \u) = 7.
Then: (Jz2+ \)a = f.
S

Therefore: u = m

-~

f
[zP+ A

Finely: v = (27) " F

1

For f = § we obtain the elementary solution ug = (27) " F TEEAl

Exercices

Exercise 4.1 : Calculate f in the follows cases:
1. f(z) = X111
2. f(z) = el (a > 0).
3. f(x) = H(z)e " (a > 0).

Exercise 4.2 :

1. Show that the function & — f(§) = F(e **)(€) satisfy the differential equation :
v(©)+ 57 =0

2. Calculate f(O), and then determine the solution to the differential equation.

3. Use the dilation property to establish the result:

Exercise 4.3 : Let T be the linear operator on .#(R?) defined as follows:
Vo€ S (B (T,9) = [ olo,~z)ds
R

1. Verify that T € '(R?).
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2. Calculate in the distribution sense: 8_T — 8_T

oxr Oy’
Exercise 4.4 : Consider the sequence of functions {f;}jen such that: f; = x1—;j-

1. Calculate j‘;

2. Determinate lim sin(j¢)
Jj—+oo f

in ' (R™).
Exercise 4.5 : By using the equality 0’ « H = § calculate H.

Exercise 4.6 : Let ) € Z(R) such that v = 1 in the neighbourhood of 0. Set uw = . H
1. Calculate v’ in function of 1.

2. Calculate U in function of ﬁ

Exercise 4.7 : Consider the function f defined as: f(x) =1 — 102* + 202%.
Show that f € %' (R), then calculate ]/”\

Exercise 4.8 :

1. Show that v,t € &'(R).

A~

2. Find all tempered distributions u such that d_u =0.

dg
3. Show that all tempered distributions u such that xu = 0 are of the formu = \j (A € R).

4. What are the tempered distributions u such that xu' 4+ u = 0.

Solutions of exercises
Solution 4.1 : Let £ € R

1. f(x) = X[-1,17-

Then: f(€) =< sin
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2. f(z) =ekl (a>0).

,]?(5) _ /_+OO efiac.ﬁefa\addx

0 ' 400 ‘
— / 6(04—25).12611. + / e—(a—i—zf).a:dx
PN 0

B ela—if).x 0 e~ (a+if).x too
o la—ie ] a+if |,
1 1

B ai%+a+%
R

3. f(z) = H(x)e ™ (a > 0).
o = [

Solution 4.2 :

2 ~

L fw)=e flz)=—=2we™ = =2xf(x) [(&)=TF( ™).

af _
g

. Then: f verify the differential equation :

Fl-inf) = s F(~22f) = SF(7) = -5 7(€)

3. We have:

2

Fle ) = FUan© = 1
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Solution 4.3 : Vp € . (R?) :

/got—t
R

fz

|(1+x
T.Na(p).

1. Let ¢ € D(R?). Then, we have:

—)|dt

(T, )] lp(t,

IN

(VANVAN

Therefore: T € ' (R?).

2. Let ¢ € S (R?).

1+ ) p(t, —t)|dt

('CE y)HLOO R2) f]R 1+t2dt

or _or N\ _ _[p 9 0
ox 0Oy’ v) = "Or Oy
+o00 8@ ©
= —/Oo [%(t, —t) = o=t —t)} dt
B8 = oft. — oy = PP 02
Set: ®(t) = p(t,—t). Then: ¥'(t) = e (t,—t) oy (t,—t)
Therefore:
or or too
(5= 5e) = - voa
= [-2e(@)]'%
— [t —t 2 =0,
or or
SO, % — G_y =
Solution 4.4 : f; = x—;; (j € N*).
1. We have: .
fi§) = / _mgX[ jq(x)dx
oo
= / ey
—J
{ 2j £=0
— ol _ i
i€ £# 1
N 2j £=0
Then: f;(& 2sin(y
3
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2. Let p € S'(R™). Then:

“+oo
Jim {fpe) = lim » fi(@)p(z)de
J
= lim o(x)dx
J—+o0 —j
“+o0o
= / o(x)dx
= (L)
lim f; =1, whi : lm f; = 2.
So, jHHJPoo f ., w.hzch leads to j;lﬁlw fJ | T
Then: lim 2sin(j¢) =27 ,i.e lim sin(j¢) =7d.

J—+oo Jj—+oo 5

Solution 4.5 : We have §' x H = 6, then: 5« H = 1.
Therefore: .7-"((5’).?] = 1, which leads to: z{.f[ =1.

~ 1 )
finely: H = % = —E.
Solution 4.6 : ¢ € Z(R) such that 1» = 1 in the neighbourhood of 0. u = . H
1. On a:
(W) = —(u,¢)
= _<¢H7 90,>
= —<H7¢-<Pl>
+o0o
=/ V()¢ (z)dz
+o0
= —[(@)e()]§> + i V(@) (x)dx
+oo
= 9O+ [ Hz)y'(2)p(x)dr
= (0+¢".H, ).
Then: ' =6+ ' .H.

2. u=F(+y' .H) =1+ H.

Solution 4.7 : f(z) = 1 — 10z* 4 202,
) let o € Z(R). on a:

+oo
/ (1 —102* + 202%°).(x)dx

o0

(1 — 1022 + 20:B20).g0||L1(Rn)
< CooNaa(p).

(£, )]

Then: f € ' (R).
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x) We have:

F = 1-10F(a?) + 20F (22)
27§ — 10(27).126" + 20(27).i205(20)
= 27(6 + 108" 4 2060).

Solution 4.8 :

1. Let ¢ € Z(R). We know from example 2.9 that:

1 +o0 1 )
‘(Upgu p)| < / / | (tx)|dtdx.
—00 0

Then:
+o0o 1 1 .y
[(vp3: )| < /i 1+x{A|ﬂ+x)¢@@WMx
0o 2 .
/
< 0+ lmw [ e
= 7TN2(OJ).
Hence: v,~ € '(R).
du o .
2. ¥l 0 implies that w =\ (A € R). Then: u = AJ.

