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NOTATIONS

.
x = (x1, x2, · · · , xn) : Element of Rn (n ∈ N∗).
|x| =

√
x2

1 + · · ·+ x2
n : Norm of x ∈ Rn.

Ω : Non-empty open set of Rn.
Γ = ∂Ω : Boundary of Ω.
Ω: Closure of Ω.
|u|E: Norm of a vector u in the normed vector space E.
α = (α1, α2, · · · , αn) ∈ Nn: Multi-index.
|α| = α1 + α2 + · · ·+ αn: Length of α ∈ Nn.
xα = xα1

1 x
α2
2 · · · xαnn , α! = α1! · · ·αn!: Multi-index notation and factorial.

α, β ∈ Nn: α ≤ β if and only if for all i ∈ {1, · · · , n}: αi ≤ βi.

α, β ∈ Nn such that α ≤ β: Cβ
α =

α!

β!(α!− β!)
.

x, y ∈ Rn: (x+ y)α =
∑
β≤α

Cβ
αx

α−βyβ.

α ∈ Nn, f : Ω −→ R |α|-differentiable: Dαf = ∂αf = ∂α1x1 · · · ∂αnxnf .
α ∈ Nn, f, g : Ω −→ R |α|-differentiable: Dα(f.g) =

∑
β≤α

Cβ
αD

α−βfDβg.

a.e: Almost everywhere.
E ′: Dual of a vector space E.
〈, 〉: Dual pairing.
⇀: Weak convergence.
↪→: Continuous injection.
supp f : Support of a function f .
f̌ : The symmetry of the function f .
τa: Translation operator with vector a.
∗: Convolution product.
⊗: Tensor product.
F(f) = f̂ : Fourier transform of the function f .
F(f): Conjugate Fourier transform of the function f .
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INTRODUCTION

The theory of distributions, as well as Sobolev spaces, are powerful mathematical tools for
studying functions and solving partial differential equations in cases where classical methods
of differentiation and integration do not apply or where there is difficulty in applying them.
They play an essential role in many areas of mathematical physics, from wave theory to
quantum mechanics, through numerical analysis.

Distribution theory generalizes the concept of a function by allowing the consideration
of mathematical objects that are more general than continuous or differentiable functions.
Distributions can include impulses, step functions, discontinuous functions, and other math-
ematical objects. Distributions are defined using continuous linear operators that associate
a test function with a distribution.

Sobolev spaces are function spaces that allow quantifying the regularity of functions,
especially those that are not necessarily continuous or differentiable in the classical sense.
They are defined by introducing norms that take into account the derivatives of the function.
More precisely, Sobolev spaces, denoted as W k,p, include functions whose first k derivatives
in the distributional sense are in the space Lp.

In 1893 and 1894, O. Heaviside proposed symbolic calculus rules for operators used
to solve problems in mathematical physics. These symbolic calculations worked well for
engineers who used them in a broad sense but were not always mathematically rigorous.

In this context, P. Dirac published an article in 1926 titled «L’interprétation physique
de la dynamique quantique», where he introduced his famous symbol denoted as δ. Dirac
stated that δ is a function defined as follows: δ(x) = 0 if x 6= 0,∫ +∞

−∞
δ(x)dx = 1.

(1)

Furthermore, for any smooth function ϕ and any real number a, we can write:∫ +∞

−∞
ϕ(x)δ(a− x)dx = ϕ(a). (2)

6
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P. Dirac acknowledged that what he called a "function" is not in the strict sense of a
function. Indeed, when δ is treated as a function, it is equal to 0 almost everywhere, leading

to
∫ +∞

−∞
δ(x)dx = 0, which contradicts

∫ +∞

−∞
δ(x)dx = 1.

To resolve this dilemma, P. Dirac suggested that the quantity δ could be interpreted as
a limit of a sequence of functions. This seems more reasonable. For example, the sequence
of functions {fj}+∞

j=1 which defined as:

fj(x) =

 0 : |x| > j,
j

2
: |x| ≤ j.

(3)

verify the condition
∫ +∞

−∞
fj(x)dx = 1. Following L. Schwartz (1945), we choose a continuous

function ϕ that is zero outside a finite interval ] − a, a[ (a > 0) and contains
[
−1

j
,
1

j

]
for

sufficiently large j. We have:∫ +∞

−∞
fj(x)ϕ(x)dx =

j

2

∫ 1
j

− 1
j

ϕ(x)dx.

Let ψ be an antiderivative of ϕ on ]− a, a[. Then:∫ +∞

−∞
fj(x)ϕ(x)dx =

j

2

[
ψ

(
1

j

)
− ψ

(
−1

j

)]
=
ψ
(

1
j

)
− ψ

(
−1
j

)
2
j

.

Let h =
1

j
, and we obtain:

lim
j→+∞

∫ +∞

−∞
fj(x)ϕ(x)dx = lim

h→0

ψ(h)− ψ(−h)

2h
= ψ′(0) = ϕ(0) =

∫ +∞

−∞
ϕdδ,

where δ is the Dirac measure, defined in (2.1).
This means that the density measure of {fj}+∞

j=1 converges to the Dirac measure, and
through translation, we can establish equation (2).

P. Dirac also defined the successive derivatives of δ, denoted as δ′, δ′′, ... L. Schwartz
justified how to find these successive derivatives but in a more general framework than
measures, which is what we call distributions. He published this in 1946 in an article titled
«Généralisation de la notion de fonction, de dérivation, de transformation de
Fourier et applications mathématiques et physiques». In this article, he provided the
following two definitions:

Définition 1: Φ sera l’ensemble des fonctions ϕ(x1, · · · , xn) de n variables réelles,
indéfiniment dérivables et nulles en dehors d’ensemble bornés. A chaque fonction ϕ

correspond un «noyau», ensemble compact, dont le complémentaire est le plus grand
ensemble ouvert sur lequel ϕ ≡ 0.
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Définition 2: On appellera «distribution» de l’espace à n dimensions toute fonc-
tionnelle ou forme linéaire T (ϕ) définie pour toute les ϕ de Φ, et vérifiant de plus
la condition de continuité suivante: Si une suite des fonctions ϕi, ont leurs noyaux
contenus dans un compact fixe et si elles convergent uniformément vers 0, ainsi que
chacune de leurs dérivées, alors les T (ϕi) convergent vers 0.

Later on, L. Schwartz published his famous book «Théorie des distributions» (Theory
of Distributions) in the mid-1960s of the last century.

In a different context, among the classical results of the calculus of variations, we find the

Dirichlet principle: the variational integral
∫

Ω

|∇u|2dx has a minimum for certain functions

belonging to the class C 1(Ω) where Ω is a bounded domain Rn. This principle was used by B.
Riemann without mathematically satisfactory justification, but in 1870, K. Weierstrass noted
that the existence of minimizing functions for variational integrals is not always guaranteed.

A first rigorous proof of the Dirichlet principle was introduced in 1900 by D. Hilbert
for functions u ∈ C (Ω) ∩ C 1(Ω), taking a trace g on ∂Ω. This marked the first steps in
the development of Sobolev spaces. It is worth noting that later on, the Dirichlet principle
became related to boundary value problems for the Poisson equation:{

−∆u = f : in Ω,

u = g : on ∂Ω.
(4)

If u is a solution of the problem (4), then u minimizes the Dirichlet energy:

E(v) =

∫
Ω

(
1

2
|∇v(x)|2 − f(x)v(x)

)
dx.

There have been further developments on the Dirichlet principle, including the work of
Bippo Levy, G. Fubini, L. Tonelli, O. M. Nicodym, K. O. Friedrichs, and others.

In 1934, J. Leray, in his article titled «Sur le mouvement d’un liquide visqueux
emplissant l’espace», introduced a new term, the «quasi-dérivée» (quasi-derivative):

Soit deux fonctions de carré sommable dans R3, u et u,i. Nous dirons que u,i est la
quasi-dérivée de u par rapport à xi quand la relation∫

R3

(
u(x)

∂ϕ

∂xi
(x) + u,i(x)ϕ(x)

)
dx = 0,

sera vérifiée; rappelons que dans cette relation ϕ représente une quelconque des fonc-
tions admettant des dérivées premières continues qui sont, comme ces fonctions elles-
mêmes, des carrés sommables sur R3.

In 1935, S. L. Sobolev introduced a theory of general solutions to the wave equation, de-
fined as L1-limits of C 2 solutions of this equation. He introduced the concept of continuous
linear functionals on spaces of continuously differentiable functions (later called «distribu-
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tions of finite order») and announced an existence theorem for a solution to a large class of
hyperbolic equations.

In 1938, S. L. Sobolev provided a clear definition of weak derivatives and introduced the
spaces known as Sobolev spaces:

Appelons espaces Lνp l’espace fonctionnel linéaire qui est formé de toute les fonctions de
n variables réelles ϕ(x1, · · · , xn) dont les dérivées partielles jusqu’à l’ordre ν existent et
sont sommables à la puissance p > 1 dans chaque partie bornée de l’espace x1, · · · , xn.
La dérivée

∂αϕ

∂αx1 · · · ∂αxn
est définie comme une fonction qui satisfait l’équation

∫
· · ·
∫

∞

ψ
∂αϕ

∂αx1 · · · ∂αxn
dx1 · · · dxn =

∫
· · ·
∫

∞

(−1)αϕ
∂αψ

∂αx1 · · · ∂αxn
dx1 · · · dxn,

quelque soit la fonction ψ continue ayant des dérivées jusqu’à l’ordre ν s’annule en
dehors d’un domaine borné D.

Later, S. L. Sobolev replaced the notation Lνp with Wm
p , which is closer to the current

notation Wm,p. The theory of Sobolev spaces has indeed developed rapidly since the 1950s.
As previously mentioned, Sobolev spaces are constructed from Lebesgue spaces, which

are Banach spaces. Therefore, the reader is encouraged to deepen their understanding of
the topological and analytical properties inherent in Banach spaces. Additionally, it would
be beneficial to become familiar with well-established theories such as the Hahn-Banach
theorem, the Banach-Steinhaus theorem, and other related concepts in Hilbert spaces.

On the other hand, the theory of distributions is based on spaces of regular functions
and their dualities, presenting a specific topological structure that can be quite complex. If
the reader wishes to delve further into this notion, we recommend consulting the two works
[10] and [13], as well as other references dealing with topological vector spaces. However, it
is entirely appropriate to provide some incentives here to pique the reader’s interest in these
spaces.

It is evident that all elements of the space C k(K), where K is a compact subset of
Rn, are bounded functions, along with their partial derivatives up to order k. This space

has the structure of a normed vector space with the norm defined as
m∑
k=0

sup
x∈K,|α|=k

|Dαf(x)|.

Unfortunately, this property is generally not obtained for the spaces Cm(Ω), where Ω is
an open subset of Rn. We need a topological structure that preserves the properties of
these spaces. For example, if a sequence {fj}+∞

j=1 consists of functions from Cm(Ω) and
converges to a function f in this topology, it is necessary that f ∈ Cm(Ω). Furthermore, it
is necessary that if F is a neighbourhood of f and G is a neighbourhood of g, then F +G is a
neighbourhood of f+g and λF is a neighbourhood of λf , where λ is a real or complex number.
The required topology is constructed from families of semi-norms sup

x∈K,|α|≤m
|Dαf(x)|, where

K are compacts contained in Ω. It is a locally convex topology (i.e., for every f ∈ Cm(Ω),
there exists a system of convex neighbourhoods of f , which is equivalent in this case to

University of Msila 9 Saadi Abderachid
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the existence of a system of convex neighbourhoods of 0). For more details, the reader is
encouraged to consult Section 1.5, as well as the two works [10] and [13].

In addition to topological concepts, we motivate the reader to explore fundamental no-
tions of algebra, mathematical analysis, integration theory, as well as Lebesgue spaces for a
deeper understanding of distribution theory and Sobolev spaces.

This booklet is organized into five chapters. The first chapter provides reviews and
supplementary information on essential concepts necessary for understanding the subsequent
chapters. The second chapter introduces definitions and properties related to distributions.
The third chapter discusses convolution and its properties. The fourth chapter is dedicated
to the Fourier transform. Finally, the fifth chapter covers Sobolev spaces. Each chapter
concludes with a series of solved exercises.

I sincerely hope that this booklet will be of great value to Master’s students, especially
those taking courses in functional analysis, numerical analysis, and partial differential equa-
tions. My dearest wish is that this work may enrich the national university library, even if
only to a small extent.

M’sila, September 21, 2023, corresponding to Rabi’ al-Awwal 6, 1445 AH.
Saadi Abderachid.
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CHAPTER 1

RECAPS AND SUPPLEMENTS

This chapter appears to serve as a foundation for the upcoming chapters by providing a
review and supplement of key concepts necessary to understand the material that will be
covered later. Here is a summary of what will be covered in this chapter:

Banach Spaces: These are complete normed vector spaces where the notion of convergence
is defined.

Topological Vector Spaces: These spaces combine both a vector structure and a topology,
allowing for discussions of continuity and convergence in a more general framework.

Duality and Weak Topology: This concept pertains to topological vector spaces and their
dual spaces, as well as the notion of weak and weak* topology.

Spaces of Regular Functions: These spaces are often used to study regularity properties
of functions.

Test Function Space: This is a space of functions specifically designed for studying dis-
tributions and distribution theory.

Lebesgue Spaces: These spaces are used to study measurable functions and Lebesgue
integrals, convolution products, and Fourier transformations.

Radon Measure: This is a topological vector spaces of measure, often used in functional
analysis and harmonic analysis.

Regular Domains: These are regular subsets of a space, often used in the context of
integration.

Boundary Integral: This concept pertains to integrating functions over the boundaries
of domains.

It should be noted that this chapter does not delve into proof details but rather briefly
presents key definitions and results. Those looking to deepen their knowledge are encouraged
to consult the references mentioned in the booklet for more detailed information and complete
proofs

11
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1.1 Banach spaces

We will encounter many examples of Banach spaces (Lebesgue spaces, Sobolev spaces, etc.),
which necessitates briefly discussing some of the characteristics of Banach spaces.

Let E be a vector space over R or C.

Definition 1.1 : Let p : E → R be a mapping.

i) We say that p is a semi-norm if:

*) p is homogeneous, i.e., for all λ ∈ R and all x ∈ E: p(λx) = |λ|p(x).

In particular, p(0) = 0.

**) p satisfies the triangle inequality, i.e., for all x ∈ E and all y ∈ E we have:
p(x+ y) ≤ p(x) + p(y).

ii) If, in addition: for all x ∈ E, if p(x) = 0, then x = 0, we say that p is a norm on E.

Definition 1.2 : A normed vector space is defined as the pair (E, ‖.‖) consisting of a vector
space over R and a norm defined on E.

Definition 1.3 : Two norms ‖.‖1 et ‖.‖2 de E are called equivalent if there exists α > 0

and β > 0 such that
∀x ∈ E : α‖.‖1 ≤ ‖.‖2 ≤ β‖.‖1

Proposition 1.1 : A normed vector space (E, ‖ · ‖) is a metric space where the distance d
is defined by:

d(x, y) = ‖x− y‖,∀x, y ∈ E.

Proposition 1.2 : Open and closed balls are convex. We say that (E, ‖·‖) is locally convex.

Definition 1.4 : We say that a normed vector space (E, ‖ · ‖) is uniformly convex if for
every ε > 0, there exists δ > 0 such that for all x, y ∈ BE, we have:∥∥∥∥1

2
(x+ y)

∥∥∥∥ ≥ 1− δ ⇒ ‖x− y‖ ≤ ε.

Proposition 1.3 : A linear map f : E → F is continuous if and only if there exists M > 0

such that for all x ∈ E we have: ‖f(x)‖F ≤M‖x‖E.
As a result, every continuous linear map is Lipschitz.

Definition 1.5 : We denote by L(E;F ) the space of continuous linear mappings from E to
F . The topological dual of E is called the dual space and is denoted by E ′ = L(E;R) It is
the space of continuous linear functionals on E.

Proposition 1.4 : The quantity ‖f‖ = sup
x 6=0

‖f(x)‖F
‖x‖E

= sup
‖x‖E=1

‖f(x)‖F = sup
‖x‖E≤1

‖f(x)‖F is

a norm on L(E;F ).

University of Msila 12 Saadi Abderachid
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Definition 1.6 : We say that a normed vector space is a Banach space if it is a complete
metric space.

Theorem 1.1 : If F is a Banach space, then L(E;F ) is a Banach space.
In particular, E ′ is a Banach space.

Theorem 1.2 (Banach-Steinhaus) : Let E and F be two Banach spaces, and let {fj}j∈N
be a sequence of linear maps from E to F . If {fj(x)}j∈N is a bounded sequence, then it is
uniformly bounded, i.e.,

∃M > 0,∀j ∈ N : sup
x 6=0

‖fj(x)‖F
‖x‖E

≤M.

Definition 1.7 (compact linear operator) : In the context of normed vector spaces E
and F , an operator A is said to be compact if the image of the unit ball BE(0, 1) in E is
relatively compact in F . This means that the set A(BE(0, 1)) has a compact closure in F.

Remark 1.1 : If A is a compact operator from E to F then: for any bounded sequence
{uj}+∞

j=1 in E, we can extract a subsequence {uj,k} such that A(uj,k) converge in F .

1.2 Topological vector spaces

Topological vector spaces are vector spaces equipped with a topological structure that is
compatible with the two internal operators, addition (+) and scalar multiplication (·), of
these spaces. Among these spaces, we find, for example, spaces of regular functions and
their dualities.

Let E be a vector space over R or C.

Definition 1.8 : We say that E is a topological vector space if it is equipped with a topological
structure having the following properties:

i) The addition (x, y)→ x+ y is a continuous mapping from E × E to E.

ii) The scalar multiplication (λ, x)→ λ · x is a continuous mapping from R×E (C×E) to
E.

Example 1.1 Every normed vector space is a topological vector space. Open balls form a
fundamental system of neighborhoods for this space.

The topology of a normed vector space is invariant under translation and scaling; there-
fore, this topology can be generated using neighbourhoods of the origin 0.

Among the methods for constructing topological vector spaces, there are two approaches:
Method 1: We define a fundamental system of neighbourhoods of 0 by specifying a

family of semi-norms. An example of such a fundamental system is open balls.
Method 2: We construct a family of subspaces equipped with topologies of the type

mentioned above. This method uses the concept of an inductive limit of locally convex
spaces. It is the method applied, for example, to the space D(Ω).
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Definition 1.9 : We call a topological vector space a locally convex space if 0 has a system
of convex neighbourhoods.

Definition 1.10 : Let E be a topological vector space. We say that a set A ⊂ E is bounded
if, for every neighborhood V of 0, there exists n ∈ N such that

∀λ ∈ R : |λ| ≥ n⇒ A ⊂ λV.

We say that E is locally bounded if it contains at least one non-empty and bounded open set.

1.3 Functionals, topological duals

Definition 1.11 : We call functional any numeric function f , defined on a vector space E.

Proposition 1.5 :

1. Every linear functional on a topological vector space of finite dimension is continuous.

2. Every linear functional on a topological vector space that is continuous at a point is
continuous over the entire space.

Theorem 1.3 : Let f be a linear functional on a topological vector space E. Then, f is
continuous on E if and only if there exists a neighbourhood V of 0 such that the functional
f is bounded on V .

Definition 1.12 : Let E be a topological vector space. We call the dual of E and denote it
as E ′, the space of continuous linear functionals on E.

Definition 1.13 : Let E be a locally convex and separated topological vector space. We call
the bidual of E and denote it as E ′′, the dual space of the space E ′.

Let E be a separated, locally convex topological vector space, and let E ′ be its topological
dual.

Definition 1.14 (strong topology of E ′) : We equip E ′ with a separated and locally convex
topology, called the strong topology, by considering the fundamental system of neighbourhoods
of 0 as follows:

{x ∈ A, |f(x)| < M},M > 0, A bounded.

There exists an injection of E into E ′′, denoted by π. If π(E) = E ′′ and π is continuous
with respect to the strong topology of E ′′, we say that E is reflexive. In this case, the
spaces E and E ′′ are isomorphic.
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Definition 1.15 (weak topology of E) : The weak topology on a topological vector space
E consists of a fundamental system of open neighborhoods of 0 in the form:

{x ∈ E : |fi(x)| < M},M > 0, i = 1, · · · , n.

This topology is the weakest (least fine) topology such that linear functionals are continuous.

We say that a sequence {xj}∞j=1 converges weakly in E to x ∈ E, denoted as xj ⇀ x,
if for every f ∈ E ′, we have f(xj) converging to f(x).

Definition 1.16 (weak topology of E ′ (weak*)) : We equip E ′ with a topology called the
weak topology of E ′ by considering the fundamental system of neighbourhoods of 0 as follows:

{f ∈ E ′, |f(xi)| < M},M > 0, i = 1, · · · , n.

We say that a sequence of linear functionals {fj}∞j=1 converges weakly* in E ′ to f ∈ E ′

if for every x ∈ E, we have fj(x) converging to f(x).

1.4 Fréchet spaces

Definition 1.17 : A locally convex space is said to be metrizable if it is equipped with an
increasing family of semi-norms {pj}j∈N (i.e. ∀x ∈ E,∀j ∈ N : pj(x) ≤ pj+1(x)), such that:
for all j ∈ N : pj(f) = 0 if and only if f = 0.

Proposition 1.6 : Let {αj}j∈N be a sequence of strictly positive real numbers such that the
series

∑
j∈N

αj converges. Let E be a locally convex and metrizable space. We denote by {pj}j∈N

the family of semi-norms on this space. The function d : E × E → R defined by:

∀(f, g) ∈ E2 : d(f, g) =
+∞∑
j=0

αj min(1, pj(f − g))

is a distance on E.

Definition 1.18 (Fréchet space ) : We say that a locally convex, metrizable space equipped
with the topology defined by the above distance is a Fréchet space if it is complete.