~

— d
3. We have: xu =0, then: —izu =0, i.e d—Z = 0. Therefore: u =\ (A € R).

4. We have: xu' +u =0, so: (xu) =0 (see solution of exercise 2.8).
Then: zu= A6 (A € R).
Let x € 2'(R) such that x = 1 in the neighbourhood of 0. Set: ¢ = ¢ — v(0).x.
Then: ©(0) = 0. The Taylor formula can be written as:

o(x) = x/o Y (te)dt = 20,(x) (0, € 2(R)).

Set: (u, ) = (A, 0,) = A,(0).

taking into account: rp = xyp, then: O, = . Therefore:

(xu, @) = (u,zp) = (A, ), i.e xzu = A\J.

Using arguments similar to the ones in the first question to prove that u is a tempered

distribution.
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CHAPTER 5

SOBOLEV SPACES

Let Q2 C R™ be an open set, ' = 992, p € R with 1 < p < +o0, and p’ the conjugate de p,

1 1
i.e —+ — = 1. Note that a function u € LP(Q) identifies a distribution over 2, also denoted
p

5 (1 € {1,cdots,n}) as a distribution over Q2 and Vu as a vectorial
:C<
distribution over Q.

u. We can define

The purpose of introducing Sobolev spaces is to provide a functional framework for certain
partial differential equations and boundary value problems that can have solutions referred
to as «weak solutionsy.

I) Consider the following boundary value problem:

(P {_”H(i)”(f):f(x) - wela)
u(a) = u(b) = 0.

where f € €([a,b]).
A classical (strong) solution of problem (P;) is a function in €2 ([a, b]). We will seek other
solutions of problem (P;), which are regular distributions. By multiplying both terms of the

first equation by a function ¢ € Z(a,b) and integrating over (a,b), we obtain:

/ab —u"(x)p(z)dr + /abu(x)go(:v)d:v = /abf(x)gp@)dﬂ

Using integration by parts and considering ¢(a) = ¢(b) = 0, we get:

b b b
/ o ()¢ (2)dz + / u(z)p(z)dz = / f(2)p(x)d. (5.1)

Note that Z(a,b) C L*(a,b), then: ¢ et ¢’ can be considered in L?(a,b) and the equation
(5.1) makes sense for u,u’ € L*(a,b) where v’ is the derivative of u in the distributional

sense, i.e

b
(', @) = —/ u(z)y' (v)dz, Vo € D(a,b).
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This involves the existence of a function g € L?(a, b), satisfying:

/ u(z)¢' (x)dr = —/ g(x)p(z)dz, Vo € Y(a,b).

IT) Now, consider the following boundary value problem:

—Au(x
) { u(w) =

) +uz) = flx) : z€Q,
0 cxel,

A classical (strong) solution of problem (P,) for f € €(Q) is a function in €?(2). We
will seek other solutions to problem (F,), which are regular distributions. By multiplying

both terms of the first equation by a function ¢ € () and integrating over {2, we obtain:

/ —Au(x d:c+/ d:c—/f

Applying Green’s formula and considering ¢(x) = 0 on I', we obtain:

Z/axz » d$+/ dx—/f (5.2)

0
Note that ¢, 6_(p (i € {1,---n}) can be considered in L*(2) and the equation (5.2) makes
x

i

sense for u,% € L*(Q) (i € {1,---n}) where gu

i

is the partial derivative of u in the

(2
distributional sense in the direction i, i.e.,

<g_ai""> - /u( )322( )dr, Yy € D(Q).

This involves the existence of functions g; € L*(f2), satisfying:

/ u(x )g;id:v = /Qgi(x)go(:v)d:v, Vo e 2(Q), Vie{l,---n}.

Sometimes, it is necessary to consider that ¢ and its partial derivatives belong to L¥' (),
from which u and its partial derivatives belong to LP(2). Such a space satisfying the above

properties is called a Sobolev space based on LP(£2). In general, we have:

5.1 Espace W"P(Q)

Definition 5.1 : The Sobolev space of order 1, denoted as WHP(S2), is defined as:

0
wie@) = {ue 0@ 3mm e 0@ [0ff == [gpvee o).
Q 7 Q

In particular, we set H*(Q) = WH2(Q).
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Remark 5.1 :

i) The function g;, if it exists, is unique. Indeed, suppose there exist two functions, g1,; and
Go.i, in LP(QY) that satisfy:

8@
o= — 0 Q).
U = Amw A%m Vo € 2(Q)

Then:
‘A@u—m»wzm Vo € 2(Q).

According to Dubois-Reymond’s Lemma (Theorem 2.1), g1; = g2 a.€ in .

ou .
axi = Gi-

ii) The function g; is called the weak derivative of u in the direction i, and we have

Y e IP(Q) then: u € WP(Q).

€

Remark 5.2 : One can use a test function in P*(Q)) instead of a test function in 2(Q) due
to the density of 2(Q) in 2'(Q).

Example 5.1 Let u be the function from ] — 1,1] to R, defined as: u(x) = |x|. We have:

1 1 1 9
/ |u(z)[Pdx = / |z|Pdx = 2/ 2Pde = ——
—1 -1 0 p+ 1

Then: uw e LP(] —1,1]).
Let Now ¢ € 2(] — 1,1[). Then:

/_ W) @de = [ |alg(@)de

1 = —_1/_01 z' (x)dr + /01 z¢' (x)dx
— @+ [ clapde + o @l - [ rp(a)da
= /_(1 o(x)dx — /01 o(x)dz.
So,u’(:v):{_l e ]_10[

1 : z€0,
/|u |pdx—/ da:+/ = 2.

Therefore: u' € LP(] — 1,1[). Hence: u € W'P(] —1,1])

It is clear that WP(Q) is a sub-space of LP(2).
We equip WP(2) with the norm:

[ullwir @)

8:01 Lr(Q)
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or the equivalent norm:

ou ||P

P
1
[ullwrr) = (HUHZP(Q) > = (lullz o T IVullf (L» Q))n)p'
()

We equip H'(2) with the scalar product:

ou Ov
(U,U)HI(Q) = u U L2(Q) + ( ) )
Z Ox;’ Ox; )

= /ﬂ dx+2/ 89&1 8% (z)dz,
— /Qu(x)v x d:v—l—/QVu x).Vo(x)dz.

Theorem 5.1 : W'?(Q) is a Banach space and H'(Q) is a Hilbert space.

Proof: Let (u;)jenbe a Cauchy sequence in dans W?(Q). Then, (u;);en, (%) (1<
Z;

n) are Cauchy sequence in LP(2). Since LP(2) is a Banach space, it follows that (uJ)JeN
converges to u € LP(Q2) and (g%) converges to g; € LP(Q2) for 1 <i < n.
Now, let ¢ € Z(Q2). Then, we have:

[ wte)gE e = - [ S

Taking the limit, we obtain:

Then: u € W'?(Q).
The case of H'(2) is a particular case of this result. =

Theorem 5.2 : The space WP(Q) is separable for 1 < p < +o00, reflexive for 1 < p < +o0.
Proof: Consider the operator A de W'?(Q) in (LP(Q))"*!, defined as:

Yu € WHP(Q) : Au = (u Ou Ou ) :

’ 8117 7 8xn

We equip (LP(Q))"*! with the norm:

(o -+ s ) || 2oy Z s || o (02)

Then: for any u € WP(2) we have:

HAUH(Lp(Q))n+1 =
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Then: the operator A is an isometric, so it is homeomorphism from W1?(Q) to a closed part
B of (LP(Q))" .

Since LP(Q) is separable for 1 < p < +oo, reflexive fo 1 < p < +o0, then (L?(Q))"*! and its
closed subsets share the same properties.

As a result, WHP(Q) is separable for 1 < p < +o00 and reflexive for 1 < p < +00. ®

Proposition 5.1 : Let u € LP(QQ). The following properties are equivalents:

1. uwe Whr(Q).
Oy .
2. 3c¢>0: u(:p)ax (2)dz| < cllellpr ), Y€ 2(Q), Vi=1,...,n.
Q i
Proof:

= Let u € WH(Q) et p € 2(Q). Then, u € LP(Q),u € L'P(Q) and we have:

VAN

Dl
g
&
)
&
=
kS

Q| 0%
ou P v W
< (@) dz) .( |¢crﬂﬂdx) ,
u
= Alell 2o )
ox; Lr(Q) L7
< cllellr )
ou
where ¢ = max .
1<i<n || 0% || 1o (q)

< Let u € W'?(Q) be such that

)

de>0:

< CHSOHLP’(Q)a Voe 2(0), Vi=1,...,n.

Then, the operator A; : 2(Q) — LP'(Q) defined as: Ay = /u(m) 0 (x)dx est is

Q 0x;

continuous, and since Z() is dense in L? () we can extend the operator A to L¥ ().
From the Riez’s theorem of representation (Theorem 1.12) there exists g; € LP(2) such
that

&¢=—A%@W@W%

. dp . Lp
i.e /Qu(x)axz (x)dr = — /Qgi(x)ga(x)da:. Then: u € W'?(Q).

Theorem 5.3 : Suppose that Q is bounded, Lipschitz (or @ = R'). Then, for any u €
WhP(Q), there exists U € WHP(R™), and a constant ¢ = ¢(Q) > 0 such that:
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1) U|Q = u,
ii) |Ullzr@n) < cllullzre,
iii) ||U||w1r@n) < cllullwir@)-

Definition 5.2 : Let m € N (with m > 2). The Sobolev space W™P(Q) of order m is defined

as follows:

ou
(%ci

Wme(Q) = {u e W™ P(Q), —— € W™ P(Q),Vi=1,2,... n} .

In other words:

Wme(Q) = {u € LP(Q),Ya € N*(|a| < m), Iga € LP(Q) : /

u.D%p = (=1)l ; .
i D%p = (—1) /ansﬁ,vsoeﬁ(ﬁ)}

In particular, we set H™(Q2) = W™2(Q).

We equip W™P(Q2) with the norm:

lullwmr@ =Y 1D%ullLr)

|| <m

H™(Q) is a Hilbert space, equipped with the scalar product:

(U,U)Hm(g) = Z (Do‘u, DaU)Lp(Q).

laj<m

Using similar arguments as in Theorem 5.1 and Theorem 5.2, we can obtain the following

two theorems:
Theorem 5.4 : W"™P(Q) is a Banach spac and H™(Q)) is a Hilbert space.

Theorem 5.5 : W™P(Q) is a separable space for 1 < p < 400 and reflexive space for
1 <p<4o0.

The following lemma is important to proof the density of test functions space in certain

Sobolev spaces:

Lemma 5.1 Let f € L*(R") and u € WHP(R™).

Then: f*u € WYP(R™) and for any i € {1,--- ,n} we have: 0 Ou

8xz<f*u) = fx* vt

Proof: Let’s first assume that f has compact support. In this case, (fu) € LP(R™), and for
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all ¢ € Z(R™), we have:

[rro@Ewis = [ [ -yt 5 wdsdy

Ox; R JR™ Ox;
= [ty [ se—p3E
= [ iy | Fo—03E @)
0

Now, let’s consider the case where f does not have compact support. There exists a sequence
pij =17 in Z2(R"™) converging to f in L'(R"). We then have:

[ oren@gZwte == [ (5 5t) @i (53)

Also, we have:

ou L ou

pj*u — f*uin LP(R") pj * in LP(R™).