Proposition 1.7 : Let E be a Fréchet space with the family of semi-norms {pj}j∈N, F a
Fréchet space with the family of semi-norms {qk}k∈N, and L a linear map from E to F .
Then, L is continuous if and only if:

∀k ∈ N,∃c > 0, j ∈ N,∀x ∈ E : qk(L(x)) ≤ cpj(x).
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Theorem 1.4 (Hahn-Banach) : Let E be a topological vector space, G a subspace of E,
and p a map from G to R satisfying:

∀λ > 0, ∀x ∈ E : p(λx) = λp(x), ∀x, y ∈ E : p(x+ y) ≤ p(x) + p(y).

Let g be a linear map from G to R satisfying:

∀x ∈ G : g(x) ≤ p(x).

Then, there exists a linear extension f of g to E satisfying:

∀x ∈ G : g(x) = f(x), ∀x ∈ E : f(x) ≤ p(x).

Corollary 1.1 : Let E be a normed vector space, G a subspace of E, and g ∈ G′ with the
norm: ‖g‖G′ = sup

x∈G,‖x‖≤1

|g(x)|.

Then, there exists an extension f ∈ E ′ de g with ‖f‖E′ = ‖g‖G′ .

Theorem 1.5 (Banach-Steinhaus) : Let E be a Fréchet space with the family of semi-
norms {pj}j∈N, F a Fréchet space with the family of semi-norms {qk}k∈N, and let {Lα} :

E → F be a family of continuous linear maps. Suppose that for every x ∈ E, the sequence
{Lα(x)} is bounded in F . Then:

∀k ∈ N,∃c > 0, j ∈ N,∀x ∈ E,∀α : qk(Lα(x)) ≤ cpj(x).

Corollary 1.2 : Let E be a Fréchet space, and F a metrizable locally convex space, and let
{Lj} : E → F be a sequence of continuous linear maps. Suppose that for every x ∈ E, the
sequence {Lj(x)} converges in F to an element L(x). Then:

1. The map L : E → F , which associates x ∈ E with the element L(x), is linear and
continuous.

2. xj → x in E implies that Lj(xj)→ L(x) in F .

1.5 Regular function spaces

Let Ω a non-empty open set of Rn.

Definition 1.19 : Let f : Ω→ R, and k ∈ N. We say that f is of class C k(Ω) if and only
if Dαf exists and is continuous for every multi-index α such that |α| ≤ k.

If f ∈ C k(Ω) for every k ∈ N, we say that f is of class C∞(Ω).

Proposition 1.8 Let K ⊂ Ω be a compact set, and let m ≤ k be two natural numbers. The
quantity: PK,m(f) = sup

|α|≤m,x∈K
|Dαf(x)|, f ∈ C k(Ω),

defines a semi-norm on C k(Ω).
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We equip the space C k(Ω) with a topological structure compatible with successive
derivatives up to k, using a family of semi-norms {PK,m}, where K ranges over the set
of compacts included in Ω, and m ranges over the set {0, 1, . . . , k}.
The space C k(Ω), endowed with the above topological structure, is a topological vector
space that is locally convex and separated. Moreover, C k(Ω) is a Fréchet space.
Similarly, we equip C∞(Ω) with a topological structure. Therefore, the topological
vector space C∞(Ω) is a locally convex, separated, and Fréchet space.

We provide a practical definition of convergence in C k(Ω), where k ∈ N ∪+∞:

Definition 1.20 :

i) Let k ∈ N. We say that a sequence of functions {fj} in C k(Ω) converges to f in C k(Ω)

if for every compact set K ⊂ Ω and for every natural number m ≤ k, we have:

lim
j→+∞

PK,m(fj − f) = 0.

ii) We say that a sequence of functions fj in C∞(Ω) converges to f in C∞(Ω) if for every
compact set K ⊂ Ω and for every natural number m, we have:

lim
j→+∞

PK,m(fj − f) = 0.

1.6 The space D(Ω) of test functions

Let Ω a non-empty open set of Rn.

Definition 1.21 : Let f be a function defined almost everywhere (a.e.) on Ω.

"The null open set of f is defined as the largest open set Of such that f ≡ 0 a.e."
"The support of f , denoted as supp f , is defined as Rn \ Of , the complement of Of .

Proposition 1.9 We have: supp f = {x ∈ Ω : f(x) 6= 0}

Definition 1.22 : Let K ⊂ Ω be a compacte set and let m ∈ N.

i) Dm
K (Ω) is the space of functions in Cm(Ω) with compact support included in K.

ii) Dm(Ω) is the space of functions in Cm(Ω), with compact support included in Ω.

iii) DK(Ω) is the space of functions in C∞(Ω), with compact support included in K.

iv) D(Ω) is the space of functions in C∞(Ω), with compact support included in Ω.

Remark 1.2 :

1. D(Ω) is called the space of test functions.
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2. Sometimes the following notations are used:

K (Ω) or C 0
0 (Ω) for the space D0(Ω).

Cm
0 (Ω) for the space Dm(Ω).

C∞0 (Ω) for the space D(Ω).

Example 1.2 : Let ϕ be the function defined by:

{
ϕ(x) = e

− 1
1−x2 : x ∈]− 1, 1[

ϕ(x) = 0 : x /∈]− 1, 1[

We can prove that ϕ ∈ D(R).

Proposition 1.10 : D(Ω) =
⋃

K⊂Ω, Kcompact

DK(Ω).

Proposition 1.11 :

1. If ϕ ∈ D(Ω) et ψ ∈ C∞(Ω), then: ϕ.ψ ∈ D(Ω).

2. If ϕ, ψ ∈ D(Ω) et λ, µ ∈ R, then: λϕ+ µψ ∈ D(Ω).

We equip the space D(Ω) with a topology called the strict inductive limit topology of
Fréchet spaces of the type DK(Ω), where K ranges over compacts in Ω. The topology
defined on the spaces DK(Ω) is induced by that of C∞(Ω).

We can then provide a characterization of convergence in the space D(Ω) as follows:

Definition 1.23 : We say that a sequence of test functions (ϕj) converges to ϕ in D(Ω) if
there exists a compact set K ⊆ Ω such that:

1. suppϕj ⊆ K for all j and suppϕ ⊆ K.

2. For all m ∈ N we have: lim
j→+∞

PK,m(ϕj − ϕ) = 0.

Definition 1.24 : We say that a sequence {ρj}+∞
j=1 in D(Rn) is a regularization sequence if

for every j ∈ N, there exists εj (εj → 0 as j → +∞) such that:

ρj ≥ 0,

∫
Rn
ρj(x)dx = 1, supp ρj ⊆ B(0, εj).

Such a function ϕj is called a «pic» function on B(0, εj).

Example 1.3 : Let ψ ∈ D(Rn) such that suppψ ⊆ B(0, 1), and we define ρ =
ψ∫

Rn ψ(x)dx
.

We have supp ρ ⊆ B(0, 1).

For any positive sequence (εj) tending to 0, we define ρj(x) =
1

εnj
ρ

(
x

εj

)
.

It can be verified that this sequence is a regularization sequence. This family is called an
«approximation of the identity».

Definition 1.25 : Let T : D(Ω) → R be a linear functional. We say that T is continuous
if: For every sequence {ϕj}+∞

j=1 converging to ϕ in D(Ω), the sequence {T (ϕj)} converges to
T (ϕ) in R.
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1.7 Some main results

Let Ω be a non-empty open set of Rn.

Proposition 1.12 : There always exists a sequence (called exhaustive) of compacts {Kj}+∞
j=1

in Ω such that:

1. ∀j ∈ N : Kj b Kj+1 (Kj ⊂
0

Kj+1),

2. Ω =
+∞⋃
j=0

Kj.

Theorem 1.6 (Urysohn Lemma) : Let K,F be two disjoint sets in Rn, where K is com-
pact and F is closed. Then, there exists ϕ ∈ D(Rn) such that:

i) 0 ≤ ϕ ≤ 1,

ii) ϕ = 0 in a neighbourhood V de F ,

iii) ϕ = 1 in a neighbourhood W de K.

Corollary 1.3 : Let K be a compact set of Ω, Then, there exists ϕ ∈ D(Rn) such that:

i) 0 ≤ ϕ ≤ 1,

ii) ϕ = 1 in a neighbourhood of K (we can choose it to be compact).

Definition 1.26 : Let {Ωj}+∞
j+1 be an exhaustive sequence of open sets in Ω, i.e

*) ∀j ∈ N : Ωj b Ωj+1 (Ωj ⊂ Ωj+1),

**) Ω =
+∞⋃
j=0

Ωj.

We say that a sequence {ϕj}+∞
j=1 in D(Rn) is a truncation sequence on Ω if, for every j:

i) 0 ≤ ϕj ≤ 1,

ii) ϕj = 1 in a neighbourhood of Ω.

Proposition 1.13 : Every open set admits a truncation sequence.

Theorem 1.7 (partition of unity) : Let K be a compact set included in a finite union of
open sets {Ωj}Nj=1. Then, there exists a family of functions {ϕj}Nj=1 such that:

i) ϕj ∈ D(Ωj),

ii) 0 ≤ ϕj ≤ 1,

iii)
N∑
j=1

ϕj = 1.
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1.8 Lebesgue spaces

We equip Rn with the Borel (or Lebesgue) sigma-algebra and the standard Lebesgue measure
dx = dx1dx2 · · · dxn. Let Ω be a non-empty open set in Rn.

Definition 1.27 : Let f be a measurable function on Ω. We say that f is Lebesgue integrable

if f is measurable and
∫

Ω

|f(x)|dx < +∞.

We denote by L 1(Ω) the space of Lebesgue integrable functions on Ω.

We denote by L1(Ω) the quotient space L 1(Ω)/ ∼, where ∼ is the equivalence relation
defined as follows:
For f, g ∈ L 1(Ω), f ∼ g if and only if f = g a.e on Ω.

We equip L1(Ω) with the following norm: ‖f‖L1(Ω) =

∫
Ω

|f(x)|dx.

Definition 1.28 Similarly, the space Lp(Ω) (where p > 1) is the space of equivalence classes

of measurable functions f such that |f |p ∈ L1(Ω), i.e.,
∫

Ω

|f(x)|pdx < +∞

We equip Lp(Ω) with the following norm: ‖f‖Lp(Ω) =

(∫
Ω

|f(x)|pdx
) 1

p

.

Definition 1.29 The space L∞(Ω) is the space of equivalence classes of measurable functions
f such that ess sup(f) = inf{c ≥ 0, |f | < c a.e on Ω} < +∞.

We equip L∞(Ω) with the following norm: ‖f‖L∞(Ω) = ess sup(f).

Definition 1.30 The space Lploc(Ω) (where p > 1) is the space of equivalence classes of
measurable functions f such that f ∈ Lp(K) for every compact subset K ⊂ Ω.

Theorem 1.8 :

1. The space Lp(Ω) for 1 ≤ p ≤ ∞, equipped with the norm ‖.‖Lp(Ω), is a Banach space.

2. The space L2(Ω) is indeed a Hilbert space, equipped with the inner product:

f, g ∈ L2(Ω) : (f, g) =

∫
Ω

f(x).g(x)dx.

3. The space Lp(Ω) (1 < p <∞) is uniformly convex.

4. The space Lp(Ω) (1 < p <∞) is reflexive.
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5. The space Lp(Ω) (1 ≤ p <∞) est separable.

6. L1(Ω) and L∞(Ω) are not reflexive Banach spaces. L∞(Ω)is not separable.

Theorem 1.9 (Hölder’s inequality) : Let p, p′ ∈]1,+∞[ such that
1

p
+

1

p′
= 1. Then, for

all f ∈ Lp(Ω) and g ∈ Lp′(Ω), we have f.g ∈ L1(Ω). Moreover:
‖f.g‖L1(Ω) ≤ ‖f‖Lp(Ω).‖g‖Lp′ (Ω).

p′ is called the conjugate of p, and we have: p′ =
p

p− 1
.

In particular, we have the Cauchy-Schwarz inequality:
For all f, g ∈ L2(Ω): ‖f.g‖L1(Ω) ≤ ‖f‖L2(Ω).‖g‖L2(Ω).

Remark 1.3 :

i) Let p1, p2, · · · , pk ∈ [1,+∞] and p ≥ 1 such that
1

p
=

1

p1

+
1

p2

+ · · · + 1

pk
. Let f1 ∈

Lp1(Ω), f2 ∈ Lp2(Ω), · · · , fk ∈ Lpk(Ω), and f = f1.f2. · · · .fk. Then: f ∈ Lp(Ω), and
we have the generalized Hölder’s inequality:

‖f‖Lp(Ω) ≤ ‖f1‖Lp1 (Ω).‖f2‖Lp2 (Ω). · · · .‖fk‖Lpk (Ω).

ii) If f ∈ Lp(Ω) ∩ Lq(Ω) with 1 ≤ p ≤ q ≤ +∞ then: f ∈ Lr(Ω) for all p ≤ r ≤ q and we
have the interpolation inequality:

∀θ ∈ [0, 1] : ‖f‖Lr(Ω) ≤ ‖f‖θLp(Ω).‖f‖1−θ
Lq(Ω).

Theorem 1.10 : Let p, q ∈ [1,+∞] be such that p ≤ q. Then:

1. Lqloc(Ω) ⊂ Lploc(Ω).

2. Lq(Ω) ⊂ Lp(Ω) if Ω is bounded.

Theorem 1.11 : Let f be a measurable function on Ω such that
∫
A

f(x)dx = 0 for all

compact set (open set) A ⊂ Ω. Then: f = 0 a.e on Ω .

Theorem 1.12 (Representation of Riez) : Let p ∈]1,+∞[, and let ϕ ∈ (Lp(Ω))′, the
dual of Lp(Ω). Then, there exists g ∈ Lp′(Ω) (where p′ is the conjugate of p) such that:

〈ϕ, f〉 =

∫
Ω

f(x).g(x)dx,∀f ∈ Lp(Ω).

We can then identify (Lp(Ω))′ with Lp′(Ω).
One can also identify (L1(Ω))′ with L∞(Ω). For ϕ ∈ (L1(Ω))′, there exists g ∈ L∞(Ω)

such that:
〈ϕ, f〉 =

∫
Ω

f(x).g(x)dx,∀f ∈ L1(Ω).

We have: L1(Ω) ⊂ (L∞(Ω))′, with strict inclusion.
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Theorem 1.13 (dominate convergence of Lebesgue) : Let {fj}j∈N de a sequence of
functions in Lp(Ω) (p ∈ [1,+∞[). Assume that:

1. {fj} converges a.e. to a function f .

2. There exists a function g ∈ Lp(Ω) such that |fj| ≤ g a.e for all j ∈ N.

Then: f ∈ Lp(Ω) and fj
Lp(Ω)−→ f .

Remark 1.4 One can replace the sequence {fj}j∈N with a family of functions {ft}t∈(a,b)

where a, b are in the extended real numbers. The limit will be taken at the point t0 ∈ [a, b].

Theorem 1.14 : The space D(Ω) is dense in the space Lp(Ω) for all p ∈ [1,+∞[.

1.9 Measure of Radon

We equip Rn with the Borel sigma-algebra B(Rn), and let Ω be a non-empty open set in Rn.

Definition 1.31 : A Borel measure on Ω, finite on compacts, is a measure from B(Ω) to
[0,+∞] for which we have µ(K) <∞ for every compact set K ⊂ Ω.

Such a measure is regular, i.e., for any measurable set A ⊂ Ω, we have:

µ(A) = inf{µ(O), O ⊃ A open set},
= sup{µ(K), K ⊂ A compact set}.

Definition 1.32 :

i) A Radon measure (signed) is the difference of two Borel measures, both finite on compacts.

ii) We denote by M (Ω) the space of Radon measures on Ω.

Proposition 1.14 : Let f ∈ L1
loc(Ω). Then, the function A ∈ B(Ω) 7→

∫
A

f(x)dx defines a

Radon measure on Ω. Such a measure is called absolutely continuous, and f is its density.

Remark 1.5 : We have: L1
loc(Ω) ⊂ M (Ω). The space M (Ω) is larger than L1

loc(Ω). For
example, the Dirac measure δx at the point x, defined by:

δx(A) =

{
0 : x /∈ A,
1 : x ∈ A,

(1.1)

is a Radon measure but is not a function.
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Theorem 1.15 (Riesz) : One can identify the space M (Ω) with the space K ′(Ω), the
topological dual of the space K (Ω) of continuous functions with compact support in Ω, in
such a way that:

∀µ ∈M (Ω),∃cµ > 0,∀ϕ ∈ K (Ω),∀K ⊂ Ω (compact) :

∣∣∣∣∫
K

ϕdµ

∣∣∣∣ ≤ cµ sup
x∈K
|ϕ(x)|.

The space M (Ω), considered as the dual of K (Ω), is a Fréchet space.

1.10 Regular domains , integration on the boundary

Let Ω a bounded open set of Rn and let Γ = ∂Ω the boundary of Ω. Q, Q+, and Q0 are
defined as follows:

Q := {x ∈ Rn : |x′| < 1; |xn| < 1}

Q+ := {(x′, xn) ∈ Rn : |x′| < 1; 0 < xn < 1}

Q0 := {(x′, 0) ∈ Rn−1 × {0} : |x′| < 1; }

Definition 1.33 : We say that Ω is of class C k if for every x ∈ Γ, there exists a pair (U,ϕ),
where U is an open set in Rn containing x, and ϕ ∈ C k(U) is a diffeomorphism from U to
Q such that for ψ = ϕ−1, we have:

1. ϕ ∈ C k(Q);

2. ϕ(U ∩ Γ) = Q0;

3. ϕ(U ∩ Ω) = Q+;
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Definition 1.34 : We denote by ν(x) the outward unit normal vector at point x ∈ Γ. If u
is a sufficiently regular function defined on Ω, we have the normal derivative of u on Γ:

∂u

∂ν
= ∇u · ν

Here, ∇u is the gradient of the function u, and ” · ” represents the dot product between the
gradient and the unit normal vector ν. This expression represents the normal derivative of
u with respect to the outward normal direction on the boundary Γ.

Remark 1.6 : If Ω is of class C k, one can extract a parameterization xi = φ(y1, y2, . . . , yn−1),
where φ is of class C k. In this case, Γ is the graph of φ in an orthonormal coordinate system,
and we have:

νy =
(∇φ(y),−1)√
1 + (∇φ(y))2

.

We can say that the boundary of an open set of class C k has a parameterization by a function
of class C k.

Definition 1.35 : Ω is Lipschitz if Γ has a parameterization by a Lipschitz function.

Proposition 1.15 : Suppose that Ω is of class C 1. We can always decompose Γ into a
disjoint union, such that Γi is the graph of a function φi in an orthonormal coordinate
system as described in the previous remark. We define the line integral for a function f

defined on Γ as follows:∫
Γ

fdσ(x) =
∑
i

∫
Γi

f(y, φ(y))
√

1 + (∇φi(y))2dy

Theorem 1.16 [ Ostrogradsky formula ] : Let Ω be a bounded open set of class C 1, and
Γ its boundary. Let F be a vector field, i.e., a function in C 1(Ω) with values in Rn. Then:∫

Ω

divF (x)dx

∫
Γ

F (x).ν(x)dσ(x).

This equation represents a relationship between the divergence of the vector field over the
domain Ω and its line integral over the boundary Γ.

Corollary 1.4 [ Green formula ] : Let Ω be a bounded open set of class C 1, and Γ its
boundary. Let u be a function in C 2(Ω,R) ∩ C 2(Ω,R), and v be a function in C 1(Ω,R).
Then: ∫

Ω

v(x)∆u(x)dx+

∫
Ω

∇v(x).∇u(x)dx =

∫
Γ

v(x)
∂u

∂ν
(x)dσ(x).

This equation represents a relationship involving the Laplacian, gradients, and normal deriva-
tives of the functions u and v over the domain Ω and its boundary Γ.
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Exercises

Exercise 1.1 : Consider the function ϕ defined on R as follows:

ϕ(x) =

{
e
− 1

1−x2 : |x| < 1

0 : |x| ≥ 1

We define the sequence of functions {ϕj}+∞
j=1 as follows: ϕj(x) = ϕ(jx).

1. Is ϕj ∈ C∞(R)?

2. Provide the support of ϕj.

3. Provide a generalization of ϕ to Rn.

Exercise 1.2 : Let ϕ ∈ D(]0, 2[) such that ϕ ≥ 0 and ϕ = 1 on
[

1

2
,
3

2

]
. Let sequence of

functions (ϕj)j∈N defined by: ∀j ∈ Z,∀x ∈ R : ϕj(x) = ϕ(x+ j).

1. Consider the function ψ defined as follows: ψ(x) =
∑
j∈Z

ϕj(x).

Is ψ well-defined? Is ψ > 0?

2. Consider the sequence of functions (uj) defined as follows:

∀j ∈ Z,∀x ∈ R : uj(x) =
ϕj(x)

ψ(x)
.

Is u in D(Rn)?

Does it satisfy the relation: ∀x ∈ R :
∑
j∈Z

uj(x) = 1?

Exercise 1.3 : Let K ⊆ Rn be a compact set, and let ϕ ∈ D(Rn). Are the following two
implications true?

1. ψ = 0 in a neighbourhood of K ⇒ suppψ ⊂ (Rn\K).

2. ψ = 0 on K ⇒ suppψ ⊂ (Rn\K).

Exercise 1.4 : Let ϕ ∈ D(Rn), h ∈ Rn\{0}.

For all t ∈ R∗ we set: ϕt(x) =
ϕ(x+ th)− ϕ(x)

t
.

1. Show that ϕt ∈ D(Rn) for all t 6= 0

2. Show that as t tends to 0, ϕt converges in D(Rn) to a function that we will determine.
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Exercise 1.5 : Consider the sequence of functions {fj}+∞
j=1 in D(R) defined by:

fj(x) =


1

2j
exp

(
− 1

1− x2

n2

)
: |x| < j

0 : |x| ≥ j

Show that, for each k ≥ 0, the sequence of functions {f (k)
j }+∞

j=1 converges uniformly on
every compact set K to a function f ∈ D(R) which will be specified.

Do we have convergence in D(R)?

Exercise Solutions

Solution 1.1 :

ϕ(x) =

{
e
− 1

1−x2 : |x| < 1

0 : |x| ≥ 1
, ϕj(x) = ϕ(jx).