Using the Lebesgue Dominated Convergence Theorem (Theorem 1.13), we obtain:

Op ou
/Rn(f * u)(m)awZ (x)dx = — / (f * 8%) (x)p(z)dz. (5.4)
Hence, we get the result. m
Theorem 5.6 : Z(R") is dense in W'P(R™).

Proof: Let u € WP(R") and the function y € Z(R") such that 0 < y < 1, supp x C B(0,2)
and x = 1 on B(0,1). Consider the sequence {x;}/=7 defined as: x;(z) = x (f) Then:
J

X;-u converges to u a.e. and |x;.u| < |u| for all j. From the Lebesgue dominated convergence
theorem (Theorem 1.13), the sequence {x;.u}°5 converges to u in LP(R"). Let {p;.u};}
be a regularization sequence as in Definition 1.24. Set ¢; = x;.(p; * ). Then: ¢; € Z(R")

and we have:

pj —u=x;.[(pj *u) — u] + [x;.u — ul.
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Knowing that:

1x;5-[(pj * ) — ul|lLp@ny = / Ix;-[(pj * u) — u][Pdz

|(pj * u) — ul|Pdz

IN

]Rn
= |[[(pj * u) — ul|Lp@ny,

we deduce that:
o5 — ull ey < [1(p5 * w) = wl|po@ny + [1X;-% — w||Lo@ny — 0.

Using Lemma 5.1 we get:

doj _ Oxj (., Ou

Then:

dpj  Ou 8)(] o Ou  Ou ~Ou Ou

Noting that:

ox; 0 p
X5 (o) = / X3 ( dx
al’z Lp(Rn) n axl
ox
< Haxf o o e
ox;
= oo, Il
1
i L
Then:
' dp;  Ou HaXJ H( 8u> ou ‘ ou  Ou
[— <~ p — X.‘ p—
axi axz LP(Rn) axz Lr(R™) ! axz 81'1 LP(Rn) ! 8$z 8331 LP(Rn)
< lull n . ou ou n ou  Ou
u n . — — .. p—
- axz Lo (R™) Lr(®™) P axz axz LP(Rn) X3 amz axz LP(Rn)
j—)—i—oo
— 0.
|

Using similar arguments as above, we can present other density results:
Theorem 5.7 : Z(R"™) is dense in W™P(R").
Theorem 5.8 : ¢°°(2) N W™P(Q) is dense in W™P().

Remark 5.3 : If Q is bounded and of class €™, then:
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i) 2(Q) is dense in W™P(Q).

ii) For all k > m, the space 2%(Q) is dense in W™P(Q). In particular, 2*(R") is dense in
WmP(R™) for all k > m.

5.2 Inequalities and Sobolev embeddings

First, we have the following lemma:

Lemma 5.2 : Suppose that n > 2 and let f1,---, f, € L" 1 (R"1). For all x € R" and
ie{l,---,n} we set: T; = (1, -+, T Tiz1, -+ ,Ty) and let f be the function defined as:
f(x) = fi(21) fo(Z2) - - fu(Zn). Then: f € LY(R™) and we have:

Hf“Ll(R”) S H ”fiHLn—l(Rn—1),
i=1

Theorem 5.9 (Gagliardo — Nirenberg — Sobolev) : Assume thatn > 2 and 1 < p < n.

1 1 1 .
Guwen p* such that — = — — — (Sobolev exponent), then: W'P(R") C L (R"), and there

‘ P p n
exists a constant ¢ = c¢(p,n) > 0 such that:

ull o gy < €llVullzr@n), Yu € WH(R™)

Proof: Let ¢ € Z(R"). Then, we have:

" g oo
|§0(l’)|:’/ af( ,xl,t,$2+1,,l’n)dt’§/ 'agp('rlv"'7xiataxi+la"'7xn) dt

o0

dt.

n
SH nl

+o0 o
Set: fl(i"l) :/ ‘ gp(xlf" 7xiytaxi+17"' 7$n)

. ox;

Then: |p(z |”<H fi(&;), which leads to: |p(x

From Lemma 5. 2 on obtain:

n 1
o) ide < JTTIA " o @),
=1

i >

1= 1

= H ||fz||L1(Rn 1)

dp || "1
o0x;

L1(R") ‘

i=1

University of Msila 114 Saadi Abderachid



Distributions and Sobolev espaces Master 1 PDFE and applications

Then:

n

Il ey < I

i=1

Oy
o0x;

. (5.5)
L1(R")

t—1 9
For t > 1 we replace ¢ by |¢|""!.¢, so we obtain: ’M’ = t|g0|t_1—sp. Then:

(%i axz
el el g oy < ETT (1175 ~
L 1(R ) ZHI axz Ll(R”)
Note that: n-1
=1 _ et R ¢
L e O I L) R
Oy dp ' O
s < el o oy || 5 = [lell’ A :
HM Oi || prrny — Mol o e O3 || L (gn) HSD|LP(FU(RH) O || Lozny
Therefore:
n 8@ -~
t
[ ey 1 | - [
-1 —1 t
Taking ¢ = ——p* = (=P e p'(t — 1) = p*, which leads to
(n - 1>P t—1 dp
1Pl gy < 11l 5ot gny- s '
Lr™ (R™) LP™(R™) il 8% LP(R)
Then: 1
(n—1p 1| 0¢ " dp
ol 2o mny < = : a9, sc '
(R™) np H axz Lp(R™) H axz Lr(R™)
Hence:

el 2o @n) < cllVullo@n), Ve € Z(R").

From the density of Z(R") in W?(R") we obtain the result. m

Corollary 5.1 :

i) Forn>2et1 <p<n we have:

WP (R") — LYR"), Vg€ [p,p’].

ii) Forn > 2 we have:
W (R™) < LYR™),  Vq€ [n,4oq].