1. To show that ϕj ∈ C∞(R), it is sufficient to demonstrate that ϕ ∈ C∞(R).

t is clear that ϕ is of class C∞ on R\{−1, 1}. We show that ϕ is infinitely differentiable
at the points −1 and 1. We have: lim

x→−1
ϕ(x) = lim

x→1
ϕ(x) = 0.

Making the change of variable y =
1

1− x2
on ]− 1, 1[, we find:

lim
x→−1

ϕ(x) = lim
x→1

ϕ(x) = lim
y→+∞

e−y = 0.

lim
x→−1

ϕ(x)− ϕ(−1)

x+ 1
= lim

x→1

ϕ(x)− ϕ(1)

x− 1
= 0.

Making the change of variable y =
1

1− x2
on ]− 1, 1[, we obtain:

lim
x
>−→−1

ϕ(x) = lim
x
<−→1

ϕ(x) = lim
y−→+∞

e−y = 0.

Therefore, ϕ is continuous on R.

lim
x
<−→−1

ϕ(x)− ϕ(−1)

x+ 1
= lim

x
>−→1

ϕ(x)− ϕ(1)

x− 1
= 0.

Making the change of variable y =
1

1 + x
in the right neighbourhood of −1 and y =

1

1− x
in the left neighbourhood of −1, we obtain:

lim
x
>−→−1

ϕ(x)− ϕ(−1)

x+ 1
= lim

x
<−→1

ϕ(x)− ϕ(1)

x− 1
= lim

y−→+∞
ye−

y2

2y−1 = 0.

Therefore, ϕ est is differentiable on R and we have: ϕ′(x) =

 −
2x

(1− x2)2
e
− 1

1−x2 : |x| < 1

0 : |x| ≥ 1

Following the same method, we find that ϕ ∈ C∞(R), and therefore, ϕj ∈ C∞(R).

2. We have: suppϕ = [−1, 1] and pour tout x ∈ R : x ∈ suppϕj iff jx ∈ [−1, 1].

Then, suppϕj =

[
−1

j
,
1

j

]
.
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3. Generalization of ϕ to Rn: ϕ(x) =

{
e
− 1

1−‖x‖2 : ‖x‖ < 1

0 : ‖x‖ ≥ 1
.

Solution 1.2 : ϕ ∈ D(]0, 2[), ϕ ≥ 0, ϕ = 1 sur
[

1

2
,
3

2

]
, ∀j ∈ Z, ∀x ∈ R : ϕj(x) = ϕ(x+ j).

1. ψ(x) =
∑
j∈Z

ϕj(x), x ∈ R.

Let j ∈ Z. since suppϕ ⊂]0, 2[, we have for all x ∈ R : ϕj(x) = 0 if j ≤ −x ou
j ≥ 2− x. Hence: ψ(x) =

∑
−x<j<2−x

ϕj(x), i.e, ψ is defined.

There exists always j ∈ Z such that j + x ∈
[

1

2
,
3

2

]
. Then, ψ(x) ≥ ϕ(1) = 1 > 0.

2. ∀j ∈ Z,∀x ∈ R : uj(x) =
ϕj(x)

ψ(x)
.

since ϕj ∈ D(Rn) et ψ ∈ C∞(Rn), ψ > 0, Then, u ∈ D(Rn)?

∀x ∈ R :
∑
j∈Z

uj(x) =
∑
j∈Z

ϕj(x)

ψ(x)
=

∑
j∈Z

ϕj(x)

ψ(x)
=
ψ(x)

ψ(x)
= 1.

Solution 1.3 : K ⊆ Rn compact, ψ ∈ D(Rn).

1. ψ = 0 in the neighbourhood of K ⇒ suppψ ⊂ (Rn\K) true, indeed:
Assume that ψ = 0 in the neighbourhood of K. Then: there exists an open set O ⊃ K

such that ψ = 0 on O. Then, O included in the null open of ψ.
Then, suppψ ⊂ Rn\O ⊂ (Rn\K).

2. ψ = 0 on K ⇒ suppψ ⊂ (Rn\K) false. Here’s a counterexample:
Consider ϕ ∈ D(Rn) such that suppϕ ⊂ B(0, 2) and ϕ = 1 on B(0, 1). Setting:
ψ(x) = θ(x).ϕ(x), où θ(x) = x2

1 + · · ·+ x2
n.

ψ ∈ D(Rn) and ψ = 0 on the compact set K = {0}, but suppψ ⊃ B(0, 1).
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Solution 1.4 : ϕ ∈ D(Rn), h ∈ Rn\{0}.∀t ∈ R∗ : ϕt(x) =
ϕ(x+ th)− ϕ(x)

t
.

1. The functions: x 7→ ϕ(x+ th) and x 7→ ϕ(x) belong to D(Rn) with t being a constant
with respect to x. Therefore, ϕt ∈ D(Rn) for all t 6= 0.

2. We have: lim
t→0

ϕt(x) = ϕ′h(x), where ϕ′h is the derivative of ϕ in the direction of the
vector h. Since ϕ ∈ D(Rn), then ϕ′h ∈ D(Rn). Furthermore, suppϕ′h ⊂ suppϕ.

For t small enough, we can find a compact set K ⊂ Rn such that suppϕt ⊂ K, and of
course, suppϕ′h ⊂ K.

Finally, for any m ∈ N, we have:

lim
t→0

PK,m(ϕt(x)− ϕ′h(x)) = lim t→ 0 sup
x∈K,|α|≤m

|Dα(ϕt(x)− ϕ′h(x))| = 0.

Therefore, if t tends to 0, ϕt converges in D(Rn) to ϕ′h.

Solution 1.5 : {fj}j∈N sequence of functions de D(R) defined by :

fj(x) =


1

2j
exp

(
− 1

1− x2

j2

)
: |x| < j

0 : |x| ≥ j

Consider the function ϕ, defined as follows:

ϕ(x) =

 exp

(
− 1

1− x2

)
: |x| < 1

0 : |x| ≥ 1

Similar to the exercise 1.1, we can show that ϕ ∈ D(R). Furthermore, we have fj =
1

2j
ϕ◦gn

where gj(x) =
x

j
. Therefore, fj ∈ D(R) and supp fj = [−j, j].

For any k ∈ N, we have: f (k)
j =

1

jk.2j
ϕ(k) ◦ gj. Therefore, lim

j→+∞
f

(k)
j (x) = 0.

Let K be a compact set in R. We have:

sup
x∈K
|f (k)
j (x)− 0| = 1

jk.2j
supx ∈ K|ϕ(k) ◦ gj| −→ 0 as j → +∞.

Therefore, for each k ≥ 0, the sequence of functions {f (k)
j } converges uniformly on every

compact set K to the function f = 0.
However, since supp fj = [−j, j], we cannot find a compact set K that contains all the

supports of the sequence {fj}. Therefore, there is no convergence in D(R).
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CHAPTER 2

DISTRIBUTIONS: DEFINITIONS AND
PROPERTIES

In this chapter, we provide the definition of a distribution, differentiation, along with some
examples and properties. First, we provide a brief motivation.

The Dirac delta function on R is defined as follows:

δ(A) =

{
1 : 0 ∈ A,
0 : 0 /∈ A,

(2.1)

and the function of Heaviside H defined by:

H(x) =

{
1 : x ≥ 0,

0 : x < 0,
(2.2)

can be considered as Radon measures on R, i.e., continuous linear functionals on K (R).

I) Let f ∈ L1
loc(R) be a differentiable function such that f ′ ∈ L1

loc(R). Then, both f and
f ′ can be considered as Radon measures. Thus, for any ϕ ∈ K (R), for ε small enough, we
consider the perturbation fε(x) = f(x + ε) of f , which is also in L1

loc(R). The Dominated
Convergence Theorem of Lebesgue (Theorem 1.13 and Remark 1.4) allows us to write:

lim
ε→0

1

ε

[∫ +∞

−∞
f(x+ ε)ϕ(x)dx−

∫ +∞

−∞
f(x)ϕ(x)dx

]
= lim

ε→0

∫ +∞

−∞

f(x+ ε)− f(x)

ε
ϕ(x)dx

=

∫ +∞

−∞
f ′(x)ϕ(x)dx

We have: lim
ε→0

fε − f
ε

= f ′, in K ′(R) = M (R).

II) H ∈ L1
loc(R), but it is not differentiable in the usual sense. We will seek an alternative

notion of differentiation for H. Let ϕ ∈ K (R).

29



Distributions and Sobolev espaces Master 1 PDE and applications

On the other hand, for Φ as an antiderivative of ϕ and ε > 0 sufficiently small, we have:

lim
ε→0

〈Hε −H,ϕ〉
ε

= lim
ε→0

∫ +∞

−∞

H(x+ ε)−H(x)

ε
ϕ(x)dx

= lim
ε→0

1

ε

[∫ +∞

−∞
H(x+ ε)ϕdx−

∫ +∞

−∞
H(x)ϕdx

]
= lim

ε→0

1

ε

[∫ +∞

−ε
ϕdx−

∫ +∞

0

H(x)ϕdx

]
= lim

ε→0

1

ε

∫ 0

−ε
ϕ(x)dx

= lim
ε→0

Φ(0)− Φ(−ε)
ε

= ϕ(0)

= δ(ϕ).

We say that H ′ exists in the weak sense on K (R), and we write: H ′ = δ.

II) Let δε be the perturbation of δ for ε small enough. Then, for ϕ ∈ K (R), we have:

lim
ε→0

〈δε − δ, ϕ〉
ε

= lim
ε→0

ϕ(ε)− ϕ(0)

ε
.

This limit exists only for differentiable functions with compact support, i.e., for ϕ ∈ D1(R).
Therefore, δ′ is not a measure. Specifically, δ′ ∈ (D1(R))′.

Following this pattern, δ′′, δ3, . . . belong to the spaces (D2(R))′, (D3(R))′, . . ..
The space that encompasses all of these spaces is called the space of distributions, it

is the topological dual of D(R).

In the following, Ω is a non-empty open set in Rn.

2.1 Definitions and examples

Definition 2.1 : We call a distribution on Ω any continuous linear form on the vector space
D(Ω).

In other words, a linear form T : D(Ω)→ R is a distribution if and only if:
For every compact set K ⊂ Ω, there exist m ∈ N and M > 0 such that:

∀ϕ ∈ DK(Ω) : |〈T, ϕ〉| ≤M.PK,m(ϕ), (2.3)

where T (ϕ) is denoted by 〈T, ϕ〉 (duality bracket).
We denote by D ′(Ω) the space of distributions on D(Ω).

Definition 2.2 (convergence in D ′(Ω)) : We say that a sequence of distributions {Tj}+∞
j=1

converges to T in D ′(Ω) if:

∀ϕ ∈ D(Ω), lim
j→+∞

〈Tj, ϕ〉 = 〈T, ϕ〉
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Proposition 2.1 : Let Tj+∞
j=1 be a sequence of distributions. Suppose that the numerical

sequence 〈Tj, ϕ〉 converges to a limit `(ϕ). We define a linear form T as follows:

∀ϕ ∈ D(Ω) : 〈T, ϕ〉 = `(ϕ).

Then, T ∈ D ′(Ω).

Proof : One can simply apply Corollary 1.2 of the Banach-Steinhaus theorem, considering
the space D(Ω) as a Fréchet space and R as a Banach space (hence, locally convex and
metrizable).

Definition 2.3 (order of distribution ) : If T ∈ D ′(Ω), we know that for every compact
set K ⊂ Ω, there exist m ∈ N and M > 0 such that

∀ϕ ∈ DK(Ω) : |〈T, ϕ〉| ≤M.PK,m(ϕ)

If m is independent of K, we say that the distribution T is of finite order.
The order of T is the smallest m that satisfies this property.

Remark 2.1 : It can be shown that a distribution of order m is a continuous linear form on
Dm(Ω), and conversely, if we equip the space Dm(Ω) with the topological structure generated
by the family of semi-norms Pk,j(Ω) (where 0 ≤ j ≤ m), it is easy to see that if T is a
distribution of order m on Ω, then T ∈ (Dm(Ω))′ and the inverse.

We denote by E ′m(Ω) the space of distributions of orderm. This space can be equipped
with either the strong topology or the weak topology (see §1.3)

Remark 2.2 : Radon measures on Ω are distributions of order 0 on Ω.

Definition 2.4 (positive distribution ) : We say that a distribution T on Ω is positive
if:

∀ϕ ∈ D(Ω) : ϕ ≥ 0⇒ 〈T, ϕ〉 ≥ 0

Example 2.1 : The functional defined by 〈T, ϕ〉 = 0 for all ϕ ∈ D(Ω) is the zero distribution
on Ω.

Example 2.2 : Let c ∈ R, and let T be the functional defined as follows:

∀ϕ ∈ D(Ω) : 〈T, ϕ〉 =

∫
Ω

c.ϕ(x)dx.

T is the constant distribution that equals c on D(Ω); it is a Radon measure.
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Indeed, consider K ⊂ Ω as a compact set and ϕ ∈ DK(Ω). We have:

|〈T, ϕ〉| =

∣∣∣∣∫
Ω

c.ϕ(x)dx

∣∣∣∣
≤ |c|.

∫
Ω

|ϕ(x)|dx

= |c|.
∫
K

|ϕ(x)|dx

≤ |c|.mes(K). sup
x∈K
|ϕ(x)|

= |c|.mes(K).PK,0(ϕ).

Example 2.3 : The Dirac measure δa at the point a ∈ Rn is defined as follows:

∀ϕ ∈ D(Ω) : 〈δa, ϕ〉 = ϕ(a)

δa is a Radon measure (in particular: δ0 = δ).
Indeed, let K ⊂ Ω be a compact set and ϕ ∈ DK(Ω). Then cases:

if a ∈ K, then, |ϕ(a)| ≤ sup
x∈K
|ϕ(x)|,

If a /∈ K, we have |ϕ(a)| = 0 ≤ sup
x∈K
|ϕ(x)|.

Hence:
|〈δa, ϕ〉| = |ϕ(a)|

≤ sup
x∈K
|ϕ(x)|

= PK,0(ϕ).

Example 2.4 : Consider the distribution T defined for any point a ∈ Rn and for any α ∈ Nn

as follows:
∀ϕ ∈ D(Ω) : 〈T, ϕ〉 = Dαϕ(a)

T is a distribution of order m ≤ |α| (it can be shown that m = |α|).
Indeed, consider K ⊂ Ω as a compact set and ϕ ∈ DK(Ω). As before:

|〈T, ϕ〉| = |Dαϕ(a)|
≤ sup

x∈K
|Dαϕ(x)|

≤ sup
x∈K

sup
|β|≤|α|

|Dβϕ(x)|

= PK,|α|(ϕ).

Now, let ψ ∈ D(Ω) such that ψ(a) = 1 (the function ψ exists according to the Urysohn’s
lemma, see Theorem 1.6). We define ϕ0(x) = (x − a)αψ(x) for all x ∈ Ω. Then, for all
β ∈ Nn such that |β| ≤ |α|, we have:

Dβϕ0(x) =
∑
γ≤β

Cβ
αD

β(x− a)α.Dβ−γψ(x)

=
∑
γ≤β

Cβ
α(x− a)β−γ.Dβ−γψ(x)
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Then: Dβϕ0(a) = 0 pour |β| < |α| et Dβϕ0(a) = 1.

We deduce that |〈T, ϕ0〉| = PK,|α|(ϕ0), hence: T is of order |α|.

Example 2.5 : Let f ∈ L1
loc(Ω). We can associate a distribution Tf defined as follows:

∀ϕ ∈ D(Ω) : 〈Tf , ϕ〉 =

∫
Ω

f(x)ϕ(x)dx

The distribution Tf is a Radon measure on Ω. Writing |〈Tf , ϕ〉| = |〈f, ϕ〉| for ϕ ∈ D(Ω).
Indeed, consider K ⊂ Ω as a compact set and ϕ ∈ DK(Ω). Then:

|〈Tf , ϕ〉| =

∣∣∣∣∫
Ω

f(x)ϕ(x)dx

∣∣∣∣
≤

∫
Ω

|f(x)ϕ(x)|dx

=

∫
K

|f(x)ϕ(x)|dx

≤ sup
x∈K
|ϕ(x)|

∫
K

|f(x)|dx

= ‖f‖L1(K).PK,0(ϕ).

Example 2.6 : The Heaviside function H defined by (2.2) belongs to L1
loc(R), and it defines

a distribution on D(R). It is a Radon measure.

Example 2.7 : For f ∈ L1
loc(R2), we define:

∀ϕ ∈ D(R3) : 〈T, ϕ〉 =

∫ +∞

−∞

∫ +∞

−∞
f(x, y)ϕ(x, y, 0)dxdy

T is a Radon measure, known as the simple layer distribution with density f .
Indeed, consider K ⊂ Ω as a compact set and ϕ ∈ DK(Ω). Let K ′ = K ∩ (R2× 0), which

is a compact set in R2. Then:

|〈T, ϕ〉| =

∣∣∣∣∫ +∞

−∞

∫ +∞

−∞
f(x, y)ϕ(x, y, 0)dxdy

∣∣∣∣
≤

∫ +∞

−∞

∫ +∞

−∞
|f(x, y)ϕ(x, y, 0)|dxdy

=

∫
K′
|f(x, y)ϕ(x, y, 0)|dxdy

≤ sup
(x,y,z)∈K

|ϕ(x, y, z)|
∫
K′
|f(x, y)|dxdy

= ‖f‖L1(K′).PK,0(ϕ).

Example 2.8 : For f ∈ L1
Loc(R2), we set:

∀ϕ ∈ D(R3) : 〈T, ϕ〉 =

∫ +∞

−∞

∫ +∞

−∞
f(x, y)

∂ϕ

∂z
(x, y, 0)dxdy

T is a distribution of order 1, called the double layer distribution with density f .
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Indeed, consider K as a compact set in Ω, and ϕ in DK(Ω). Let K ′ = K ∩ (R2 × {0}),
which is a compact set in R2. Then:

|〈T, ϕ〉| =

∣∣∣∣∫ +∞

−∞

∫ +∞

−∞
f(x, y)

∂ϕ

∂z
(x, y, 0)dxdy

∣∣∣∣
≤

∫ +∞

−∞

∫ +∞

−∞
|f(x, y)

∂ϕ

∂z
(x, y, 0)|dxdy

=

∫
K′
|f(x, y)

∂ϕ

∂z
(x, y, 0)|dxdy

≤ sup
(x,y,z)∈K

|ϕ(x, y, z)|
∫
K′
|f(x, y)|dxdy

= ‖f‖L1(K′).PK,1(ϕ).

Now, let ψ ∈ D(R) be such that ψ(x, y, z) = 1 in a compact neighbourhood K0 of (0, 0, 0) (ψ

exists according to Urysohn’s lemma, see Theorem 1.6).

Setting: ϕ0(x, y, z) = zψ(x, y, z). Then:
∂ϕ0

∂z
(x, y, 0) = ψ(x, y, 0) = 1 on

0

K0.
We deduce that PK0,1(ϕ) ≥ 1.

Thus, T is of order 1.

Example 2.9 : The Cauchy principal value distribution vp 1
x
is a distribution of order 1

defined as follows:

∀ϕ ∈ DK(R) : 〈vp 1
x
, ϕ〉 = lim

ε→0

∫
|x|>ε

ϕ(x)

x
dx.

Indeed, let a > 0, K ⊂ [−a, a] be a compact set and ϕ ∈ DK(R).

Setting: ψ(x) =

∫ 1

0

ϕ′(tx)dt. Therefore, ψ(0) = ϕ′(0) et
ϕ(x)

x
=
ϕ(0)

x
+ ψ(x) for x 6= 0.

∫
|x|>ε

ϕ(x)

x
dx =

∫ −ε
−a

ϕ(x)

x
dx+

∫ a

ε

ϕ(x)

x
dx

=

∫ −ε
−a

[
ϕ(0)

x
+ ψ(x)

]
dx+

∫ a

ε

[
ϕ(0)

x
+ ψ(x)

]
dx

=

[
−ϕ(0)

x

]−ε
−a

+

[
−ϕ(0)

x

]ε
a

+

∫
|x|>ε

ψ(x)dx

=

∫
|x|>ε

ψ(x)dx.

Hence, 〈vp 1
x
, ϕ〉 = lim

ε→0

∫
|x|>ε

ϕ(x)

x
dx = lim

ε→0

∫
|x|>ε

ψ(x)dx =

∫ a

−a
ψ(x)dx.
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Noting that
∫ a

−a
ψ(x), dx exists because ψ is continuous, then

|〈vp 1
x
, ϕ〉| =

∣∣∣∣∫ a

−a
ψ(x)dx

∣∣∣∣
=

∣∣∣∣∫ a

−a

∫ 1

0

ϕ′(tx)dtdx

∣∣∣∣
≤

∫ a

−a

∫ 1

0

|ϕ′(tx)|dtdx

≤ 2a sup
x∈K
|ϕ′(x)|

= 2aPK,1(ϕ)

So, vp 1
x
is a distribution of order less than or equal to 1.

To show that vp 1
x
is of order 1 see exercise 2.2

If we can express a distribution T on Ω in the form
∫

Ω

f(x)ϕ(x), dx, we say that T is

a regular distribution, and f is the associated function to T . Otherwise, we say that
T is a singular distribution.
For example, the Heaviside function defines a regular distribution, and the Dirac mea-
sure is a singular distribution.

2.2 Properties and Results

Proposition 2.2 : Let (fj) a sequence in L1(Rn) such that for all j ∈ N:

1. fj ≥ 0 and
∫
Rn
fj(x)dx = 1,

2. supp fj ⊂ B(0, εj) where lim
j→+∞

εj = 0. for all j ∈ N.

Then: fj → δ in D ′(Rn).

Proof : Let ϕ ∈ D(Rn). since supp fj ⊂ B(0, εj) we have:

〈fj, ϕ〉 =

∫
Rn
fj(x)dx =

∫
B(0,εj)

fj(x)dx = 1,

〈fj, ϕ〉 =

∫
Rn
fj(x)ϕ(x)dx =

∫
B(0,εj)

fj(x)ϕ(x)dx.
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We deduce that:

|〈fj, ϕ〉 − 〈δ, ϕ〉| =

∣∣∣∣∣
∫
B(0,εj)

fj(x)ϕ(x)dx− ϕ(0)

∣∣∣∣∣
=

∣∣∣∣∣
∫
B(0,εj)

fj(x)ϕ(x)dx−
∫
B(0,εj)

fj(x)ϕ(0)

∣∣∣∣∣
=

∣∣∣∣∣
∫
B(0,εj)

fj(x)(ϕ(x)− ϕ(0))dx

∣∣∣∣∣
≤

∫
B(0,εj)

fj(x)|ϕ(x)− ϕ(0)|dx

≤ sup
x∈B(0,εj)

|ϕ(x)− ϕ(0)|
∫
B(0,εj)

|fj(x)dx

= sup
x∈B(0,εj)

|ϕ(x)− ϕ(0)|.

For all j ∈ N, there exists xj ∈ B(0, εj) such that sup
x∈B(0,εj)

|ϕ(x)−ϕ(0)| = |ϕ(xj)−ϕ(0)| (since

B(0, εj) is a compact set and ϕ is continuous). Moreover, we have: lim
j→+∞

ϕ(xj) = ϕ(0). Then:

0 ≤ lim
j→+∞

|〈fj, ϕ〉 − 〈δ, ϕ〉| ≤ lim
j→+∞

|ϕ(xj)− ϕ(0)| = 0.

Hence, the result.

Theorem 2.1 (Lemma of Dubois-Reymond) : Let f ∈ L1
loc(Ω), and Tf be the distribu-

tion defined as follows:

∀ϕ ∈ D(Ω) : 〈Tf , ϕ〉 =

∫
Ω

f(x)ϕ(x)dx

The following two properties are equivalent:

i) Tf = 0 in D ′(Ω),

ii) f = 0 a.e in Ω.

Therefore, if f, g ∈ L1
loc(Ω), then f = g almost everywhere on Ω if and only if Tf = Tg.

Proof : The implication ii)⇒ i) is immediate. We will now prove the implication i)⇒ ii).
First Method: Let K ⊂ Ω be a compact set. We define δK = d(K,CΩ

Rn). Choose
ε < δK , and let χK be the characteristic function of K.

Consider a sequence {ψj}j∈N∗ ⊂ D(Ω) where 0 ≤ ψj ≤ 1, ψj = 1 on K, and suppψj ⊂
B(0, ε

j
). (The existence of such a sequence follows from the Urysohn’s Lemma, see Theorem

1.6).
The sequence {ψj}j ∈ N converges pointwise to χK . Consequently, {f ·ψj}j∈N converges

pointwise to f · χK . Moreover, we have |f · ψj| ≤ f · χK .
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By the Dominated Convergence Theorem (Theorem 1.13), we can write:∫
K

f(x)dx =

∫
Ω

f(x).χK(x)dx = lim
j→+∞

∫
Ω

f(x).ψj(x)dx = 0

Since K is arbitrary, we can conclude from Theorem 1.11 that f = 0 a.e. on Ω.
Second Method: Let {Kj}j∈N be an exhaustive sequence of Ω (see Proposition 1.12).

Define Oj =
◦
Kj. We will show that f = 0 on every open set (Oj)j∈N.

Let fj = f|Oj, then fj ∈ L1(Oj) (because Oj is bounded). Due to the density of D(Oj) in
L1(Oj), for ε > 0, there exists ψjε ∈ D(Oj) such that ‖ψjε − fj‖L1(Oj) < ε.

Now, let ϕ ∈ D(Oj). Since
∫
Oj

fj(x)ϕ(x)dx =

∫
Ω

f(x)ϕ(x)dx = 0, we obtain:

∫
Oj

ψjε(x)ϕ(x) =

∫
Oj

(ψjε(x)− fj(x))ϕ(x)dx+

∫
Oj

fj(x)ϕ(xdx) =

∫
Oj

(ψjε(x)− fj(x))ϕ(x)dx.

Then: ∣∣∣∣∣
∫
Oj

ψjε(x)ϕ(x)dx

∣∣∣∣∣ ≤
∫
Oj

|ψjε(x)− fj(x)|.|ϕ(x)|dx ≤ ε sup
x∈Kj
|ϕ(x)|.

Let η > 0. Set: ϕ =
ψjε√

η2 + (ψjε)2

∈ D(Oj). Then: |ϕ| ≤ 1 and ψjε.ϕ =
(ψjε)

2√
η2 + (ψjε)2

.

So,
∫
Oj

(ψjε)
2√

η2 + (ψjε)2

≤ ε.

As we let η tend to 0, we obtain, according to the Dominated Convergence Theorem (The-

orems 1.13 and 1.4):
∫
Oj

|ψjε| ≤ ε. Hence:

‖fj‖L1(Oj) ≤ ‖fj − ψjε‖L1(Oj) + ‖ψjε‖L1(Oj) ≤ 2ε,∀ε > 0.

This implies that |fj|L1(Oj) = 0, i.e., f = 0 a.e. on Oj, and consequently, within Kj, for all
j ∈ N. Since {Kj} is a covering of Ω, we can conclude that f = 0 a.e. in Ω.

Proposition 2.3 : Let (fj) be a sequence in L1(Ω) converge a.e. to a function f .
Assume that there exists a function g ∈ L1(Ω) such that fj ≤ g a.e. for all j ∈ N.
Then: f ∈ L1(Ω) et fj → f in D ′(Ω).

Proof : Let ϕ ∈ D(Ω). We have: 〈fj, ϕ〉 =

∫
Ω

fj(x)dx et 〈f, ϕ〉 =

∫
Ω

f(x)dx.

On sais d’après théorème de convergence dominée de Lebesgue (Théorème 1.13) que f ∈
L1(Ω).
According to the Dominated Convergence Theorem of Lebesgue (Theorem 1.13), we know
that f ∈ L1(Ω).

Let’s consider the function hj = fjϕ. The sequence (hj) is in L1(Ω), converges almost
everywhere to the function h = fϕ, and since ϕ is bounded, there exists M > 0 such that
hj ≤Mg almost everywhere for all j ∈ N. The function Mg belongs to L1(Ω). By applying
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the Dominated Convergence Theorem of Lebesgue (Theorem 1.13), we get:

lim
j→+∞

∫
Ω

hj(x)dx =

∫
Ω

h(x)dx, i.e lim
j→+∞

∫
Ω

fj(x)ϕ(x)dx =

∫
Ω

f(x)ϕ(x)dx.

Then: lim
j→+∞

〈fj, ϕ〉 = 〈f, ϕ〉. Hence: fj → f in D ′(Ω).

Remark 2.3 : The theorem above remains valid if we consider a sequence in L1
loc(Ω).

2.3 Derivation

Before providing the definition of the derivative of a distribution, we present the following
important result:

Proposition 2.4 : Let T be a distribution on Ω, and let Ti (1 ≤ i ≤ n) be the linear
functional on D(Ω) defined as follows:

∀ϕ ∈ D(Ω) : 〈Ti, ϕ〉 =

〈
T,

∂ϕ

∂xi

〉
.

Then, Ti is a distribution on Ω.

Proof : Let K ⊂ Ω be a compact set, and let ϕ ∈ DK(Ω). Then, ψ = ∂ϕ
∂xi
∈ DK(Ω).

Therefore, there exist M > 0 and m ∈ N such that:

|〈T, ψ〉| ≤M.PK,m(ψ) = M.PK,m

(
∂ϕ

∂xi

)
≤M.PK,m+1(ϕ)

. So, we have:
|〈Ti, ϕ〉| = |〈T, ψ〉| ≤M.PK,m+1(ϕ).

Therefore, Ti is a distribution on Ω.

Now, let’s proceed with the next definition:

Definition 2.5 : For T ∈ D ′(Ω), the derivative of T (with respect to xi) is defined as follows:

∀ϕ ∈ D(Ω) :

〈
∂T

∂xi
, ϕ

〉
= −

〈
T,

∂ϕ

∂xi

〉
(2.4)

Remark 2.4 : According to Proposition 2.4 and Definition 2.5:

1. We can show by induction that every distribution is infinitely differentiable.

2. If T is of order m, then
∂T

∂xi
is of order at most m+ 1.

Proposition 2.5 : Let T be a distribution on Ω. Then:

∀α ∈ Nn,∀ϕ ∈ D(Ω) : 〈DαT, ϕ〉 = (−1)|α|〈T,Dαϕ〉
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Proof : Let α ∈ Nn and ϕ ∈ D(Ω). Then:

〈DαiT, ϕ〉 = −〈Dαi−1T,
∂ϕ

∂xi
〉 = · · · (−1)αi〈T,Dαiϕ〉.

Finally:
〈DαT, ϕ〉 = 〈Dα1 · · ·DαnT, ϕ〉 = (−1)α1 · · · (−1)αn〈T,Dα1 · · ·Dαnϕ〉 = (−1)α〈T,D|α|ϕ〉.

Proposition 2.6 : Let (Tj) be a sequence of distributions on Ω. If Tj → T in D ′(Ω), then
for any multi-index α, we have DαTj → DαT in D ′(Ω).

We say that the differentiation operator is a continuous operator.

Proof : Let α ∈ Nn and ϕ ∈ D(Ω). Then: Dαϕ ∈ D(Ω) and we have:

|〈DαTj, ϕ〉 − 〈DαT, ϕ〉| = || − 1|α〈Tj, Dαϕ〉 − | − 1|α〈T,Dαϕ〉|
= || − 1|α(〈Tj, Dαϕ〉 − 〈T,Dαϕ〉|)|

= |〈Tj, Dαϕ〉 − 〈T,Dαϕ〉|
j→+∞
−→ 0 .

Therefore: DαTj → DαT dans D ′(Ω).

Example 2.10 : Let f be a differentiable function on ]a, b[ such that f ′ ∈ L1
loc(]a, b[). For

any ϕ ∈ D(]a, b[), there exist a0, b0 such that suppϕ ⊂ [a0, b0] ⊂]a, b[. Then:

〈(Tf )′, ϕ〉 = −〈Tf , ϕ′〉

= −
∫ b

a

f(x)ϕ′(x)dx

= −
∫ b0

a0

f(x)ϕ′(x)dx

= −[f(x)ϕ(x)]b0a0 +

∫ b0

a0

f ′(x)ϕ(x)dx

= f(a0)ϕ(a0)− f(b0)ϕ(b0) +

∫ b0

a0

f ′(x)ϕ(x)dx

=

∫ b0

a0

f ′(x)ϕ(x)dx

= 〈Tf ′ , ϕ〉.

Then: (Tf )
′ = Tf ′.

Example 2.11 : Let H be the Heaviside function defined in (2.2). For any ϕ ∈ D(R), there
exists a > 0 such that suppϕ ⊂ [−a, a]. Then:

〈H ′, ϕ〉 = −〈H,ϕ′〉

= −
∫ +∞

−∞
H(x)ϕ′(x)dx

= −
∫ a

0

ϕ′(x)dx

= −[ϕ(x)]a0 = ϕ(0)− ϕ(a) = ϕ(0) = 〈δ, ϕ〉.
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Hence: H ′ = δ.

Example 2.12 : Let f ∈ C 1(R\{a}). Assuming that f and f ′ have a type 1 discontinu-
ity (i.e., the limits lim

>
x→a

f(x) = f(a+), lim <
x→a f(x) = f(a−), lim >

x→a f
′(x) = f ′(a+), and

lim <
x→a f

′(x) = f ′(a−) exist and are finite). Let ϕ ∈ D(R), there exists A > 0 such that
suppϕ ⊂ [−a, a] and −A < a < A. Then:

〈(Tf )′, ϕ〉 = −〈Tf , ϕ′〉

= −
∫ +∞

−∞
f(x)ϕ′(x)dx

= −
∫ A

−A
f(x)ϕ′(x)dx

= −
∫ a

−A
f(x)ϕ′(x)dx−

∫ A

a

f(x)ϕ′(x)dx

= −[f(x)ϕ(x)]a−A +

∫ a

−A
f ′(x)ϕ(x)dx− [f(x)ϕ(x)]Aa +

∫ A

a

f ′(x)ϕ(x)dx

= −f(a−)ϕ(a) +

∫ a

−A
f ′(x)ϕ(x)dx+ f(a+)ϕ(a) +

∫ A

a

f ′(x)ϕ(x)dx

= (f(a+)− f(a−))ϕ(a) +

∫ A

−A
f ′(x)ϕ(x)dx

= 〈Tf ′ , ϕ〉+ (f(a+)− f(a−))〈δa, ϕ〉.

Then: (Tf )
′ = Tf ′ + (f(a+)− f(a−))δa.

The following lemma is important for proving the subsequent theorem:

Lemma 2.1 : Let (a, b) be an open interval in R.

1. ϕ has an antiderivative in D(a, b) if and only if
∫ b

a

ϕ(x)dx = 0.

2. If ϕ has an antiderivative in D(a, b), then this antiderivative is unique.

Proof :

1. Suppose ϕ has an antiderivative ψ ∈ D(a, b). Then:∫ b

a

ϕ(x)dx =

∫ b

a

ψ′(x)dx = ψ(b)− ψ(a) = 0.

Conversely, assume that
∫ b

a

ϕ(x)dx = 0, and define ψ(x) =

∫ x

a

ϕ(t)dt. Then, ψ′ = ϕ.

We will show that suppψ is compact. Since suppϕ is compact, there exist a0, b0 such
that suppϕ ⊂ [a0, b0] ⊂]a, b[. This means ϕ = 0 on ]a, a0[∪]b0, b[. Take x ∈]a, a0[. Then:

ψ(x) =

∫ x

a

ϕ(t)dt = 0. For x ∈]b0, b[, we have: ψ(x) =

∫ x

a

ϕ(t)dt =

∫ b

a

ϕ(t)dt = 0.

Therefore, suppψ ⊂ [a0, b0], so suppψ is compact.
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2. Let ψ1 and ψ2 be two antiderivatives of ϕ in D(a, b). Then, there exists c ∈ R such
that ψ1 = c+ ψ2. For x /∈ (suppψ1 ∪ ψ2), we have: 0 = ψ1(x) = c+ ψ2(x) = c.

Thus, ψ1 = ψ2.

Theorem 2.2 : Let (a, b) be an open interval in R.

1. The only distributions T on (a, b) such that T ′ = 0 are the constant distributions.

2. For any T ∈ D ′(a, b), there exists S ∈ D ′(a, b) such that S ′ = T (every distribution
has a primitive).

Proof :

1. Let ψ ∈ D(a, b) be such that
∫ b

a

ψ(x)dx = 1. Set: 〈T, ψ〉 = c.

Let ϕ ∈ D(a, b). We define ρ = ϕ− ψ.
∫ b

a

ϕ(x)dx. Then, ρ ∈ D(a, b), and we have:

∫ b

a

ρ(x)dx =

∫ b

a

ϕ(x)dx−
∫ b

a

φ(x)dx.

∫ b

a

ϕ(x)dx = 0.

Then: there exists θ ∈ D(a, b) such that θ′ = ρ. So,

〈T, ϕ〉 = 〈T, ρ+ ψ.

∫ b

a

ϕ(x)dx〉

= 〈T, θ′ + ψ.

∫ b

a

ϕ(x)dx〉

= 〈T, θ′〉+ 〈T, ψ〉.
∫ b

a

ϕ(x)dx

= −〈T ′, θ〉+ c.

∫ b

a

ϕ(x)dx

=

∫ b

a

c.ϕ(x)dx

= 〈c, ϕ〉.

2. Let T be a distribution on ]a, b[. As before, we define θ′ = ρ, where ρ = ϕ−ψ.
∫ b

a

ϕ(x)dx

and
∫ b

a

ψ(x)dx = 1 (noting that θ is unique according to Lemma 2.1). We define:

〈S, ϕ〉 = −〈T, θ〉. Then, for K ∈]a, b[ and ϕ ∈ DK(a, b), there exist m ∈ N, K ′ =

K ∪ supp θ, and M > 0 such that:

|〈S, ϕ〉| = |〈T, θ〉|
≤ M1PK′,m(θ)

= M1 max{ sup
x∈K′
|θ|, sup

x∈K′,1≤k≤m
|θ(k)|}
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Noting that:

|θ(x)| =

∫ x

a

ρ(t)dt

=

∣∣∣∣∫ x

a

ϕ(t)dt+

∫ x

a

ψ(t)dt.

∫ b

a

ϕ(s)ds

∣∣∣∣
=

∫ x

a

|ϕ(t)|dt+

∫ x

a

|ψ(t)|dt.
∫ b

a

|ϕ(s)|ds

≤
∫ b

a

|ϕ(t)|dt+

∫ b

a

|ψ(t)|dt.
∫ b

a

|ϕ(s)|ds

= 2

∫ b

a

|ϕ(t)|dt

≤ 2(b− a) supx∈K |ϕ|,

and sup
x∈K′,1≤k≤m

|θ(k)| ≤ M2 sup
x∈K,0≤k≤m−1

|ϕ(k)| (taking into account that ϕ = 0 outside

of K).
We then get: |〈S, ϕ〉| ≤M.PK,m−1(ϕ).
Now, let ϕ ∈ D(a, b). ϕ is a primitive of ϕ′ in D(a, b). Then:
〈S ′, ϕ〉 = −〈S, ϕ′〉 = 〈T, ϕ〉.
Hence: S is a primitive of T.

Theorem 2.3 : Let T ∈ D ′(Rn) such that for all i = 1 · · ·n we have:
∂T

∂xi
= 0.

Then: T is constant.

Proof : We have
∂T

∂xi
= 0, so T depends only on x2, . . . , xn. Thus, step by step, we can

prove that T is constant.

2.4 Operators on Distributions

Definition 2.6 (restriction of distribution) : Let T be a distribution on Ω. For any open
subset ω of Ω, we define the restriction Tω of T as follows:

∀ϕ ∈ D(ω) : 〈Tω, ϕ〉 = 〈T, ϕ〉.

The restriction of a distribution to ω is indeed a distribution on ω. This is because if
we take K ⊂ ω as a compact set, we have K ⊂ Ω, and for any ϕ ∈ DK(ω), we also have
ϕ ∈ DK(Ω). Then, there exists M > 0 and m ∈ N such that |〈T, ϕ〉| ≤MPK,m(ϕ).

Definition 2.7 (translation of a distribution) : Let T be a distribution on Rn, and let
a ∈ Rn. The translation τaT by the vector a is defined as follows:

∀ϕ ∈ D(Rn) : 〈τaT, ϕ〉 = 〈T, τ−aϕ〉,

where τ−aϕ(x) = ϕ(x+ a) for all x ∈ Rn.
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If we take a compact set K ⊂ Rn and ϕ ∈ DK(Rn), then Ka = x+ a, x ∈ K is
also a compact set, and τ−aϕ ∈ DKa(Rn). Therefore, 〈T, τ−aϕ〉 makes sense, and
consequently, τaT is a distribution on Rn.

Example 2.13 : Let ϕ ∈ D(Rn). Then:
〈τaδ, ϕ〉 = 〈δ, τ−aϕ〉 = ϕ(a) = 〈δa, ϕ〉. So, τaδ = δa.

Definition 2.8 (dilatation of a distribution) : Let T be a distribution on Rn. The dila-
tion Tλ with scale factor λ 6= 0 is defined as follows:

∀ϕ ∈ D(Rn) : 〈Tλ, ϕ〉 = |λ|n〈T, ϕ 1
λ
〉,

where: ϕ 1
λ
(x) = ϕ(λx), ∀x ∈ Rn

If we take a compact set K ⊂ Rn and ϕ ∈ DK(Rn), then Kλ = λx, x ∈ K is also a
compact set, and ϕ 1

λ
∈ DKλ(Rn). Therefore, 〈T, ϕ 1

λ
〉 makes sense, and consequently,

Tλ is a distribution on Rn.

Example 2.14 : Let ϕ ∈ D(Rn). Then:
〈δλ, ϕ〉 = |λ|n〈δ, ϕ 1

λ
〉 = |λ|nϕ(0) = |λ|n〈δ, ϕ〉. So, δλ = |λ|nδ.

Definition 2.9 : We denote ϕ̌ as ϕ−1, i.e., ϕ̌(x) = ϕ(−x) for all x ∈ Rn.

Let T be a distribution on Rn. The symmetry of T is the distribution Ť defined as follows:

∀ϕ ∈ D(Rn) : 〈Ť , ϕ〉 = 〈T, ϕ̌〉.

1. We say that T is even if Ť = T.

2. We say that T is odd if Ť = −T.

3. We say that T is homogeneous of order m ∈ Z if for every λ > 0, we have:
Tλ = λ−mT.

Example 2.15 :

1. We have: δ̌ = δ, i.e δ is even.

2. Since δλ = |λ|nδ, we deduce that δ is homogeneous of order n.

Definition 2.10 (product of a distribution by a function) Let T be a distribution on
Ω, and f ∈ C∞(Ω). We define f.T as follows:

∀ϕ ∈ D(Ω) : 〈f.T, ϕ〉 = 〈T, f.ϕ〉.

University of Msila 43 Saadi Abderachid



Distributions and Sobolev espaces Master 1 PDE and applications

If we take a compact set K ⊂ Ω and ϕ ∈ DK(Ω), then f.ϕ ∈ DK(Ω). Therefore,
〈T, fϕ〉 makes sense, and consequently, f.T is a distribution on Ω.

Remark 2.5 :

1. If T is a distribution of order m, and f ∈ C∞, then f.T is a distribution of order less
than or equal to m.

2. In general, we cannot define the product of two distributions (see exercise 2.7).

Example 2.16 : Let ϕ ∈ D(Rn) and f ∈ C∞(Rn). We have:
〈f.δ, ϕ〉 = 〈δ, f.ϕ〉 = f(0).ϕ(0) = f(0).〈δ, ϕ〉. Then: f.δ = f(0).δ.

Proposition 2.7 : Let {fj}+∞
j=1 ⊂ C∞(Ω) and {fj}+∞

j=1 ⊂ D ′(Ω) be two sequences such that
fj → f in C∞(Ω) and Tj → T in D ′(Ω). Then, fj.Tj → f.T in D ′(Ω).

Proof : : Let ϕ ∈ D(Ω), and let K ⊂ Ω be a compact set such that suppϕ ⊂ K. Then,
supp(fjϕ) ⊂ K and supp(fϕ) ⊂ K.