Theorem 5.10 (Morry) : Let p > n.Then:

WEP(R™) — L=(R™).
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Moreover, for any u € W'P(R") we have:
[u(@) —uly)| < c(n,p)le —y7" . aexy R
The previous results remain valid for sufficiently regular open sets (see [1, 5]):

Theorem 5.11 : Assume that Q is of class €' with I' = 0Q is bounded (or Q@ = R?), and
1 <p<+o0. Then:

1. If1 < p < n, we have: WHP(Q) — LP'(Q).
2. If p=n, we have: WIP(Q) — LI(Q), Vq € [p, +oo].
3. If p > n we have: WHP(Q) — L>(Q). Moreover, for any u € WP(Q) we have:
u(z) —u(y)| < c(n,p)lz —y|+",  aecryeQ
In particular: WHP(Q) — €(Q).
Theorem 5.12 : Let m € N* and 1 < p < +o0.

1 1
1. If1 — UL 0, then: W™P(R™) — L4(R™), where — = —
n qg p

m
-
2. If1— m_ 0, then: W™P(R"™) — LY(R™), for any q € [p, +0.
n
m
3. If1— 2 <0, then: W™P(R?) < L=(R").
n

The following theorem provides a more precise result:

Theorem 5.13 (Rellich — Kondrachov) : Suppose that Q is bounded and of class €*.
Then:

1. If p <n, then: WHP(Q) — L4(Q), for any q € [1, p*[.
2. If p=mn, then: W1P(Q) < L1(Q), for any q € [1,+o0].
3. If p > n then: W'P(Q) — €(Q).
These embeddings are compact.
Remark 5.4 : Forn =1 and 2 = I be an interval we have the following properties:

i) For any u € WYP(I), there exists i € € (I) such that u = a.e in I and

w(zr) —u(y) = /y u'(t)dt, Va,yel.
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ii) For a function u € L=(I) to be in WY°(I), it is necessary and sufficient that there exists
¢ > 0 such that:

u(z) —u(y) <clz —yl, pp x,yel

iii) If I is bounded then:
) WP(I) < L>(Q), V1 < p < +o0.
) Whe(I) «— C(I), ¥ 1 < p < 400 with compactness.
#¥%) The embedding WY (I) — € (I) is continuous but n0t pas compact.
**45%) The embedding W (I) — Li(I) is compact for any 1 < q < +o0.

5.3 The space W,”(Q)

Suppose that 1 < p < 4o00.

Definition 5.3 : The space W, (Q) is the closure of 2(Q) dans W'P(Q).
In particular HY(Q) = W, P(Q).

Remark 5.5 : From the density of 2(R") in W'(R"), we deduce that: W,P(R") =
Whp(R").

Theorem 5.14 : Suppose that 2 is of class €1, and let u € LP(?) (1 < p < 4+00). Then,

the following properties are equivalents:
i) u=0onT,
i) u e WyP(Q).
Here is another characterization of the space W, ?(Q):

Theorem 5.15 : Suppose that Q) is of class €*, and let u € WH(Q) N € (). Then, the

following properties are equivalents:
i) ue Wy"(Q),

ii) there exists ¢ > 0 such that for any i € {1,---n} and for any ¢ € Z(R") we have:

Oy
[ ugte| < cliclue,
: Q
iii) The function u, defined as: u(x) = { g(x) ’ Z Q’ belongs to WhHP(R™).
Lo ,

In this case we have: gu = <6u )

X
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Theorem 5.16 (Poincaré’s inequality ) : Suppose that Q0 is bounded in a direction, i.e
there exists i € {1,--- ,n},a;,b; € R such that: a < x; < b, Yx € Q. Then, there exists a
constant ¢ = ¢(§2, p) such that:

[l ooy < el Vull oy, Yu € WyP(R)

Proof: From the density of 2(Q) in W, (), it suffices to prove this theorem for functions
in 7(). So let ¢ € (). Then, we have:

|QO(‘T)| = 8_;0‘(1:1’ 7x1—17t7xi—17 ,In>dt,
i 6g01
<
< / S (@)
b o b N
< (/ 1.dxi) ( S;O(:E)dxl ) :
=1 (] O PN\ P
~ h-a) (/ 2 (@) ) .
Therefore:
lelzr@ = A p(z)[Pdx
b P
< (b—a)p_l// gf@) dx;dx,
QJa 7
b 890 P
= b—ap_l// )| drdz;,
(b~ a) L @
< (b—a) :
8x,~ LP(Q)

< (b—allIVell,q.

Hence, the result follows by density. m

Corollary 5.2 : For all u € W, ?(Q), we have: Vullr) < llullwie@) < ClIVU| Lr@)-

Hence, we can consider ||Vul| ooy as a norm on Wy*(Q) that is equivalent to ||ul|y1.s)-
here is another version of the Poincaré inequality:

Theorem 5.17 (Poincaré- Wirtinger inequality) : Suppose that Q) is connected, of class
€' and with bounded measure |Q|. set: ug =

that:

9] u(x)dx. Then, there exists ¢ > 0 such
Q

Hu — UQHLP(Q) S CHVUHL:D(Q), Yu € Wl’p(Q).

5.4 The space W17 (Q)

Definition 5.4 : We denote by W=7 (Q) the dual space of Wy *(Q) and by H=(Q) the dual
space of Hj(£2).
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Proposition 5.2 : We have
1. H} () < L*(Q) < H1(Q) with density.

2
2. If Q is bounded and n—fQ < p < 400 then: WyP(Q) — LP(Q) — W12(Q), with
density.

< p <2 then: WyP(Q) < LP(Q) — WHP(Q).

3. 51 Q) is not bounded and 2n
n—+ 2

We have the following characterization of elements in W~ (Q):

Theorem 5.18 : Let f € W= (Q). Then, there exists Gy € L (Q),G = (G1, Gy, ...,Gy) €
(LP'(Q))"™ such that:

(f,v) = / Go.u+/G.Vu, Yu € WyP(Q)
Q 0

et max |Gill 1 @ = 7l

0<i<

IfQ 15 bounded, we can take Gy = 0.