Since fj → f in C∞(Ω) and fjϕ, fϕ ∈ C∞(Ω), we have lim
j→+∞

PK,m(fjϕ− fϕ) = 0 for all

m ∈ N. The convergence is in D(Ω) since K is fixed.
Since Tj → T in D ′(Ω), 〈Tj, fj.ϕ〉 tends to 〈T, f.ϕ〉. According to the Banach-Steinhaus

theorem (Corollary 1.2), the convergence is in D ′(Ω).

2.5 Supports of distributions

Definition 2.11 : The null open set set of T ∈ D ′(Ω) is the largest open set O ⊂ Ω such
that:

∀ϕ ∈ D(O) : 〈T, ϕ〉 = 0

The support of T (suppT ) is Ω \O.

Suppose there exists a non-empty open set where T = 0, and consider a family (Oi)i∈I of
open sets where T = 0. Let’s define O =

⋃
i∈I

Oi, which is an open set. Let ϕ ∈ D(O). Then,

K = suppϕ ⊂ O =
⋃
i∈I

Oi.

The family (Oi)i∈I is a covering for the compact set K, so we can extract a finite covering
(Oj)

N
j=1. According to Theorem 1.7 (partition of unity), there exists a family (θj)

N
j=1 where

θj ∈ D(Oj), 0 ≤ θj ≤ 1, and
N∑
j=1

θj = 1. Then, for any x ∈ Ω, we have: ϕ(x) =
N∑
j=1

θj(x)ϕ(x),

and for all 1 ≤ j ≤ N , θj.ϕ ∈ D(Oj). Therefore:

〈T, ϕ〉 = 〈T,
N∑
j=1

θj.ϕ〉 =
N∑
j=1

〈T, θj.ϕ〉 = 0.
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Then O is the null open set of T and suppT = Ω \O.

Example 2.17 :

1. Let ϕ ∈ D(Rn) such that suppϕ ⊂ (Rn \ 0). Then: 〈δ, ϕ〉 = ϕ(0) = 0. Thus, the null
open set of δ is included in Rn\0. This inclusion is strict because if we take ϕ0 ∈ D(Rn)

such that ϕ = 1 in the neighbourhood of B(0, 1), we have 〈δ, ϕ〉 = ϕ(0) = 1 6= 0.

Therefore: supp δ = {0}.

2. Let ϕ ∈ D(R) such that suppϕ ⊂]−∞, 0[. On a:

〈H,ϕ〉 =

∫ +∞

0

ϕ(x)dx = 0. Then: the null open set of H est is included in ]−∞, 0[.

Let (ϕj)j∈N be a sequence of functions in D(R) such that ϕ ≥ 0 et ϕ = 1 on
[
− 1

n
,

1

n

]
.Then:

〈H,ϕ〉 ≥
∫ 1

n

0

ϕ(x)dx =
1

n
6= 0.

We deduce that the null open set of H is ]−∞, 0[. Then: suppH = [0,+∞[.

Proposition 2.8 :

1. Let T be a distribution with compact support on Ω, and let ϕ ∈ D(Ω) such that ϕ = 0

in the neighbourhood of suppT (i.e., suppϕ ∩ suppT = ∅). Then: 〈T, ϕ〉 = 0.

2. The support of T , denoted suppT , is the smallest closed set F such that: if ϕ ∈ D(Ω)

and ϕ = 0 in the neighbourhood of F , then: 〈T, ϕ〉 = 0.

Proof :

1. Since suppϕ ∩ suppT = ∅ we have: suppϕ ⊂ (Rn \ suppT ) = O the null open set of
T . Then: ϕ ∈ D(O), which lead to: 〈T, ϕ〉 = 0.

2. Let F0 be the smallest closed set that satisfies the property: If ϕ ∈ D(Ω), and ϕ = 0

in the vicinity of F0, then 〈T, ϕ〉 = 0.
It is clear that suppT satisfies the property, and if F1 and F2 satisfy the property, then
F1 ∩ F2 and F1 ∪ F2 also satisfy the property.
Assume that F0 ⊂ suppT with strict inclusion. Then, there exists x0 ∈ suppT such
that x. /∈ F0. since F0 is a closed set we have: d(x0, F0) = 2r > 0. Then: B(x0, r)∩F0 =

∅ et G0 = suppT ∩B(x0, r) 6= ∅.
It results that G0 ∪ F0 ⊂ suppT et F0 ⊂ (G0 ∪ F0) with strict inclusion, which
contradicts the fact that F0 is the smallest closed set satisfying the property.

Remark 2.6 : If we replace ϕ = 0 in the neighbourhood of suppT with ϕ = 0 on suppT ,
the proposition above does not hold. For example, we have supp δ = 0, but if ψ ∈ D(R) such
that ψ = 1 in the neighbourhood of 0 and ϕ(x) = xψ(x), then ϕ = 0 on supp δ
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Let T be a distribution with compact support on Ω. Then, T is of finite order m, and for
any neighbourhood of a compact set K ⊂ Ω, there exists a positive constant M such that
for all ϕ ∈ D(Ω), we have |〈T, ϕ〉| ≤M.PK,m(Ω).
Proof : LetK be a compact neighborhood of suppT , and let χ ∈ D(Ω) such that suppχ ⊂ K

and χ = 1 in a neighborhood of suppT .
Now, consider ϕ ∈ D(Ω). We have ϕ − χ · ϕ = 0 in a neighborhood of suppT . Thus,

〈T, ϕ− χϕ〉 = 0, which implies 〈T, ϕ〉 = 〈T, χϕ〉.
There exists M0 > 0 and m ∈ N such that for all ψ ∈ DK(Ω), we have |〈T, ψ〉| ≤

M0.PK,m(ψ). Since χ · ϕ ∈ DK(Ω), we have:

|〈T, ϕ〉| = |〈T, χ.ϕ〉| ≤M0.PK,m(χ.ϕ) ≤M.PK,m(ϕ).

Notably, m depends only on K, which is fixed (a neighbourhood of suppT ). Therefore, we
conclude that T is of finite order.

We use this result to extend the duality bracket 〈., .〉D ′,D as follows:

Definition 2.12 (Duality Bracket 〈., .〉E ′,E ) : We denote by E (Ω) the space of C∞(Ω)

functions, and by E ′(Ω) the space of distributions with compact support. For any T ∈ E ′(Ω)

and ϕ ∈ E (Ω), we define:
〈T, ϕ〉ξ′,ξ = 〈T, χϕ〉D ′,D ,

where χ ∈ D(Ω) with χ = 1 in the neighbourhood of suppT. We write: (C∞(Ω))′ = E ′(Ω).

This result is independent of the choice of χ because if we take χ1 and χ2 in D(Ω) such
that χ1 = χ2 = 1 in the neighbourhood of suppT , we have: χ1.ϕ = χ2.ϕ = 0 in the
neighbourhood of suppT . Therefore, we have: 〈T, χ1.ϕ − χ1.ϕ〉 = 0, which implies:
〈T, χ1.ϕ〉 = 〈T, χ2.ϕ〉.

Theorem 2.4 : The canonical injection of E ′(Ω) into D ′(Ω) is continuous.
We set: E ′(Ω) ↪→ D ′(Ω).

Proof : Let’s denote by i the map from E ′(Ω) into D ′(Ω) defined as follows:

∀T ∈ E ′(Ω) : i(T ) = T.

his map is linear, and if T ∈ E ′(Ω) such that i(T ) = 0, then for all ϕ ∈ D(Ω), we have
〈T, ϕ〉 = 0. Therefore, for all ψ ∈ E (Ω) and χ ∈ D(Ω), we have:

〈T, ϕ〉E ′,E = 〈T, χ.ϕ〉 = 0.

This implies that T = 0, i.e., i is injective.
Now, consider a sequence {Tj}j∈N ⊂ E ′(Ω) converging to 0 in E ′(Ω). Then, for all ϕ ∈ E ′(Ω),
we have 〈Tj, ϕ〉E ′,E converging to 0.
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However, we also have: 〈Tj, ϕ〉E ′,E = 〈Tj, χ.ϕ〉D ′,D = 〈T, ψ〉 converging to 0 for all ψ ∈
D(Ω). Therefore, i is continuous.

Exercises

Exercise 2.1 : We define the following functional on D(R):

∀ϕ ∈ D(R) : 〈pf 1
x2
, ϕ〉 = lim

ε→0

[∫
|x|>ε

ϕ(x)

x2
dx− 2

ϕ(0)

ε

]
.

Show that pf 1
x2

defines a distribution on R.

Exercise 2.2 : The purpose of this exercise is to show that the distribution vp 1
x
is of order

1. By contradiction, we assume that vp 1
x
is of order 0 (we know from example 2.9 that vp 1

x

is of order less than or equal to 1).
Let ϕ ∈ D(R), be an even function such that ϕ ≥ 0, ϕ = 1 in the neighbourhood of 0. Let

a > 0 such that suppϕ ⊂ K = [−a, a]. We know that 〈vp 1
x
, ϕ〉 ≤ 2aPK,1(ϕ).

Consider the sequence of functions (ϕj)j∈N, defined as follows: ϕj(x) = ϕ(x) arctan(jx).

1. Show that there exists M > 0 such that for every j ∈ N we have: sup
x∈K
|ϕj(x)| < M.

2. Calculate ϕ′j(0). What can we conclude about PK, 1(ϕj)?

3. Deduce.

Exercise 2.3 : The goal of this exercise is to show the existence of distributions of infinite
order. Consider the functional T defined on D(R) as follows:

∀ϕ ∈ D(R) : 〈T, ϕ〉 =
∞∑
k=0

ϕ(k)(k).

1. Show that T defines a distribution on R.

2. Suppose that T is of finite order m. Let ψ0 ∈ D

(]
−1

2
,
1

2

[)
such that ψ0 ≥ 0 and

ψ0 = 1 on
[
−1

4
,
1

4

]
. Define ψ(x) =

xm+1

(m+ 1)!
ψ0(x).

i) For λ > 1, define: ϕ(x) = ψ(λ(x− (m+ 1))).

Show that ϕ ∈ C∞(R) and suppϕ ⊂ Km =

[
m+

1

2
,m+

3

2

]
.

ii) Show that 〈T, ϕ〉 = λm+1.

iii) Show that there exists MK > 0 such that: λm+1 ≤MK

m∑
k=0

λk. sup |ψ(k)|.

iv) Show that λ is finite.

v) Conclude that T is of infinite order.
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Exercise 2.4 : Let {Tj}j∈N be the sequence of distributions associated with the locally inte-

grable functions
sin(jx)

πx
.

Show that Tj converges to δ as j tends to infinity (Note:
∫ +∞

0

sinx

x
dx =

π

2
).

Exercise 2.5 : Let T be the functional defined on D(R) as follows:

∀ϕ ∈ D(R) : 〈T, ϕ〉 =

∫
|x|>ε

ln |x|.ϕ(x)dx.

Consider the sequence of functions {fj}j∈N defined as: fj(x) =


ln |x| : |x| ≥ 1

j

− ln(j) : |x| < 1

j

1. Show that T defines a distribution on R, denoted as ln |x|.

2. Show that fj ∈ L1
loc(R) for all j ∈ N.

3. Show that fj → ln |x| in D ′(R).

4. Show that (ln |x|)′ = vp 1
x
.

Exercise 2.6 :

1. Calculate x.vp 1
x
and x.δ.

2. Calculate (x lnx)′, x.δ(k) for k ≥ 1.

3. Solve the equation xT = 0 in D ′(R).

Exercise 2.7 : Consider the sequence of functions {fj}j∈N defined as follows:

fj(x) =


j : x ∈

[
0,

1

j

]
0 : x /∈

[
0,

1

j

]
Let Tj = fj be the corresponding distributions.

1. Show that Tj → δ as j → +∞.

2. Find the expression for 〈fj.Tj, ϕ〉 for all ϕ in D ′(R).

3. Show that 〈fj.Tj, ϕ〉 → +∞.
(take ϕ ∈ D(R) such that ϕ = 1 in the neighbourhood of 0).

Exercise 2.8 :

1. Calculate (f.T )′, (fT )′′, where f ∈ C∞(R) and T ∈ D ′(R).

2. Calculate 〈T1 + T2, ϕ〉, for T1, T2 ∈ D ′(Rn) and ϕ ∈ D(Ω) où Ω = Rn\(suppT1 ∪
suppT2).
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Solutions of exercises

Solution 2.1 : ∀ϕ ∈ D(R) : 〈pf 1
x2
, ϕ〉 = lim

ε→0

[∫
|x|>ε

ϕ(x)

x2
dx− 2

ϕ(0)

ε

]
.

Let ϕ ∈ D(R). On a:∫
|x|>ε

ϕ(x)

x2
dx =

∫ −ε
−∞

ϕ(x)

x2
dx+

∫ −∞
ε

ϕ(x)

x2
dx

= −
[
ϕ(x)

x

]−ε
−∞
−
[
ϕ(x)

x

]+∞

ε

+

∫ −ε
−∞

ϕ′(x)

x
dx+

∫ −∞
ε

ϕ′(x)

x
dx

=
ϕ(−ε)
ε

+
ϕ(−ε)
ε

+

∫
|x|>ε

ϕ′(x)

x
dx

Then:

〈pf 1
x2
, ϕ〉 = lim

ε→0

[
ϕ(−ε)
ε

+
ϕ(−ε)
ε

+

∫
|x|>ε

ϕ′(x)

x
dx− 2

ϕ(0)

ε

]
= lim

ε→0

[
−ϕ(−ε)− ϕ(0)

−ε
+
ϕ(−ε)− ϕ(0)

ε
+

∫
|x|>ε

ϕ′(x)

x
dx

]
= −ϕ′(0) + ϕ′(0) + lim

ε→0

∫
|x|>ε

ϕ′(x)

x
dx

= lim
ε→0

∫
|x|>ε

ϕ′(x)

x
dx

= 〈vp 1
x
, ϕ′〉

As vp 1
x
defines a distribution on R and since ϕ′ ∈ D(R), we deduce that pf 1

x2
defines a

distribution on R.

Solution 2.2 : ϕ ∈ D(R) is an even function such that ϕ ≥ 0, ϕ = 1 in the neighbourhood
of 0, and a > 0 with suppϕ ⊂ K = [−a, a].

ϕj(x) = ϕ(x) arctan(jx) for j ∈ N.

1. We have: sup
x∈K
|ϕj(x)| = sup

x∈K
| arctan(jx).ϕ(x)| = π

2
sup
x∈K
|ϕ(x)| < M.

2. We have: ϕ′j(x) =
jϕ(x)

1 + j2x2
+ ϕ′(x) arctan(jx). Then: ϕ′j(0) = jϕ(0) = j.

There exists j0 ∈ N such that sup
x∈K
|ϕ′j(x)| = j0 ≥M > sup

x∈K
|ϕj(x)|.

Then: PK,1(ϕj) = j pour j ≥ j0.

3. Since PK,1(ϕj) = sup
x∈K
|ϕ′j(x)|, we deduce that the order of vp 1

x
is 1.

Solution 2.3 : ∀ϕ ∈ D(R) : 〈T, ϕ〉 =
∞∑
k=0

ϕ(k)(k).

1. Let K ⊂ R be a compact. There exists j ∈ N such that K ⊂ [−j, j]. Let ϕ ∈ DK(R).

Then: suppϕ(k) ⊂ [−j, j] for all k ∈ N, i.e ϕ(k)(k) = 0 pour tout k > j, which lead to:

|〈T, ϕ〉| =

∣∣∣∣∣
j∑

k=0

ϕ(k)(k)

∣∣∣∣∣ ≤ (j + 1) sup
x∈K,k≤j

|ϕ(k)(x)| = (j + 1)PK,j(ϕ).
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Then: T defines a distribution on R.

2. Suppose that T est d’ordre m.

ψ0 ∈ D

(]
−1

2
,
1

2

[)
, ψ0 ≥ 0, ψ0 = 1 on

[
−1

4
,
1

4

]
.ψ(x) =

xm+1

(m+ 1)!
ψ0(x).

i) λ > 1, ϕ(x) = ψ(λ(x− (m+ 1))).
since ψ ∈ C∞(R) Then: ϕ ∈ C∞(R).

From the definition of ϕ, x ∈ suppϕ, it implies that λ(x− (m+ 1)) ∈
]
−1

2
,
1

2

[
.

Then: (x− (m+ 1)) ∈
]
− 1

2λ
,

1

2λ

[
⊂
]
−1

2
,
1

2

[
( since λ > 1.)

Hence: x ∈
[
m+

1

2
,m+

3

2

]
. So, suppϕ ⊂ Km =

[
m+

1

2
,m+

3

2

]
.

ii) Since suppϕ ⊂ Km =

[
m+

1

2
,m+

3

2

]
, we deduce that

〈T, ϕ〉 = ϕ(m+1)(m+ 1) = λm+1ψ(m+1)(0) = λm+1.

iii) We assumed that T est d’ordre m, then: there exists MK > 0 such that:

λm+1 = |〈T, ϕ〉| ≤MK

m∑
k=0

sup |ϕ(k)| = MK

m∑
k=0

λk. sup |ψ(k)|.

iv) Since λ > 0, for all k ≤ m we have: λk ≤ λm. Then: λm+1 ≤MK .λ
m

m∑
k=0

sup |ψ(k)|.

hence: λ ≤MK .
m∑
k=0

sup |ψ(k)|. So, λ is finite.

v) If we let λ tend to infinity, we have a contradiction with λ being finite. Therefore,
T is of infinite order.

Solution 2.4 : ∀ϕ ∈ R : 〈Tj, ϕ〉 =

∫ +∞

−∞

sin(jx)

πx
ϕ(x)dx, j ∈ N.

We have:
∫ +∞

−∞

sinx

x
dx = 2

∫ +∞

0

sinx

x
dt = π. Then: ϕ(0) =

∫ +∞

−∞

sinx

πx
ϕ(0)dx.

We change the variable t = jx, we obtain:∫ +∞

−∞

sin(jx)

πx
ϕ(x)dx =

∫ +∞

−∞

sin t

πt
ϕ

(
t

j

)
dt =

∫ +∞

−∞

sinx

πx
ϕ

(
x

j

)
dx. Then:

|〈Tj, ϕ〉 − 〈δ, ϕ〉| =

∣∣∣∣∫ +∞

−∞

sinx

πx
ϕ

(
x

j

)
dx−

∫ +∞

−∞

sinx

πx
ϕ(0)dx

∣∣∣∣
≤

∣∣∣∣∫ +∞

−∞

sinx

πx

(
ϕ

(
x

j

)
− ϕ(0)

)
dx

∣∣∣∣
≤

∫ +∞

−∞

sinx

πx

∣∣∣∣ϕ(xj
)
− ϕ(0)

∣∣∣∣ dx
≤ sup

∣∣∣∣ϕ(xj
)
− ϕ(0)

∣∣∣∣ ∫ +∞

−∞

sinx

πx
dx

= sup

∣∣∣∣ϕ(xj
)
− ϕ(0)

∣∣∣∣ .
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Since lim
j→+∞

sup

∣∣∣∣ϕ(xj
)
− ϕ(0)

∣∣∣∣ = 0, we deduce that Tj converge to δ where j −→ +∞.

Solution 2.5 : ∀ϕ ∈ D(R) : 〈T, ϕ〉 =

∫
|x|>ε

ln |x|.ϕ(x)dx, fj(x) =

{
ln |x| : |x| ≥ 1

j

− ln(j) : |x| < 1
j

1. Let ε > 0 be small, and K ⊂ R be a compact . there exists a > 1 such that K ⊂ [−a, a].
Let ϕ ∈ DK(R), Then:

〈T, ϕ〉 =

∫
|x|>ε

ln |x|.ϕ(x)dx

=

∫
ε<|x|≤a

ln |x|.ϕ(x)dx

=

∫
ε<|x|<1

ln |x|.ϕ(x)dx+

∫
1≤|x|≤a

ln |x|.ϕ(x).

On one hand:
∣∣∣∣∫

1≤|x|≤a
ln |x|.ϕ(x)

∣∣∣∣ ≤ sup
1≤|x|≤a

|ϕ(x)|.
∫

1≤|x|≤a
ln |x|dx ≤M1PK,0(ϕ).

On the other hand, according to the mean value theorem, there exists ε < |x| < |xε| < 1

such that | ln |x|| = − ln |x| = ln 1− ln |x| ≤ 1− x
|xε|

≤ 1− x
|x|

.

then:
∫
ε<|x|<1

ln |x|.ϕ(x)dx ≤
∫
ε<|x|<1

1− x
|x|

.ϕ(x)dx,

and this last term can be treated as vp 1
x
. .

Then: T defines a distribution on R, on la note par ln |x|.

2. The function fjis continuous for all j ∈ N. Then: fj ∈ L1
Loc(R) for all j ∈ N.

3. We can write: ∀ϕ ∈ D(R) :< ln |x|, ϕ >=

∫
|x|≥ 1

j

ln |x|.ϕ(x)dx, then:

|〈fj, ϕ〉 − 〈ln |x|, ϕ〉| =
∫
|x|< 1

j

− ln j.ϕ(x)dx ≤ ln j

∫ 1
j

− 1
j

|ϕ(x)|dx.

Applying the mean value theorem, there exists xj ∈ [−1

j
,
1

j
] such that∫ 1

j

− 1
j

|ϕ(x)|dx =
2

j
|ϕ(xj)|. Then: |〈fj, ϕ〉 − 〈ln |x|, ϕ〉| ≤

2 ln j

j
|ϕ(xj)|.

Since ϕ is continuous: lim
j→+∞

|ϕ(xj)| = |ϕ(0)|. Then:

0 ≤ lim
j→+∞

|〈fj, ϕ〉 − 〈ln |x|, ϕ〉| ≤ lim
j→+∞

2 ln j

j
|ϕ(xj)| = 0.

Hence: fj → ln |x| in D ′(R).

4. Let ϕ ∈ D(R). We have: 〈(ln |x|)′, ϕ〉 = −〈ln |x|, ϕ′〉 = −
∫
|x|>ε

ln |x|.ϕ′(x)dx.
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There exists a > ε such that suppϕ ⊂ [−a, a]. Then:

−
∫
|x|>ε

ln |x|.ϕ′(x)dx = −
∫ −ε
−a

ln |x|.ϕ′(x)dx−
∫ a

ε

ln |x|.ϕ′(x)dx

= [− ln |x|.ϕ(x)]−ε−a +

∫ −ε
−a

ϕ(x)

x
dx+ [− ln |x|.ϕ(x)]aε +

∫ a

ε

ϕ(x)

x
dx

= ln ε(ϕ(ε)− ϕ(−ε)) +

∫
|x|>ε

ϕ(x)

x
dx.

We have: ϕ(ε)−ϕ(−ε) = 2εϕ′(0)+0(ε), then: lim
ε→0

ln ε(ϕ(ε)−ϕ(−ε)) = lim
ε→0

2εεϕ′(0) =

0. So,

〈(ln |x|)′, ϕ〉 = lim
ε→0

∫
|x|>ε

ϕ(x)

x
dx = 〈vp 1

x
, ϕ〉.

which lead to: (ln |x|)′ = vp 1
x
.

Solution 2.6 :

1. Let ϕ ∈ D(R). Then:

∗) 〈x.vp 1
x
, ϕ〉 = 〈vp 1

x
, x.ϕ〉

= lim
ε→0

∫
|x|>ε

x.
ϕ(x)

x
dx

= lim
ε→0

∫
|x|>ε

ϕ(x)dx

=

∫ +∞

−∞
ϕ(x)dx

= 〈1, ϕ〉.

Then: x.vp
1

x
= 1.

∗) 〈x.δ, ϕ〉 = 〈δ, x.ϕ〉 = 0.

Then: x.δ = 0.

2. Let ϕ ∈ D(R). Then:

∗) 〈(x. lnx)′, ϕ〉 = −〈x. lnx, ϕ′〉
= −〈lnx, x.ϕ′〉

= − lim
ε→0

∫ +∞

ε

x. lnx.ϕ′(x)dx

= lim
ε→0

[(1 + ln x)ϕ(x)]+∞ε + lim
ε→0

∫ +∞

ε

(1 + ln x)ϕ(x)dx

=

∫ +∞

0

ϕ(x)dx+

∫ +∞

ε

lnx.ϕ(x)dx

= 〈H,ϕ〉+ 〈lnx, ϕ〉.
Hence: (x lnx)′ = H + lnx.
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∗) 〈x.δ(k), ϕ〉 = 〈δ(k), x.ϕ〉
= (−1)k〈lnx, (x.ϕ)(k)〉

= (−1)k
k∑
i=0

Ci
k(x)(k−i)ϕ(k)|x=0

= (−1)kC1
kϕ
′(0)

= (−1)k.k〈δ′, ϕ〉.

Then: x.δ(k) = (−1)k.kδ′.

3. From the first question, if T = δ then: xT = 0.
So, if T = c.δ (c ∈ R) then: xT = 0.
Now, assume that xT = 0, then:
for all ϕ ∈ D(R) we have: 〈x.T, ϕ〉 = 〈T, x.ϕ〉 = 0.

Let (ϕj) ∈ D(R) such that suppϕj ⊂
]
−1

j
,
1

j

[
et ϕj = 1 on

[
− 1

2j
,

1

2j

]
.

From Proposition 2.8, we obtain suppT = {0}. Then: there exists k ∈ N et c ∈ R
such that T = c.δ(k).
However, according to the second question, xδ(k) is different from 0 when k ≥ 1.
Therefore, the solutions to the equation xT = 0 in D ′(R) are distributions of the form
c.δ (where c ∈ R).

Solution 2.7 : fj(x) =


j : x ∈

[
0,

1

j

]
0 : x /∈

[
0,

1

j

] , j ∈ N. Tj = fj.

1. Let ϕ ∈ D(R). Then:

|〈Tj, ϕ〉 − 〈δ, ϕ〉| =

∣∣∣∣∣j
∫ 1

j

0

ϕ(x)dx− ϕ(0)

∣∣∣∣∣
Applying the mean value theorem, there exists xj ∈ [0, 1j] such that:

j

∫ 1
j

0

= j.
1

j
ϕ(xj)

Then:
|〈Tj, ϕ〉 − 〈δ, ϕ〉| = |ϕ(xj)− ϕ(0)|

j→+∞
−→ 0 .

Hence: Tj → δ when j → +∞.

2. Let ϕ dans D ′(R). We have: 〈fj.Tj, ϕ〉 = 〈Tj, fj.ϕ〉 = j2

∫ 1
j

0

ϕ(x)dx.

3. Let ϕ ∈ D(R) such that ϕ ≥ 0 et ϕ = 1 on
[
−1

j
,
1

j

]
.Then:

〈fj.Tj, ϕ〉 = j2

∫ 1
j

0

ϕ(x)dx ≥ j2

∫ 1
j

0

dx = j
j→+∞
−→ +∞ .
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Hence: 〈fj.Tj, ϕ〉 → +∞.

Solution 2.8 :

1. Let ϕ ∈ D(R), then: 〈(f.T )′, ϕ〉 = −〈T, f.ϕ′〉.
We have: (f.ϕ)′ = f.ϕ′ + f ′.ϕ. Then:

〈(f.T )′, ϕ〉 = −〈f.T, ϕ′〉
= −〈T, f.ϕ′〉
= −〈T, (f.ϕ)′ − f ′.ϕ〉
= −〈T, (f.ϕ)′〉+ 〈T, f ′.ϕ〉
= 〈T ′, f.ϕ〉+ 〈f ′.T, ϕ〉
= 〈f.T ′ + f ′.T, ϕ〉.

which lead to: (f.T )′ = f.T ′ + f ′.T .
Then:

(f.T )′′ = (f.T ′ + f ′.T )′ = f.T ′′ + 2f ′.T ′ + f ′.T.

2. 〈T1 + T2, ϕ〉 = 〈T1, ϕ〉+ 〈T2, ϕ〉 = 0.
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CHAPTER 3

CONVOLUTION PRODUCT

The role of the convolution product is to regularize certain functions with bad behaviour. In
this chapter, we will generalize the convolution product, which is defined on functions. We
begin with a brief motivation.

Let P and Q be two polynomials of degree p and q, taking values in R or C, given by:

P (x) =

p∑
j=0

ajx
j, Q(x) =

q∑
j=0

bjx
j.

The product of P and Q is given by:

(P.Q)(x) =

p+q∑
j=0

j∑
k=0

ak.bj−kx
j

We extend the two sequences (aj) and (bj) by adding zeros towards Z and still denote them
as (aj) and (bj). The two polynomials P and Q define two formal power series:

P (x) =
∑
j∈Z

ajx
j, Q(x) =

∑
j∈Z

bjx
j.

Thus, the product P ∗Q is given by the formal power series
∑
j∈Z

cjx
j, where

cj =

j∑
k=0

ak.bj−kx
j.

The series
∑
j∈Z

cjx
j is called the product of the series

∑
j∈Z

ajx
j and

∑
j∈Z

bjx
j.

We can now consider two arbitrary absolutely convergent power series
∑
j∈Z

ajx
j and
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∑
j∈Z

bjx
j. Then, the product of these series is also absolutely convergent.

A similar result is obtained when replacing (aj) and (bj) with integrable functions f and
g, resulting in the quantity ∫

f(y).g(x− y)dy,

which called the convolution product of f and g.

3.1 Convolution of functions

Definition 3.1 : Let f, g ∈ L1
loc(Rn). The convolution product de de f et g, denoted as f ∗g

is the function defined by:

(f ∗ g)(x) =

∫
Rn
f(y).g(x− y)dy, x ∈ Rn. (3.1)

Proposition 3.1 : If f ∗ g exists we have:

1. f ∗ g = g ∗ f

2. supp(f ∗ g) ⊂ supp f + supp g.

Proof : Suppose that f ∗ g exists.

1. Let x ∈ Rn, then:

(f ∗ g)(x) =

∫
Rn
f(y).g(x− y)dy =

∫ +∞

−∞
· · ·
∫ +∞

−∞
f(y).g(x− y)dy1 · · · dyn.

Making the change of variable z = x− y, we obtain:

(f ∗ g)(x) =

∫ −∞
+∞
· · ·
∫ −∞

+∞
f(x− z).g(z)(−dz1) · · · (−dzn).

Then: (f ∗ g)(x) =

∫ +∞

−∞
· · ·
∫ +∞

−∞
f(x− z).g(z)dz1 · · · dzn =

∫
Rn
f(x− z).g(z)dz.

Hence: (f ∗ g)(x) = (g ∗ f)(x).

2. Let x /∈ (supp f + supp g). Thus: fur all y ∈ supp f we have: x − y /∈ supp g, i.e
(f ∗ g)(x) = 0.

So: the null open set of f ∗ g contains

0︷ ︸︸ ︷
Csupp f+supp g

Rn .
Then: supp(f ∗ g) ⊂ supp f + supp g.

Proposition 3.2 : Let f ∈ Lp(Rn), g ∈ Lp′(Rn) (1 ≤ p ≤ +∞, 1

p
+

1

p′
= 1 ou p′ = +∞ si p =

1), then: f∗g is defined everywhere, bounded, Moreover: ‖f∗g‖L∞(Rn) ≤ ‖f‖Lp(Rn).‖g‖Lp′ (Rn).
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Proof : Suppose that f ∈ Lp(Rn), g ∈ Lp′(Rn). Si 1 < p < +∞, By the Hölder’s inequality:

|(f ∗ g)(x)| ≤
(∫

Rn
|f(y)|pdy

) 1
p

.

(∫
Rn
|g(x− y)|p′dy

) 1
p′

=

(∫
Rn
|f(y)|pdy

) 1
p

.

(∫
Rn
|g(y)|p′dy

) 1
p′

.

So, |(f ∗ g)(x)| ≤ ‖f‖Lp(Rn).‖g‖Lp′ (Rn).

If p = 1 then: p′ = +∞ and we have:

|(f ∗ g)(x)| ≤ ‖g‖L∞(Rn)

∫
Rn
|f(y)|dy = ‖f‖L1(Rn).‖g‖L∞(Rn).

Then: f∗g is defined everywhere, is bounded, and we have: ‖f∗g‖L∞(Rn) ≤ ‖f‖Lp(Rn).‖g‖Lp′ (Rn).

Remark 3.1 :

i) If p ∈]1,+∞[ then: f ∗ g est continue.

ii) Si p, q ∈ [1,+∞], f ∈ Lp(Rn), with a compact support, g ∈ Lqloc(Rn), then: f ∗ g is
continuous.

Proposition 3.3 : Let f, g ∈ L1(Rn), then: f ∗ g ∈ L1(Rn) et on a:∫
Rn

(f ∗ g)(x)dx =

(∫
Rn
f(x)dx

)
·
(∫

Rn
g(y)dy.

)
Proof : We have: ∫

Rn
(f ∗ g)(x)dx =

∫
Rn

∫
Rn
f(x− y)g(y)dxdy.

By applying the Fubini’s theorem, we obtain:∫
Rn

(f ∗ g)(x)dx =

∫
Rn
f(x− y)dx

∫
Rn
g(y)dy.

However, we have:
∫
Rn
f(x− y)dx =

∫
Rn
f(x)dx. So,

∫
Rn

(f ∗ g)(x)dx =

∫
Rn
f(x)dx.

∫
Rn
g(y)dy.

Proposition 3.4 : Let p, q ∈ [1,+∞] such that
1

p
+

1

q
≥ 1, then: f ∗ g defined a.e. in Rn.

Moreover, if
1

r
=

1

p
+

1

q
− 1, then: (f ∗ g) ∈ Lr(Rn) and we have:

‖f ∗ g‖Lr(Rn) ≤ ‖f‖Lp(Rn).‖g‖Lq(Rn).
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Proof : By writing: |f(y)g(x− y)| = (|f(y)|p|g(x− y)|q) 1
r .(|f(y)|p)

1
p
− 1
r .(|g(x− y)|q)

1
q
− 1
r .

Now, since |f |p ∈ L1(Rn), |g|q ∈ L1(Rn) on a: |f |p ∗ |g|q ∈ L1(Rn).
By applying the generalized Hölder’s inequality, taking into account the relationship:
1

r
+

(
1

p
− 1

r

)
+

(
1

q
− 1

r

)
= 1, we obtain:

∫
Rn
|f(x)g(x−y)|dy ≤

(∫
Rn
|f(x)|p|g(x− y)|qdy

) 1
r

.

(∫
Rn
|f(y)|pdy

)1− p
r

.

(∫
Rn
|f(y)|qdy

)1− q
r

Then:
|(f ∗ g)(x)| ≤ |(|f |p ∗ |g|q)(x)|

1
r ‖f‖1− p

r

Lp(Rn).‖g‖
1− q

r

Lq(Rn).

Integrating with respect to x, we obtain:∫
Rn
|(f ∗ g)(x)|rdx ≤ ‖|f |p ∗ |g|q‖L1(Rn)‖f‖r−pLp(Rn).‖g‖

r−q
Lq(Rn).

But: ‖|f |p ∗ |g|q‖L1(Rn) ≤ ‖|f |p‖L1(Rn).‖|g|q‖L1(Rn) = ‖f‖Lp(Rn).‖g‖Lq(Rn).
So, ‖f ∗ g‖rLr(Rn) ≤ ‖f‖rLp(Rn).‖g‖rLq(Rn).

Proposition 3.5 : Let k ∈ N, f ∈ L1
Loc(Rn), g ∈ C k(Rn), supp f ou supp f be compact,

then: f ∗ g ∈ C k(Rn), and for all α ∈ Nn such that |α| ≤ k we have: Dα(f ∗ g) = f ∗Dαg.

Proof :

i) Case where supp f is compact:
Since g ∈ C k(Rn), for all |α| ≤ k, the function Dαg is bounded on any compact set
(locally bounded). It follows that f ∗Dαg is continuous.

The function x 7→ Dαg(x− y) is dominated, and by applying the theorem of differen-
tiation under the integral sign, we obtain the result.

ii) Case where supp g is compact:
Since f ∈ L1

loc and Dαg is bounded, then f ∗Dαg is well-defined and continuous.

For the equality Dα(f ∗ g) = f ∗Dαg, we refer to [13], tome 1, p. 122.

Proposition 3.6 : Let {ϕj}j∈N be a regularization sequence (see definition 1.24) and f ∈
L1

loc(Rn). The sequence {fj} = {ϕj ∗ f} is called a regularized sequence, and it satisfies:

1. For all j ∈ N we have: fj ∈ C∞(Rn).

2. If f ∈ C∞(Rn), then fj → f in C∞(Rn).

3. If f ∈ D(Rn), then fj → f in D(Rn).

4. If f ∈ Lp(Rn), then fj → f in Lp(Rn).
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Proof : According to Definition 1.24, ϕj ∈ D(Rn), and there exists 0 < εj −→ 0 such that:

ϕj ≥ 0, suppϕj ⊂ B(0, εj),

∫
B(0,εj)

ϕj(x)dx =

∫
Rn
ϕj(x)dx = 1.

fj(x) = (ϕj ∗ f)(x) =

∫
Rn
f(y)ϕj(x− y)dy.

1. For any k ∈ N, we can consider ϕj ∈ C k(Rn) with compact support. Then, according
to Proposition 3.5, fj ∈ C k(Rn), and since k is arbitrary, it follows that fj ∈ C∞(Rn).

2. Let K ⊂ Rn be a compact set and m ∈ Rn. For |α| ≤ m, there exists j0 ∈ Rn such
that for all j ≥ j0, we have B(0, εj) ⊂ K. Then:

|Dα(fj)(x)−Dαf(x)| = |Dα(f ∗ ϕj)(x)−Dαf(x)|
= |(Dαf ∗ ϕj)(x)−Dαf(x)|

=

∣∣∣∣∫
Rn
f(x− y).ϕj(y)dy −

∫
Rn
f(x).ϕj(y)dy

∣∣∣∣
=

∣∣∣∣∫
Rn

(Dαf(x− y)−Dαf(x)).ϕj(y)dy

∣∣∣∣
=

∫
Rn
|Dαf(x− y)−Dαf(x)|.ϕj(y)dy

=

∫
B(0,εj)

|Dαf(x− y)−Dαf(x)|.ϕj(y)dy

≤ sup
y∈B(0,εj)

|Dαf(x− y)−Dαf(x)|
∫
B(0,εj)

ϕj(y)dy

≤ sup
y∈B(0,εj)

|Dαf(x− y)−Dαf(x)|.

Therefore, sup
x∈K
|Dα(fj)(x)−Dαf(x)| ≤ sup

x∈K
sup

y∈B(0,εj)

|Dαf(x− y)−Dαf(x)|.

Due to the continuity of Dα, we have lim
ε→0

sup
y∈B(0,εj)

|Dαf(x− y)−Dαf(x)| = 0.

Therefore, lim
ε→0

sup
x∈K
|Dα(fj)(x)−Dαf(x)| = 0, which implies that fj → f in C∞(Rn).

3. Since f ∈ D(Rn), there exists K ⊂ Rn such that supp f ⊂ K, and suppϕj ⊂ K for all
j ∈ Rn (this is possible because ε −→ 0). Since fj → f in C∞(Rn), we have: fj → f

in D(Rn),

4. Let ε > 0. From the density of K (Rn) in Lp(Rn) (see theorem IV.12 in [5]) there exists
a fixed g ∈ K (Rn) such that ‖f − g‖Lp(Rn) < ε.

Using similar arguments as in 2., the sequence (ϕj ∗ g) converges to g in K (Rn), i.e
(ϕj ∗ g) converges to g uniformly on any compact set.
We have: supp(ϕj ∗ g) ⊂ suppϕj + supp g ⊂ K, where K is a fixed compact. Then:

‖ϕj ∗g−g‖pLp(Rn) =

∫
K

|(ϕj ∗g)(x)−g(x)|pdx ≤ mes(K). sup
x∈K
|(ϕj ∗g)(x)−g(x)|p

j−→+∞
−→ 0

University of Msila 59 Saadi Abderachid



Distributions and Sobolev espaces Master 1 PDE and applications

By writing: ϕj ∗ f − f = (ϕj ∗ (f − g)) + (ϕj ∗ g − g) + (f − g), it follows:

‖ϕj ∗ f − f‖Lp(Rn) ≤ ‖ϕj ∗ (f − g)‖Lp(Rn) + ‖ϕj ∗ g − g‖Lp(Rn) + ‖f − g‖pLp(Rn)

≤ ‖ϕj‖L1(Rn).‖f − g‖Lp(Rn) + ‖ϕj ∗ g − g‖Lp(Rn) + ‖f − g‖Lp(Rn)

= 2‖f − g‖Lp(Rn) + ‖ϕj ∗ g − g‖Lp(Rn)

≤ 3ε

Therefore, ϕj ∗ f tends to f in Lp(Rn).

This completes the proof.

3.2 Main results

These results play an important role in the definitions related to the convolution product
between distributions.

Definition 3.2 (convolution-compatible family) :

i) Two closed sets F and G ⊂ Rn are said to be convolution-compatible if:

∀R > 0,∃ρ > 0 : (x ∈ F ∧ y ∈ G ∧ |x+ y| < R)⇒ (|x| < ρ ∧ |y| < ρ).

ii) A finite family of closed sets (Fj)j∈J ⊂ Rn is said to be convolution-compatible if:

∀I ⊂ J,∀R > 0,∃ρ > 0 : ((xj)i∈I ∈ Fi ∧

∣∣∣∣∣∑
i∈I

xi

∣∣∣∣∣ < R)⇒ (|xi| < ρ, i ∈ I).

Example 3.1 : Suppose that A is closed, and B is compact. Since B is compact, there
exists r > 0 such that for all y ∈ B, we have |y| ≤ r. Let R > 0, x ∈ A, and y ∈ B such
that |x+ y| < R. We have:
|x| = |x+ y − y| ≤ |x+ y|+ |y| < r +R and |y| ≤ r < r +R.
Therefore, A and B are convolution-compatible.

Example 3.2 : Consider the finite family {[ai,+∞[}i∈I in R.

Let R > 0 and let xi ∈ [ai,+∞[ such that

∣∣∣∣∣∑
i∈I

xi

∣∣∣∣∣ < R. We have:

0 ≤
∑
i∈I

(xi − ai) ≤

∣∣∣∣∣∑
i∈I

xi

∣∣∣∣∣+

∣∣∣∣∣∑
i∈I

ai

∣∣∣∣∣ < R +

∣∣∣∣∣∑
i∈I

ai

∣∣∣∣∣ .
Then: ai ≤ xi ≤ R +

∣∣∣∣∣∑
i∈I

ai

∣∣∣∣∣ . There exists ρi such that |xi| ≤ ρi.

We can set: ρ = max
i∈I

ρi and find that : |xi| ≤ ρ pour tout i.

Therefore, the family ([ai,+∞[)i∈I is convolution-compatible.
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Example 3.3 : Consider the two intervals [a,+∞[ and ] − ∞, b]. There exists n0 ∈ N
such that for all n ≥ n0, we have n > a and −n < b. Therefore, n + (−n) = 0 < R for
any R > 0, but n tends to +∞, so it is unbounded. Hence, [a,+∞[ and ] −∞, b] are not
convolution-compatible for any a, b ∈ R.

Proposition 3.7 : If F and G are two convolution-compatible closed sets, then F + G is
closed.

Proof : : Let xj + yjj∈Rn be a sequence in F + G that converges to z ∈ Rn. This means
that the sequence {xj + yj} is bounded, i.e., there exists R > 0 such that xj + yj < R for all
j ∈ N.

Since F and G are convolution-compatible, there exists ρ > 0 such that xj < ρ and
yj < ρ for all j ∈ N. Both sequences are bounded, so we can extract two sequences {xjk}
and {yjk} such that {xjk} converges to x and {yjk} converges to y. Therefore, {xjk + yjk}
converges to x+ y, and by the uniqueness of limits, we deduce that z = x+ y ∈ F +G.

Hence, F +G is a closed set in Rn.

Theorem 3.1 (Distributional Derivative Under the Bracket ) : Let ϕ ∈ ξ(Rp+q), T ∈
ξ′(Rp). The function:

f : Rq −→ R
y 7−→ f(y) = 〈T (x), ϕ(x, y)〉

is of class C∞(Rq) and for all α ∈ Nn we have: Dαf(y) = 〈T (x), Dα
yϕ(x, y)〉.