Proof: Consider the space F = (LP(Q))"*! equipped with the norm:
IVl = o, 01, va)llzn@yyms = Z lvill o e

The operator A from W, ?(Q) to (LP(Q))"!, defied as:

Yu e WyP(Q) : Au = <u,§—§1,--- ,5—;;)
is an isometric (see proof de Theorem 5.2). set F = A-Y(W,7(Q)), we equip F with the
induced norm from F.

Let the linear continuous mapping ¢ defied on F by: £(v) = (f, A~'v). From Hahn-Banach
theorem de (Corollary 1.1), we can extend f¢to a linear continuous mapping L defined on F
withs L = |I£].

The Riesz representation Theorem (Theorem 1.12) allows us to write:

(L,h) = /G s, Vv, € E.

"
* (for 1 <i < n), we obtain the result.
Ty

For a bounded Q, using the norm || Vu||z»(q) on Wy (Q), we can take Go = 0. m

aking into account vy = ug and v; =
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5.5 Sobolev spaces with fractional order, trace theorem

and Green’s formula

In this section, we provide a brief overview of Sobolev spaces of fractional order and the trace
theorem. First, we have the following theory, which demonstrates the relationship between

the spaces H™(R") and the space of tempered distributions.

Theorem 5.19 : H™(R") C .'(R™). Moreover, we have:
H"R") ={uec S R"): (1+|¢*)2a € L*(R"), £ € R"}.

This fundamental property has been leveraged to extend the concept of Sobolev spaces
of integer order to more general spaces known as Sobolev spaces with fractional order, which

are introduced in the following definition:

Definition 5.5 : Let s € R. We define the space H*(R™) as follows:
H'R™) = {ue ' (R"): (1+|¢[*)20 € LAR"), € € R™}.
Generally, we have the following definition:

Definition 5.6 : Let 0 < s < 1 et p[l, +oo[. We define l'espace W*P(QQ) as follows:

WeP(Q) = {u € LP(Q) : Ju(z) = )l LP(Q % Q).

o —y[**>
Sis>1, by writings=m+1r oum € N et 0 <r <1 we define W5P(Q) as follows:
WeP(Q) = {u e W™P(Q): D% € W*P(Q), Yo € N" | |a| = 1}.

Theorem 5.20 (trace) : Suppose that Q) is of class €. Then:

The map o : 2(Q) — C(I), defined as yov = vy, can be continuously extended to a
continuous linear map from H'(Q) into L*(T), also denoted as 7o.

Yo ts called the trace map, and ~yyv is called the trace of v on T'.

The map 7 is surjective from H*(Q) into Hz(T).

In general, we can define the trace map 7o from W1?(Q) into LP(T"). This map is surjective
from W(Q) into W' »?(T).
Note that W' (I') is a Sobolev space defined on the submanifold I" of dimension n —1,

using a specified coordinate system.
Remark 5.6 : W,”(Q) = {v € W'(Q) : yv = v = 0}.

An important result of the trace theorem is the following:
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Theorem 5.21 (Green’s formua) : Suppose that §) is bounded, of class € by pieces and

let v be the outward normal vector of I'. Then:

i) For all u,v € H'(Q) we have:

ou ov
/ani.vdx— _/Qu'&ci —i—/ru.v.uida(x).

i) For all u,v € W?P(Q) we have:

/—Au.vd$:/VU.VUCM—/@.UU(:B).
Q Q r ov

Exercises

Exercise 5.1 : Let p € [1,+o0[, H be the Heaviside function, and let 1» € Z(R).
Determine the conditions on ) for H -1 € WHP(R)

x + |z

Exercise 5.2 : Let u be the function defined on | — 1,1 as: u(x) = 5

1. Show that w € H*(] — 1,1]).
2. Isue H*(]—1,1])?

Exercise 5.3 : Let p € [1,+00[ and let f be the function defined as:

x : oz el0,1],
flx)=q —z+2 : ze€ll,2]
0 c oz ¢ [1,2].

1. show that f € W'P(R).
2. Is f € W2P(R)?

Exercise 5.4 : Let Q = {(z,y) € R? : 2% + y* < 1}, and u be the function defined on

Q\{(0,0)} as:
Va?+y?

2

[e%

u(z,y) = |In

1
where 0 < a < 3

Show that w € H*(Q) but does not have a continuous representation on 2.

Exercise 5.5 : Let B be the unit ball in R™, and let u be the function defined on B\ 0 as:
u(z) = |z

Investigate the membership of u in H'(B).
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Exercise 5.6 : Let p € [1,4+00] and f be the function defined from ]0,1[ to R as follow:

1

Vo €]0,1]: f(x) = o »1.
1. Show that f € LP(]0,1]).
2. Find the function g such that: Yo € 2(]0,1]) : /0 f(x)¢ (z)dx = —/0 g(x)p(z)d.

3. Is f € W'(]0,1])?

4. Let w € WyP(]0,1]) and {©,}2, be a sequence belongs to 2(]0,1[), converges to v in
Wo?(10.1)) (e lim i), — /|| ogoap = 0).

1
Show that: ¥Yn € N : (x)dx| < %H@;HLP(]O,I[)-

5. Conclude.
Exercise 5.7 : let § : (] — 1,1]) — R, defined as: < 9, >= (0).
1. show that § € H(] — 1,1]).

2. Find ug € HY(] — 1,1[) solution of the equation:
T" =611 2'(] — 1,1]).

3. Show that this solution is unique.

Solutions of exercises

Solution 5.1 : p € [1,+o0o[, H the Heaviside function, 1» € Z(R). We have:

+oo “+o0o
/_ |H ) ()P = / @)z = [P pacg < +00.

o0

Then: H.p € LP(R).
Now, let g € Z(R). Then:

" H @) (@) @) de = / " ) (@)de
@@l - [ @)@
= —o0pl0) - [ Velaris

= —(@(0)0+ ¢, 9).