Proof : Let x ∈ Rq et y0 ∈ Rq. According to the Taylor expansion formula, for h ∈ Rq:

ϕ(x, y0 + h) = ϕ(x, y0) +

q∑
i=0

∂ϕ

∂yi
.hi +R(x, y0, h),

where R(x, y0, h) = 2
∑
|α|≤2

hα

α!

∫ 1

0

(1− t)Dα
yϕ(x, y0 + th)dt.

The function y 7−→ R(x, y0, h) is of class C∞, and T is distribution with compact support.
Therefore, there exist M > 0 and m ∈ N such that in the compact neighbourhood K of
suppT :

|〈T,R(x, y0, h)〉| ≤MPK,m(R) = M. sup
|β|≤m

sup
(x,y)∈K

|Dβ
yR(x, y0, h)|.

For |h| sufficiently small:

|Dβ
yR(x, y0, h)| ≤ C1.|h|2 sup

|α|≤2

|Dα
y aD

β
yϕ(x, y0)| ≤ CPK,m+2(ϕ)

We deduce that |〈T,R(x, y0, h)〉| = o(|h|2).Then:

〈T, ϕ(x, y0 + h)〉 = 〈T, ϕ(x, y0)〉+

q∑
i=0

〈T, ∂ϕ
∂yi
〉.hi + o(|h|2),
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so, f(y0 + h) = f(y0) +

q∑
i=0

〈T, ∂ϕ
∂yi

.hi + o(|h|2).

Therefore: f is differentiable at the point y0 and we have:
∂f

∂yi
= 〈T, ∂ϕ

∂yi
.

Since this holds for all i, we conclude that f ∈ C 1. The result is then obtained by induction.

Theorem 3.2 (Distributional integration under the bracket ) : Let ϕ ∈ ξ(Rp+q), T ∈
ξ′(Rp). Let P be a compact slab of Rq. Then:〈

T (x),

∫
P

ϕ(., y)dy

〉
=

∫
P

〈T (x), ϕ(., y)〉 dy.

Proof : Writing P = [a1, b1]× · · · × [aq, bq], we obtain:∫
P

ϕ(., y)dy =

∫ b1

a1

· · ·
∫ bq

aq

ϕ(., y)dy1 · · · dyq.

Let Fi(yi) =

〈
T (x),

∫ yi

ai

ϕ(., y1, · · · s, · · · , yq)ds
〉

(1 ≤ i ≤ q).

Applying the previous theorem, we get:

F ′i (yi) = 〈T (x), ϕ(., y1, · · · yi, · · · , yq)〉 .

Hence: Fi(yi) =

∫ yi

ai

〈T (x), ϕ(., y1, · · · s, · · · , yq)〉 ds.

Thus, by integrating q times, we obtain the result.

Remark 3.2 : The compact slab P can be replaced by another measurable set.

3.3 Convolution of a function with a distribution

We can express the convolution product of a function f ∈ L1(Rn) and a function ϕ ∈ D(Rn)

as follows:

(f ∗ ϕ)(x) =

∫
Rn
ϕ(x− y)f(y)dy = 〈f(y), ϕ(x− y)〉 = 〈f, τxϕ̌〉

where τxϕ̌(y) = ϕ(x− y).

This brings us back to the following definitions:

Definition 3.3 : Let T ∈ D ′(Rn), ϕ ∈ D(Rn). The convolution product T ∗ ϕ is defined as
follows:

∀x ∈ Rn : (T ∗ ϕ)(x) = 〈T, τxϕ̌〉 . (3.2)

We can extend the previous result in the case where T has compact support and ϕ ∈
C∞(Rn). We have the following definition:
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Definition 3.4 : Let T ∈ E ′(Rn) and ϕ ∈ E (Rn). The convolution product T ∗ ϕ is defined
as follows: For all x ∈ Rn, (T ∗ ϕ)(x) = 〈T, τxϕ̌〉E ′,E .

Theorem 3.3 : Let T ∈ D ′(Rn), ϕ ∈ C∞(Rn) be such that suppϕ where suppT be a com-
pact. Then:

1. T ∗ ϕ ∈ C∞(Rn).

2. For all α ∈ Nn we have: Dα(T ∗ ϕ) = T ∗Dαϕ = (DαT ) ∗ ϕ.

3. supp(T ∗ ϕ) ⊂ suppT + suppϕ.

Proof : : From the definition: T ∗ ϕ is a function defined on Rn.

1. Since τxϕ̌ ∈ C∞(Rn), we deduce from Theorem 3.1 that T ∗ ϕ ∈ C∞(Rn).

2. Let ∀α ∈ Nn, then:

Dα(T ∗ ϕ)(x) = Dα〈T, τxϕ̌〉
= 〈T,Dατxϕ̌〉
= | − 1||α|〈T, τxDαϕ̌〉
= 〈T, ˇτxDαϕ〉
= (T ∗Dαϕ)(x)

On the other hand:

Dα(T ∗ ϕ)(x) = Dα〈T, τxϕ̌〉
= 〈T,Dατxϕ̌〉
= | − 1||α|〈T, τxDαϕ̌〉
= 〈DαT, τxϕ̌〉
= (DαT ∗ ϕ)(x)

hence: Dα(T ∗ ϕ) = T ∗Dαϕ = (DαT ) ∗ ϕ.

3. Using arguments analogous to the proof of Proposition 3.1, part 2.

Theorem 3.4 : Let T ∈ D ′(Rn), ϕ, and ψ ∈ C∞(Rn) such that either suppT is compact,
or suppϕ and suppψ are both compact. Then:

1. (T ∗ ϕ) ∗ ψ = T ∗ (ϕ ∗ ψ)

2. 〈T ∗ ϕ, ψ〉 = 〈T, ϕ ∗ ψ〉

Proof : We have:
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1. On one hand:

(T ∗ ϕ) ∗ ψ(x) =

∫
Rn

(T ∗ ϕ)(y)ψ(x− y)dy

=

∫
Rn
〈T (z), ϕ(y − z)〉ψ(x− y)dy

=

〈
T (z),

∫
Rn
ϕ(y − z)ψ(x− y)dy)

〉
.

On the other hand:

T ∗ (ϕ ∗ ψ)(x) = 〈T (z), (ϕ ∗ ψ)(x− z)〉

=

〈
T (z),

∫
Rn
ϕ(x− z − t)ψ(t)dt

〉
.

Using the change of variable t = x− y, we get:∫
Rn
ϕ(x− z − t)ψ(t)dt =

∫
Rn
ϕ(y − z)ψ(x− y)dy.

Therefore: T ∗ (ϕ ∗ ψ)(x) =

∫
Rn
ϕ(y − z)ψ(x− y)dy.

which leads to: (T ∗ ϕ) ∗ ψ = T ∗ (ϕ ∗ ψ).

2.
〈T ∗ ϕ, ψ〉 =

∫
Rn

(T ∗ ϕ)(x)ψ(x)dx

=

∫
Rn
〈T (y), ϕ(x− y)〉ψ(x)dx

=

〈
T (y),

∫
Rn
ϕ(x− y)ψ(x)dx)

〉
.

= 〈T (y), (ϕ ∗ ψ)(y)〉.

Then: 〈T ∗ ϕ, ψ〉 = 〈T, ϕ ∗ ψ〉.

Proposition 3.8 : Let T ∈ ξ′(Rn), ϕ ∈ D(Rn). Then:

1. ∀a ∈ Rn : τaT ∗ ϕ = T ∗ τaϕ = τa(T ∗ ϕ)

2. 〈T, ϕ〉 = (T ∗ ϕ̌)(0)

Proof : Let T ∈ ξ′(Rn), ϕ ∈ D(Rn).

1. Let a ∈ Rn. On one hand:

τaT ∗ ϕ(x) = 〈τaT, ϕ(x− y)〉
= 〈T, ϕ(a+ x− y)〉
= 〈T, τxϕ̌(−a+ y)〉
= 〈T, τx ˇτaϕ〉
= (T ∗ τaϕ)(x).
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On the other hand:
τa(T ∗ ϕ)(x) = (T ∗ ϕ)(x− a)

= 〈T, ϕ(x− a− y)〉
= 〈T, ϕ̌(a+ y − x)〉
= 〈τaT, ϕ̌(y − x)〉
= 〈τaT, τxϕ̌〉
= (τaT ∗ ϕ)(x).

Then: τaT ∗ ϕ = T ∗ τaϕ = τa(T ∗ ϕ)

2. 〈T, ϕ〉 = 〈T, τ0ϕ〉 = 〈T, τ0̌̌ϕ〉 = (T ∗ ϕ̌)(0).

No, we will extend the convolution product de which defined on E ′(Rn) × E (Rn) to
D ′(Rn)× E (Rn) as follows:

Definition 3.5 : Let T ∈ D ′(Rn), ψ ∈ E (Rn) be such that suppT, suppψ are convolutes.
Let (ψj) ⊂ D(Rn) be a regularization sequence. For any ϕ ∈ D(Rn), we put:

〈T ∗ ψ, ϕ〉 = lim
j→+∞

〈T ∗ ψj, ϕ〉.

The following result becomes a consequence of the convolution product:

Theorem 3.5 : The space D(Ω) is dense in D ′(Ω).

3.4 Tensor product

Let U ⊂ Rn, V ⊂ Rm be two open sets.

Definition 3.6 (Tensor product of functions ) : Let f : U −→ R, g : V −→ R. The
tensor product f ⊗ g of f and g is the function defined on U × V as follows:

∀(x, y) ∈ U × V : f ⊗ g(x, y) = f(x).g(y).

The following properties directly follow from the definition:

Proposition 3.9 :

1. If f ∈ ξ(U), g ∈ ξ(V ), then: f ⊗ g ∈ ξ(U × V ).

2. supp f ⊗ g = supp f × supp g.

The following result is important for what follows:

D(U)×D(V ) is dense in D(U × V ).
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Note that if f ∈ L1
loc(U), g ∈ L1

loc(V ) et Φ ∈ D(U × V )then from Fubini’s theorem we
have: ∫∫

U×V
(f ⊗ g)(x, y)Φ(x, y)dxdy =

∫∫
U×V

f(x)g(y)Φ(x, y)dxdy

=

∫
U

f(x)dx

∫
V

g(y)Φ(x, y)dy

=

∫
V

g(y)dy

∫
U

f(x)Φ(x, y)dx

Then:
〈f ⊗ g, ϕ〉 = 〈f, 〈g(y),Φ(., y)〉〉 = 〈g, 〈f(x),Φ(x, .)〉〉.

If we have: Φ(x, y) = (ϕ⊗ ψ)(x, y) = ϕ(x).ψ(y), then:

〈f ⊗ g, ϕ⊗ ψ〉 = 〈f, ϕ〉.〈g, ψ〉.

We have a result similar to the result above concerning the distributions:

Theorem 3.6 : Let T ∈ D ′(U), S ∈ D ′(V ). There exists a unique W ∈ D ′(U × V ) such
that for all ϕ ∈ D(U) and for all ϕ ∈ D(V ) we have:

〈T ⊗ S, ϕ⊗ ψ〉 = 〈T, ϕ〉.〈S, ψ〉.

Moreover, we have for any Φ ∈ D(U × V ) :

〈W,Φ〉 = 〈T, 〈S(y),Φ(., y)〉〉 = 〈S, 〈T (x),Φ(x, .)〉〉.

Proof : Setting: F (x) = 〈S(y),Φ(., y)〉. From Theorem 3.1, we have: F ∈ C∞(U) and more
preciously F ∈ D(U).Consider K = G × H ⊂ U × V a compact from Rn × Rm. Suppose
that Φ ∈ DK(U × V ). Set 〈W,Φ〉 = 〈T, F 〉. Then, there exists M1 > 0,M2 > 0,m1 ∈ N et
m2 ∈ N such that:

|〈W,Φ〉| = |〈T, F 〉|
≤ M1. sup

|α|≤m1,x∈K1

|F (x)|

= M1. sup
|α|≤m1,x∈K1

|〈S(y),Φ(., y)〉|

≤ M1.m2 sup
|α|≤m1,x∈K1

sup
|β|≤m2,x∈K2

|Φ(x, y)|

≤ M.PK,m1+m2(Φ).

Then: W defines a unique distribution (by definition).
The second formula becomes according to the density of D(U)×D(V ) in D(U × V ).

Here’s the translation of the provided the following definition:

Definition 3.7 (tensor product of distributions ) : Let T ∈ D ′(U), S ∈ D ′(V ). The
tensor product of T and S is the distribution noted by T ⊗ S ∈ D ′(U × V ), and defined as
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follows:
∀ϕ ∈ D(U),∀ϕ ∈ D(V ) : 〈T ⊗ S, ϕ⊗ ψ〉 = 〈T, ϕ〉.〈S, ψ〉.

The general formula is given as follows:

∀Φ ∈ D(U × V ) : 〈T ⊗ S,Φ〉 = 〈T, 〈S,Φ(., y)〉〉 = 〈S, 〈T,Φ(x, .)〉〉

Remark 3.3 : The tensor product remains valid for distributions with compact support by
using the bracket 〈., .〉E ′,E .

Example 3.4 : Let a ∈ Rn and b ∈ Rm. For all Φ ∈ D(Rn+m) we have:

〈δ ⊗ δb,Φ〉 = 〈δa, 〈δb,Φ(., y)〉〉
= 〈δa,Φ(., b)〉
= Φ(a, b)

= 〈δ(a,b),Φ〉.

Then: δa ⊗ δb = δ(a,b).

Example 3.5 : Let Φ ∈ D(R2). Then:

〈δ ⊗H,Φ〉 = 〈δ, 〈H,Φ(., y)〉〉

= 〈δ,
∫ +∞

0

Φ(., y)dy〉

=

∫ +∞

0

Φ(0, y)dy.

Example 3.6 : Let Φ ∈ D(R2). Then:

〈H ⊗H,Φ〉 = 〈H, 〈H,Φ(., y)〉〉

= 〈H,
∫ +∞

0

Φ(., y)dy〉

=

∫ +∞

0

∫ +∞

0

Φ(x, y)dxdy

= 〈χR2
+
,Φ〉.

Therefore: H ⊗H = χR2
+
.

Proposition 3.10 : Let T ∈ E ′(U), S ∈ E ′(V ), f ∈ E (U) and g ∈ E (V ). Then:

1. supp(T ⊗ S) = suppT × suppS.

2. Dα
xD

β
y (T ⊗D) = Dα

xT ⊗Dβ
yS.

3. (f ⊗ g)(T ⊗ S) = (f.T )⊗ (g.S).

4. The tensor product is associative.

5. The tensor product is not commutative in general.
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3.5 Convolution of two distributions

Now, let’s generalize the convolution product of functions using another approach, based on
the following distributional formula:

Let f, g ∈ L1(Rn) and ϕ ∈ D(Rn). We know that (f ∗ g) ∈ L1(Rn) and we have:

〈f ∗ g, ϕ〉 =

∫
Rn

(f ∗ g)(y)dy

=

∫
Rn

∫
Rn
f(z − y)g(y)ϕ(z)dzdy.

Using the change of variables x = z − y, we get:

〈f ∗ g, ϕ〉 =

∫
Rn

∫
Rn
f(x)g(y)ϕ(x+ y)dxdy

=

∫
Rn
f(x)dx

∫
Rn
g(y)ϕ(x+ y)dy

Noting ϕ∆(x, y) = ϕ(x+ y), we obtain:

〈f ∗ g, ϕ〉 =

∫
Rn
f(x)dx

∫
Rn
g(y)ϕ∆(x, y)dy

= 〈f(x), 〈g(y), ϕ∆(., y)〉〉
= 〈f ⊗ g, ϕ∆〉.

To generalize this notion to distributions, we need to make sense of the bracket 〈.⊗ ., ϕ∆〉.
This is not immediate because ϕ∆ does not necessarily belong to D(R2n). For example, if we
take ϕ ∈ D(R) such that suppϕ is in [0, 1], then: suppϕ∆ = {(x, y) ∈ R2 : 0 ≤ x + y ≤ 1}
is not compact.

The bracket 〈S ⊗ T, ϕ∆〉 makes sense if suppS and suppT are convolutives in the sense
of Definition ??, in this case, we give the following definition:
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Definition 3.8 (convolution product of distributions ) : Let S, T ∈ D ′(Rn) such that
sipp S, suppT are convolutives. We define the convolution product of S ∗ T as follows:

∀ϕ ∈ D(Rn) : 〈S ∗ T, ϕ〉D ′,D = 〈S ⊗ T, ϕ∆〉ξ′,ξ

ou ϕ∆(x, y) = ϕ(x+ y)

Example 3.7 : Let ϕ ∈ D(R). There exists a > 0 such that suppϕ ⊂ [−a, a],
i.e suppϕ∆ = {(x, y) ∈ R2 : −a ≤ x+ y ≤ a}. Then:

〈H ∗H,ϕ〉 = 〈H ⊗H,ϕ∆〉
= 〈χR2

+
, ϕ∆〉

=

∫ +∞

0

∫ +∞

0

ϕ(x+ y)dxdy

=

∫ +∞

0

dy

∫ +∞

y

ϕ(z)dz

=

∫ a

0

dy

∫ a

y

ϕ(z)dz.

Proposition 3.11 : let a ∈ Rn, α ∈ Nn, S, T ∈ D ′(Rn) such that sipp S, suppT are convo-
lutives. Then:

1. δa ∗ T = τaT . In particular δ ∗ T = τ0T = T .

2. τa(T ∗ S) = τaT ∗ S = T ∗ τaS.

3. Dα(T ∗ S) = DαT ∗ S = T ∗DαS. In particular: Dαδ ∗ T = DαT .

Proof : Let ϕ ∈ D(Rn). Then:
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1. For a ∈ Rn :
〈δa ∗ T, ϕ〉 = 〈δa ⊗ T, ϕ∆〉

= 〈T, 〈δa, ϕ∆〉〉
= 〈T, ϕ(a+ x)〉
= 〈T, τ−aϕ〉
= 〈τaT, ϕ〉.

Then: δa ∗ T = τaT , in particular δ ∗ T = τ0T = T .

2. On one hand:
〈τa(T ∗ S), ϕ〉 = 〈(T ∗ S), τ−aϕ〉

= 〈T ⊗ S, (τ−aϕ)∆〉
= 〈T, 〈S, ϕ(a+ x+ y)〉〉
= 〈T, 〈S, τ−aϕ∆〉
= 〈T, 〈τaS, ϕ〉〉
= 〈T ⊗ τaS, ϕ∆〉
= 〈T ∗ τaS, ϕ〉.

On the other hand:

〈τa(T ∗ S), ϕ〉 = 〈(T ∗ S), τ−aϕ〉
= 〈T ⊗ S, (τ−aϕ)∆〉
= 〈S, 〈T, ϕ(a+ x+ y)〉〉
= 〈S, 〈T, τ−aϕ∆〉
= 〈S, 〈τaT, ϕ〉〉
= 〈τaT ⊗ S, ϕ∆〉
= 〈τaT ∗ S, ϕ〉.

Then: τa(T ∗ S) = τaT ∗ S = T ∗ τaS.

3. On one hand:
〈Dα(T ∗ S), ϕ〉 = | − 1|α〈(T ∗ S), Dαϕ〉

= | − 1|α〈T ⊗ S, (Dαϕ)∆〉
= 〈T, | − 1|α〈S,Dαϕ(x+ y)〉〉
= 〈T, | − 1|α〈S,Dαϕ∆〉
= 〈T, 〈DαS, ϕ〉〉
= 〈T ⊗DαS, ϕ∆〉
= 〈T ∗DαS, ϕ〉.
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On the other hand:

〈Dα(T ∗ S), ϕ〉 = | − 1|α〈(T ∗ S), Dαϕ〉
= | − 1|α〈T ⊗ S, (Dαϕ)∆〉
= 〈S, | − 1|α〈T,Dαϕ(x+ y)〉〉
= 〈S, | − 1|α〈T,Dαϕ∆〉
= 〈S, 〈DαT, ϕ〉〉
= 〈DαT ⊗ S, ϕ∆〉
= 〈DαT ∗ S, ϕ〉.

Then: Dα(S ∗ T ) = DαS ∗ T = S ∗DαT. In particular: Dαδ ∗ T = Dα(δ ∗ T ) = DαT .

3.6 Convolution equations:

Definition 3.9 : A convolution equation is defined as any equation of the form A ∗ U = T ,
where A and T are known distributions, and U is the unknown.

Example 3.8 : Consider the partial differential equation:∑
|α|≤m

aαD
αU = f,

where aα are real constants, and f is a locally integrable function.
According to Theorem 3.3, we can write: DαU = Dα(δ ∗ U) = Dαδ ∗ U.
Then the equation can be written in the form A ∗ U = f , where A =

∑
|α|≤m

aαD
αδ.

Definition 3.10 (Elementary solution ) : Let A ∈ E ′(Rn). We say that a distribution
UA is an elementary solution of A if we have A ∗ UA = δ.

Remark 3.4 :

1. The elementary solution doesn’t always exist.

2. If U0 and U1 are two elementary solutions of A, then: U1 = U0 + V where V is a
general solution of the equation A ∗ V = 0. Indeed, if we set: V = U1 − U0, we find:

A ∗ V = A ∗ (U1 − U0) = A ∗ U1 − A ∗ U0 = 0.

We assume the following theorem:

Theorem 3.7 (Malgrange− Ehrenpreis) : Every partial differential equation with con-
stant coefficients admits an elementary solution.
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Theorem 3.8 : Let A ∈ E ′(Rn). Suppose that A has an elementary solution uA. Then:

1. For any T ∈ E ′(Rn), there exists U ∈ D ′(Rn) such that A ∗ U = T .

2. Let T ∈ E ′(Rn). If there exists U ∈ E ′(Rn) as a solution of the equation A ∗U = T , it
is unique, and we have U = UA ∗ f .

Proof : : Suppose that A ∈ E ′(Rn) has an elementary solution uA.

1. For any T ∈ E ′(Rn), we set: U = UA ∗ T , then:

A ∗ U = A ∗ (UA ∗ T ) = (A ∗ UA) ∗ T = δ ∗ T = T.