— 00

For H -+ € WYP(R), it is necessary that 1(0) = 0.
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Solution 5.2 : z €] — 1,1[,u(z) =

r+lz  f 0 : xel—-1,0]
2 |z : o2€0,1]

1 1
1
1. We have: / u?(z)dr = / 2?dr = 3 Then: w € L*(] — 1,1]).
1 0

Let p € 2(] — 1,1]). Then:

/ (o) (@) dr = /0 v (2)de

1

: -1, O
Therefore: u'( { . )
dx

[, /

Hence: uw € H'(] —

—. So, u ELQ(]—l,l[).

2. Let p € 9(] — 1,1]). Then:

= —(0).

Hence: u" =6 ¢ L*(] — 1,1[). So, u ¢ H*(] —1,1]).

T : x€[0,1],
Solution 5.3 : p e [1,+o0[, f(x)=¢ —z+2 : z€](l,2],
0 ox ¢ [1,2].

1. We have: Yz € R: |f(x)| <1, then: |f(x)|P < 1. Hence: f € LP(R).
Let o € 9(] — 1,1]). Then:

—+00

f(@)d (@)de = / 2 (@) + / (—2 +2)¢(x)dz
= [op@)]} - / (@) + [(—z + 2] + / o(z)dz,

—00

1 0 2
= —/0 o(x)dx +/1 o(x)d.
1 z€0,1]
Therefore: f'(x) =< —1 : wz€]1,2],
0 x ¢]0,2[.

/_:O| !pdq;—/ dx+/ dz =2. So, f' € LP(] — 1,1]).
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hence: f € WHP(R).

2. Let o € (] — 1,1]). Then:

[ @@ = [ - [ @

- — ()]} — e,
= 20(1) — p(2) - (0).

Hence: f" =26, — 6y — 6 & LP(R]). So, f ¢ W*P(R).

: 2. .2 2 VvV +y? 1
Solution 5.4 : Q = {(z,y) € R* : 2* + y* < 1}, u(z,y) = IHT 0<ac< 3
We have: .
/22 1 o2
/u2(x,y)d:rdy = / 1n$—+y dzdy
Q
- / / ‘ln2‘ drdf
2
= / drdf < +ooc.
0
Then: u € L*(9).
Let o € 2(Q). Then:
/22 1 o2
/u(az,y)a—(pdxdy = / MY 8g0d dy
Q Ox Q 2 ox
/22 1 o2
= lim —lnz—w 8—(pd:rdy
€20 Jon{z2+y2>e2} 2 Ox

plz,y) -

1 =1cost, sint

{z24+y?=1}
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Since 0N = {z*> +y* =2 U {a? + y* = 1} and ¢ = 0 on {2 + y* = 1} we obtain:

2 2 @
/ YT 92,
QN{z2+y2>e2} 2 Ox

Noting that:

=~ [ (-m3) e mdeey)
{22 4y2=e2} 2

o—

1

+/ \/mQ + 42
QON{z2+y2>e2} 2\/m 2
= (— In = ) / p(ecost,esint) costdt
a—1
+/ ax | V2 +y?
n
On{a?+y2>e2) 24/ 12 + o2 2

p(ecost,esint)cost =~ (0,0).cost+¢ (costg (0,0) +smtgy (0, O))

= go(0,0).cost+§ ((1 +C082t)8

Then:

2

% 0,0)

+ sin 2¢ ?;0 (0, 0))

— (—ln E>a/ @(ecost,esint) costdt ~ —me (—ln g)a,

—T

™

i.e lim — (— In E>a/ @(ecost,esint) costdt = 0.

e—0 2 _r
Therefore:
a—1
/22 1 2
/u(m,y)a—gpdxdy:/ ar In V2 +Y dzdy.
0 Ox a2/ x4+ y? 2
Stmilarly:
a—1
9 [r2 1 2
/u(m,y)—wdzdy:/ Y In Y2 +Y dxdy.
Q0 dy Q22+ y? 2
Then:
a—1 a—1
du ax In Va2 +y? ou ay n\/zl:2+y2
oz n 2 x2—|—y2 2 ’ 8y a 2 gj2—|-y2 2
2c0—2
ou\’ a’z? Va2 + y?
— dedy = dzd
/Q(ax) (z,y)dzdy / el xdy
—2
= —/ / rcos’d ln drdf
2c0—2
< - ’m drdf < +co.
Ju Ou
H —,— € L*(Q).
ence: o, o (Q)
Therefore: uw € H'().
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On a: lim wu(zx,y) = +oo.
(z,y)—(0,0) (@9)

So,u does not have a continuous representation on ).
Solution 5.5 : Let B = {z € R" : |z| < 1}, u(x) = |z].

1. *) Suppose that n = 1. Then:

1
/uQ(x)dx = |z|?“dx
Q -1
! 1
= 2/ 2*dr < +oosi a0 > —=.
0 2

1
hence: uw € L*(B) si a > ——.
Let o € 2(B). Then:

/B W) @de = [ |2y (@)de

11a(€) — (=€)

e =0sia>—1.

We have: li_l}l(l)& (p(e) — p(—e)) = }:1_{% 2
Then: for a > —1 we have:
0 1
/ w(z)¢' (x)dr = / (—2)* to(x)dr + a/ 7 o (x)dw.
B -1 0

|cx—1

In this case, u'(x) = asign(x)|z|*~", where sign(x) represents the sign of x.

1
/u’Q(ac)dac = a2/ |z|?*2dx
B -1
! 1
= 2a2/ 227 2dr < 400 sia > 3
0

1
Therefore: w € H'(B) pour o > 3

**) Suppose that n = 2. Then:

/uQ(x,y)dxdy = /(:1:2+y2)°‘dxdy
B B

™ 1
= / / r*tldrdo
-7 JO

1
= 27r/ r’tdr < 400 sia > —1.
0
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Hence: u € L*(B) si a > —1.

Let ¢ € P(B). Using the same arguments as in Ezercise 5.4, we obtain for o > —1:

d¢ _ 2 2 %3_90
/Bu(:c,y)amdxdy = /B(a: +y°) e dxdy

o0
= lim (22 +%)2 Sdedy
20 ) Bn{z2442>¢2} ox
= lim |—me!™® —/ oz (2 +y2)a77290(a:,y)d:vdy
e=0 Bn{z2+y?>e2}

= /—aa:(xz—l—yQ)afgo(x,y)da:dy.
B

2

Hence: —u:ax(:c +y?) 2 — =ay(® +y*)T .

ou\ >
Y dedy = o2 a=2 1.
/B(ax) rdy / (2% + y?)* Pdady
= / / cos? 0.2 drdp

= / 2 ldr < 400 si a > 0.
0

ou\? o2 a—2
/B(g) dzdy = / 2(2% + y*)* 2dady
= / / sin® 6.7 Ydrdd

= / r2ldr < 400 si a > 0.
0

So, w € HY(B) sia > 0.

**%) Suppose that n > 2 and set: x = (x1,--+ ,x,), where
1 = rcosticosby---cosb,_,
T = rcosficosfy---sinb,_,
T = rcosticosby---sinb,_»

T
€]0,1[,01,05,0, 2 € } 5 5[#%—1 €l-m, 7.

Tpeg = 71 COSH;sinb,
[ Zn1 = 7 sin 6.
Then

/ uw (z)dr = / |z|?*da
B
/ / / / n—2 01 ++ - COS Qn_1T2ade91d02 cee den—l

= M/ 2atn— 1dr<—|—ooszoz>—g.

us
2
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Hence: v € L*(B) si a > —g.

Let ¢ € 9(B).Using the same arguments as in Exercise 5.4, we obtain for a > _Z,

2
i B o Oy
/Bu(x)axidxdy = /B|x] axidx

0
= lim |x|°‘—s0dxdy
€20 ) Bn{|z|>e} Ox
= lim 5a¢(x)yi(:c)da(x)—/ ax;|x|* 2p(z)dx
=0 L lol=e) {la>¢)

= — [ az|z|*2p(z)dr.
B

ou\? 2 2|, [2a—4
de = o | x|z|** dz
B \07; B,

= M’/ P2t =3 dr < oo si a > 2 ; n
0
Solution 5.6 : p € [1,+oo[,Vz €]0,1[: f(x) = ¢
1. We have:
1 1 .
[vwra = [efw
0 0
= p+ 1< +o0.
Then: f € LP(]0,1]).
2. Let ¢ € 2(]0,1). Then:
1 1 .
) (x)dr = x g (x)dx
¥
0 0—# 1 1 b e
= [:L‘ p+1 Sp(l’)]o —+ m T p+l ('D(l‘)dl”
0
L[t
= — x P x)dx.
p+1Jp 4
]_ pt+2
Then: = — =
en: g(x) p+1x T
3. We have:
! 1 1 p(p+2 2
/ |g(£€)’pd:v = / T fn:l)dx =00 car — ]M S —1.
0 (p+1)P Jy p+1

So, f ¢ Whr(0,1]).

4. w e WeP(10,1]), {wa}izs € 200,1]), lim i), —o'|lzogoap = 0.
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We have:

[ tweiae = [ oo

Then:

[ s

IN
8

]

-

s

n(2)|dx
|d:v

by (o

= P o
p

(VAN
’B
+
—_
\

IN

5. From the previous question we have:

/fgondx

<—|g0n 1 .
D ’ HW "P(]0,1])

By density:

1 ! ptl
Yu € WyP(]0, 1)) - /0 f(fv)son(:v)d:v' < ||U||W01’P(]0,1[)'

p

Then: f € Wy 7' (]0,1]).
Solution 5.7 : §: 2(] — 1,1]) = R, < 6,0 >= ¢(0)

1. Let p € 9(] — 1,1]). Then:

10,01 = [p(0)]

0
¢ (x)dx

< /Tllso’ (z Idw
(] )’ ([ o)

= \/_||90||H1 —1,1])"

IN

By density, we deduce that 6 € H~'(] — 1, 1[).
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2. From the example 3.9 and Corollary 3.1, solutions of the equation —T" = 6 in
P'(] — 1,1]) are restrictions of the function f(x) = a|z| + S.
Since ug € Hi(] — 1,1]) we have: ug(—1) = uo(1) = 0, So, ug can be expressed in the

form:

(z) = alz+1) : x€[-1,0]
okt = b(z—1) : z€]0,1].

Hence: pour ¢ € (] —1,1[) on a:

/11 ug(z)y' (x)de = a/i(x + 1)/ (x)dx + b/ol(x — 1) (z)dx

= alle+ ey~ [ pla)da+blle = 1pll =0 [ olada

— (a+b)p(0) —a/igp(;)ldx—b/ol o).

Therefore: uy = —(a+ )6 + f, ou:

_Joa : ze[-1,0]
f(x)—{ b : z€]0,1].

uw € HY (] — 1,1]) implicate to v’ € L*(] —1,1[). Then: a+b=0, i.e b= —a. So,

uf)(x):{ a : x€l[-10]

—a : x€]0,1].

1
Then: u” = 2a, which leads to: a = 3 Hence:

1+
1— |a] 5 x € [—1,0]
) = 5= =1 124 0,1

3. Suppose there exists another function u; € H(] — 1,1[) satisfying —uf = 6.
Then, (u; —ugp)” = 0. Hence:

/ (uy — up) (z)v'(z)dz = 0, Yo € Hy(] —1,1]).

1
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1
Set: v =uy — ug, we obtain: / (u) — up)?*(z)dx = 0.

—1
Then:
llus — U0||Hé(]—1,1[) = [Juj — UE)“L?(]—LID = 0.

So, u; = uyg.
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