2. Suppose that there exists U ∈ E ′(Rn) as a solution of the equation A ∗ U = T , then:

U = δ ∗ U = (UA ∗ A) ∗ U = UA ∗ (A ∗ U) = UA ∗ T,

which shows uniqueness.

Example 3.9 : The function w, defied by: w(x) =
|x|
2
, is a solution of the equation u′′ = δ

dans R. Indeed, Let ϕ ∈ D(R). Then:

〈w′′, ϕ〉 = 〈w,ϕ′′〉

=

∫ +∞

−∞

|x|
2
ϕ′′(x)dx

=

∫ 0

−∞
−x

2
ϕ′′(x)dx+

∫ +∞

0

x

2
ϕ′′(x)dx

= −
[x

2
ϕ′(x)

]0

−∞
+

∫ 0

−∞

ϕ′(x)

2
dx+

[x
2
ϕ′(x)

]+∞

0
−
∫ +∞

0

ϕ′(x)

2
dx

= ϕ(0)

= 〈δ, ϕ〉.

Example 3.10 : The function w2, defined as: w2(x) =
ln |x|
2π

, is an elementary solution of
the Laplace operator ∆ in R2.
Indeed, let ϕ ∈ D(R2). Then:

〈∆w2, ϕ〉 = 〈w2,∆ϕ〉

= lim
ε→0

1

2π

∫
|x|>ε

ln |x|.∆ϕ(x)dx.

Using the Green’s formula, we get:∫
|x|>ε

ln |x|∆ϕ(x)dx =

∫
|x|>ε

∆ ln |x|.ϕ(x)dx+

∫
|x|=ε

ln |x|.∂ϕ
∂ν
dσ(x)−

∫
|x|=ε

∂ ln |x|
∂ν

ϕdσ(x).
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where ν is the outward normal vector of the set {|x| > ε}, i.e., the inward normal vector of
B(0, ε), so ν(x1, x2) = −(x1, x2).

∗) ∆ ln |x| = 0 on {|x| > ε}, so:
∫
|x|>ε

∆ ln |x|.ϕ(x)dx = 0.

∗∗) ∂ ln |x|
∂ν

= − x1

x2
1 + x2

2

.x1 −
x2

x2
1 + x2

2

.x2 = −1.

Therefore: −
∫
|x|=ε

∂ ln |x|
∂ν

ϕdσ(x) =

∫
|x|=ε

ϕdσ(x) =

∫ 2π

0

ϕ(ε cos θ, ε sin θ)dθ.

According to the mean value theorem, there exists xε such that |xε| = ε, and we have:∫ 2π

0

ϕ(ε cos θ, ε sin θ)dθ = 2πϕ(xε).

Therefore: lim
ε→0

[
−
∫
|x|=ε

∂ ln |x|
∂ν

ϕdσ(x)

]
= 2πϕ(0).

∗∗∗)
∫
|x|=ε

ln |x|∂ϕ
∂ν
dσ(x) = − ln ε

∫
|x|=ε

[
x1
∂ϕ

∂x1

+ x2
∂ϕ

∂x2

]
dσ(x). Then:

∣∣∣∣∫
|x|=ε

ln |x|∂ϕ
∂ν
dσ(x)

∣∣∣∣ ≤
ε ln ε

∫
|x|=ε

[∣∣∣∣ ∂ϕ∂x1

∣∣∣∣+

∣∣∣∣ ∂ϕ∂x2

∣∣∣∣] dσ(x) ≤M(ϕ).ε ln ε.

Therefore: lim
ε→0

∫
|x|=ε

ln |x|∂ϕ
∂ν
dσ(x) = 0.

Finally, we obtain:

〈∆w2, ϕ〉 = lim
ε→0

1

2π

∫
|x|>ε

ln |x|.∆ϕ(x)dx

= ϕ(0)

= 〈δ, ϕ〉.

Example 3.11 : sing the method above, we can show that the function wn, defined as:

wn(x) = −
Γ(n

2
)

2π
n
2 (n− 2)

1

|x|n−2
, is an elementary solution of the Laplace operator ∆ in Rn for

(n ≥ 3), and Γ
(n

2

)
=

∫ +∞

0

t
n−2
2 e−tdt.

The following results will be given without demonstration:

Theorem 3.9 : Let w be the elementary solution of the operator ∆. For f ∈ E ′(Rn), we
define u = w ∗ f . Then:

1. For all n ≥ 2, u is a solution of the equation ∆u = f , and we have: u ∈ E ′(Csupp f
Rn ).

2. For all n ≥ 3, we have: lim
|x|→+∞

u(x) = 0.

Corollary 3.1 : Let Ω ⊂ Rn be an open set, and let u ∈ D ′(Ω) such that ∆u = 0. Then:
u ∈ C∞(Ω).

In other words:

Harmonic distributions are harmonic functions.
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Theorem 3.10 : Let P be a differential operator with constant coefficients in Rn. Suppose
that P has an elementary solution w ∈ C∞(Rn). Then: for any f ∈ E ′(Rn), the distribution
w ∗ f is a solution of the equation Pu = f , and we have u ∈ E ′(Csupp f

Rn ).

Theorem 3.11 : Let the differential operator with constant coefficients be denoted as Pm,
defined in D ′(R+) as: PmU = U (m) + cm−1U

(m−1) + cm−2U
(m−2) + . . .+ c1U

′ + c0U.

The operator Pm has a unique elementary solution w ∈ D ′(R+), and we have w = H.w0,
where H is the Heaviside function, and w0 is the unique solution of the initial value problem:

Pw0 = 0,

w
(k)
0 (0) = 0, k = 0, . . . ,m− 2,

w
(m−1)
0 (0) = 1.

Exercises

Exercise 3.1 : Find f ∗ g for the follows functions:

1. f(x) = eax, g(x) = H(x), a ∈ R.

2. f(x) = sin x, g(x) = e−|x|.

3. f(x) = χ[0,1](x), g(x) = x2.

4. f(x) = g(x) = e−x
2
.

Exercise 3.2 : Consider the function θ defined on R by:

∀x ∈ R : θ(x) =

{
0 : |x| > 1

1 : |x| ≤ 1.
.

1. Show that θ ∈ L1(R).

2. Calculate θ ∗ θ.

3. Calculate θ ∗H, where H is the Heaviside function.

Exercise 3.3 : Let F,G ⊆ Rn be two closed cone sets, i.e.,

∀λ > 0,∀x ∈ F, ∀y ∈ G : λx ∈ F, λy ∈ G.

Suppose that (F,G) are convolution-compatible. Prove that F ∩ (−G) = {0}.

Exercise 3.4 : Let H be the Heaviside function. Determine the distributions:

∇(H ⊗H), ∆(H ⊗H), (xH ⊗ y2H).
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Exercise 3.5 : Let H be the Heaviside function. Determine the distributions:

(H ∗H)′′, (xH ∗ x2H), (δ′′ ∗H) (δ′ ∗ vp 1
x
)

Exercise 3.6 : Solve the following differential equation in D ′(R):

U ′′ = H.

Exercise 3.7 : Consider the heat operator in R+ × R:

D =
∂

∂t
− ∂2

∂x2
.

Verify that the distribution associated with the function:

E(t, x) =
1

2
√
πt

exp

(
−x

2

4t

)
is an elementary solution of the operator D.

Exercise 3.8 : Consider the wave operator in R2:

D =
∂2

∂t2
− ∂2

∂x2
.

Verify that the distribution associated with the function:

E(t, x) =


1

2
: t− |x| > 0

0 : t− |x| ≤ 0,

is an elementary solution of the operator D.

Solutions of exercises

Solution 3.1 : Let x ∈ R. We will calculate (f ∗ g)(x) in the following cases:

1. f(x) = eax, g(x) = H(x), a ∈ R.

(f ∗ g)(x) =

∫ +∞

−∞
f(x− y).g(y)dy

=

∫ +∞

−∞
ea(x−y)H(y)dy

=

∫ +∞

0

ea(x−y)dy

Then:

(f ∗ g)(x) =


eax

a
: a > 0,

+∞ : a < 0.
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2. f(x) = sin x, g(x) = e−|x|.

(f ∗ g)(x) =

∫ +∞

−∞
f(x− y).g(y)dy

=

∫ +∞

−∞
sin(x− y)e−|y|dy

=

∫ 0

−∞
sin(x− y)eydy +

∫ +∞

0

sin(x− y)e−ydy

= [sin(x− y)ey]0−∞ +

∫ 0

−∞
cos(x− y)eydy

−[sin(x− y)ey]+∞0 −
∫ +∞

0

cos(x− y)e−ydy

=

∫ 0

−∞
cos(x− y)eydy −

∫ +∞

0

cos(x− y)e−ydy

= [cos(x− y)ey]0−∞ −
∫ 0

−∞
sin(x− y)eydy

+[cos(x− y)ey]+∞0 −
∫ +∞

0

sin(x− y)e−ydy

= 2 cosx−
∫ +∞

−∞
sin(x− y)e−|y|dy

= 2 cosx− (f ∗ g)(x).

Then: (f ∗ g)(x) = cos x.

3. f(x) = χ[0,1](x), g(x) = x2.

(f ∗ g)(x) =

∫ +∞

−∞
f(y).g(x− y)dy

=

∫ 1

0

(x− y)2dy

=

[
−(x− y)3

3

]1

0

=
x3 − (x− 1)3

3
.

4. f(x) = g(x) = e−x
2
.

(f ∗ g)(x) =

∫ +∞

−∞
f(x− y).g(y)dy

=

∫ +∞

−∞
e−(x−y)2e−y

2

dy

=

∫ +∞

−∞
e−((x−y)2+y2)dy

= e−
x2

2

∫ +∞

−∞
e−2(y−x

2
)2dy

=

√
π

2
e−

x2

2 .
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Solution 3.2 : ∀x ∈ R : θ(x) =

{
0 : |x| > 1

1 : |x| ≤ 1.
.

1. We have:
∫ +∞

−∞
|θ(x)|dx =

∫ 1

−1

dx = 2 < +∞.

Then: θ ∈ L1(R).

2. Let x ∈ R.
(θ ∗ θ)(x) =

∫ +∞

−∞
θ(x− y)θ(y)dy =

∫ 1

−1

θ(x− y)dy.

Using the change of variable t = x− y, we obtain: (θ ∗ θ)(x) =

∫ x+1

x−1

θ(t)dt.

∗) If x+ 1 ≤ −1 ou x− 1 ≥ 1 then: (θ ∗ θ)(x) = 0.

∗) If x− 1 < −1 ≤ x+ 1 ≤ 1 then: (θ ∗ θ)(x) =

∫ x+1

−1

dt = x+ 2.

∗) If −1 ≤ x− 1 ≤ 1 < x+ 1 then: (θ ∗ θ)(x) =

∫ 1

x−1

dt = 2− x.

∗) If −1 ≤ x− 1 ≤ x+ 1 ≤ 1 then: (θ ∗ θ)(x) =

∫ x+1

x−1

dt = 2.

3. Let x ∈ R.
(θ ∗H)(x) =

∫ +∞

−∞
θ(x− y)H(y)dy =

∫ +∞

0

θ(x− y)dy.

Using the change of variable t = x− y, we get: (θ ∗H)(x) =

∫ x

−∞
θ(t)dt.

∗) If x ≤ −1 then: (θ ∗H)(x) = 0.

∗) If −1 < x < 1 then: (θ ∗H)(x) =

∫ x

−1

dt = x+ 1.

∗) If x ≥ 1 then: (θ ∗H)(x) =

∫ 1

−1

dt = 2.

Solution 3.3 : Suppose that (F,G) are convolutive and let’s prove that F ∩ (−G) = {0}.
From the definition, we have: {0} ⊂ F ∩ (−G).
Now, let x ∈ F ∩ (−G). This implies that x ∈ F and −x ∈ G.
Let R > 0. Then, |0| = |x+ (−x)| < R.

There exists r > 0 such that: |x| < r and | − x| < r, i.e., |x| < r.
As R is arbitrary, r is arbitrary as well, so we have x = 0.
Therefore, F ∩ (−G) = {0}.

Solution 3.4 :

∇(H ⊗H) =

(
∂

∂x
(H ⊗H),

∂

∂y
(H ⊗H)

)
=

(
∂H(x)

∂x
⊗H(y), H(y)⊗ ∂H

∂y

)
= (δx ⊗H(y), H(x)⊗ δy)

For Φ ∈ D(R2), we obtain:

〈∇(H ⊗H),Φ〉 =

(∫ +∞

0

Φ(0, y)dy,

∫ +∞

0

Φ(x, 0)dx

)
.
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∆(H ⊗H) =
∂2

∂x2
(H ⊗H) +

∂2

∂y2
(H ⊗H)

=
∂2H(x)

∂x2
⊗H(y) +H(x)⊗ ∂2H(y)

∂y2

=
∂δ(x)

∂x
⊗H(y) +H(x)⊗ ∂δ(y)

∂y

For Φ ∈ D(R2), we get:

〈∆(H ⊗H),Φ〉 =

∫ +∞

0

∂

∂x
Φ(0, y)dy +

∫ +∞

0

∂

∂y
Φ(x, 0)dx.

Let Φ ∈ D(R2). Then:

〈xH ⊗ y2H,Φ〉 = 〈xH, 〈y2H,Φ(., y)〉〉

= 〈xH,
∫ +∞

0

y2Φ(., y)dy〉

=

∫ +∞

0

∫ +∞

0

xy2Φ(x, y)dxdy.

Therefore: xH ⊗ y2H = xy2χR2
+
.

Solution 3.5 :

∗) (H ∗H)′′ = ((H ∗H)′)′ = (H ′ ∗H)′ = (δ ∗H)′ = H ′ = δ.

∗∗) Let ϕ ∈ D(R). Then:

〈xH ∗ y2H,ϕ〉 = 〈xH ⊗ y2H,ϕ∆〉
= 〈xy2χR2

+
, ϕ∆〉

=

∫ +∞

0

∫ +∞

0

xy2ϕ(x+ y)dxdy.

∗ ∗ ∗) δ′′ ∗H = (δ ∗H)′′ = H ′′ = δ′.

∗ ∗ ∗∗) δ′ ∗ vp 1
x

= (δ ∗ vp 1
x
)′ = (vp 1

x
)′.

Let ϕ ∈ D(R). Then:
〈(vp 1

x
)′, ϕ〉 = −〈vp 1

x
, ϕ′〉

= lim
ε→0

∫
|x|>ε
−ϕ

′(x)

x
dx

We have:∫
|x|>ε
−ϕ

′(x)

x
dx =

[
−ϕ(x)

x

]−ε
−∞

+

[
−ϕ(x)

x

]+∞

ε

−
∫
|x|>ε

ϕ(x)

x2
dx

=
ϕ(−ε)
ε

+
ϕ(ε)

ε
−
∫
|x|>ε

ϕ(x)

x2
dx

= −ϕ(−ε)− ϕ(0)

−ε
+
ϕ(ε)− ϕ(0)

ε
−
[∫
|x|>ε

ϕ(x)

x2
dx− 2

ϕ(0)

ε

]

University of Msila 78 Saadi Abderachid



Distributions and Sobolev espaces Master 1 PDE and applications

Then:

〈(vp 1
x
)′, ϕ〉 = lim

ε→0

∫
|x|>ε
−ϕ

′(x)

x
dx

= lim
ε→0

(
−ϕ(−ε)− ϕ(0)

−ε
+
ϕ(ε)− ϕ(0)

ε
−
[∫
|x|>ε

ϕ(x)

x2
dx− 2

ϕ(0)

ε

])
= −ϕ′(0) + ϕ′(0)− lim

ε→0

[∫
|x|>ε

ϕ(x)

x2
dx− 2

ϕ(0)

ε

]
= −〈(pf 1

x2
), ϕ〉.

Hence: δ′ ∗ vp 1
x

= −pf 1
x2
.

Solution 3.6 : According to Example 3.9, the function w defined by w0(x) =
|x|
2

is an
elementary solution of the equation U ′′ = δ. The general solution of the equation U ′′ = δ is

W (x) =
|x|
2

+ ax + b, where a and b are real numbers, as the function x 7−→ ax + b is the
general solution of the equation U ′′ = 0 (see Remark 3.4 and Corollary 3.1).
Therefore, the general solution of the differential equation U ′′ = H is W ∗H.
Let ϕ ∈ D(R). Then:

〈W ∗H,ϕ〉 = 〈W (x)⊗H(y), ϕ∆〉

=

∫ +∞

−∞

∫ +∞

0

(
|x|
2

+ ax+ b

)
ϕ(x+ y)dxdy.

=

∫ 0

−∞

∫ +∞

0

(2a− 1)x+ 2b

2
ϕ(x+ y)dxdy

+

∫ +∞

0

∫ +∞

0

(2a+ 1)x+ 2b

2
ϕ(x+ y)dxdy.

Solution 3.7 : D =
∂

∂t
− ∂2

∂x2
E(t, x) =

1

2
√
πt

exp

(
−x

2

4t

)
, t > 0, x ∈ R.

We have:

〈DE,ϕ〉 = −
〈
E,

∂ϕ

∂t
+
∂2ϕ

∂x2

〉
= − lim

ε→0

∫ +∞

ε

∫ +∞

−∞
E(t, x)

(
∂ϕ

∂t
+
∂2ϕ

∂x2

)
dxdt.

= − lim
ε→0

(∫ +∞

−∞

∫ +∞

ε

E(t, x)
∂ϕ

∂t
dtdx+

∫ +∞

ε

∫ +∞

−∞
E(t, x)

∂2ϕ

∂x2
dxdt

)
.

Note that
∂E

∂t
=
∂2E

∂x2
, then:

∫ +∞

−∞

∫ +∞

ε

E(t, x)
∂ϕ

∂t
dtdx =

∫ +∞

−∞
[E(t, x)ϕ(t, x)]+∞ε dx−

∫ +∞

−∞

∫ +∞

ε

∂E

∂t
ϕ(t, x)dtdx

= −
∫ +∞

−∞
E(ε, x)ϕ(ε, x)dx−

∫ +∞

−∞

∫ +∞

ε

∂E

∂t
ϕ(t, x)dtdx

= −
∫ +∞

−∞
E(ε, x)ϕ(ε, x)dx−

∫ +∞

ε

∫ +∞

−∞

∂2E

∂x2
ϕ(t, x)dxdt
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Therefore:
∫ +∞

−∞

∫ +∞

ε

E(t, x)
∂ϕ

∂t
dtdx+

∫ +∞

ε

∫ +∞

−∞

∂2E

∂x2
ϕ(t, x)dxdt = −

∫ +∞

−∞
E(ε, x)ϕ(ε, x)dx.

We obtain:

〈DE,ϕ〉 = lim
ε→0

∫ +∞

−∞
E(ε, x)ϕ(ε, x)dx = lim

ε→0

∫ +∞

−∞

1

2
√
πε

exp

(
−x

2

4ε

)
ϕ(ε, x)dx

Using the change of variable x = 2y
√
ε, we get:

〈DE,ϕ〉 = lim
ε→0

1√
π

∫ +∞

−∞
e−y

2

ϕ(ε, 2y
√
ε)dy.

Knowing that
1√
π

∫ +∞

−∞
e−y

2

dy = 1, we can write:

1√
π

∫ +∞

−∞
e−y

2

ϕ(ε, 2y
√
ε)dy − ϕ(0, 0) =

1√
π

∫ +∞

−∞
e−y

2

[ϕ(ε, 2y
√
ε)− ϕ(0, 0)]dy

Lebesgue’s dominated convergence theorem (Theorem 1.13 and Remark 1.4) shows that:

lim
ε→0

1√
π

∫ +∞

−∞
e−y

2

[ϕ(ε, 2y
√
ε)− ϕ(0, 0)]dy = 0

Then:

lim
ε→0

1√
π

∫ +∞

−∞
e−y

2

ϕ(ε, 2y
√
ε)dy = ϕ(0, 0) = 〈δ, ϕ〉.

Hence: DE = δ.

So: the distribution associated with the function E is an elementary solution of D.

Solution 3.8 : D =
∂2

∂t2
− ∂2

∂x2
. E(t, x) =


1

2
: t− |x| > 0

0 : t− |x| ≤ 0,
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We have:

〈DE,ϕ〉 =

〈
E,

∂2ϕ

∂t2
− ∂2ϕ

∂x2

〉
=

〈
E,

∂2ϕ

∂t2

〉
−
〈
E,

∂2ϕ

∂x2

〉
=

1

2

(∫ 0

−∞

∫ +∞

−x

∂2ϕ

∂t2
dtdx+

∫ +∞

0

∫ +∞

x

∂2ϕ

∂t2
dtdx−

∫ +∞

0

∫ t

−t

∂2ϕ

∂x2
dxdt

)
= −1

2

(∫ 0

−∞

∂ϕ

∂t
(−x, x)dx+

∫ +∞

0

∂ϕ

∂t
(x, x)dx+

∫ +∞

0

∂ϕ

∂x
(t, t)dt−

∫ +∞

0

∂ϕ

∂x
(t,−t)dt

)
= −1

2

(∫ +∞

0

∂ϕ

∂t
(s,−s)ds+

∫ +∞

0

∂ϕ

∂t
(s, s)ds+

∫ +∞

0

∂ϕ

∂x
(s, s)ds−

∫ +∞

0

∂ϕ

∂x
(s,−s)ds

)
= −1

2

∫ +∞

0

(
∂ϕ

∂t
(s, s) +

∂ϕ

∂x
(s, s)

)
ds− 1

2

∫ +∞

0

(
∂ϕ

∂t
(s,−s)− ∂ϕ

∂x
(s,−s)

)
ds.

Set: ϕ1(s) = ϕ(s, s) et ϕ2(s) = ϕ(s,−s), we get:

ϕ′1(s) =
∂ϕ

∂t
(s, s) +

∂ϕ

∂x
(s, s) et ϕ′2(s) =

∂ϕ

∂t
(s,−s)− ∂ϕ

∂x
(s,−s). Then:

〈DE,ϕ〉 = −1

2

∫ +∞

0

ϕ′1(s)ds− 1

2

∫ +∞

0

ϕ′2(s)ds

=
1

2
ϕ1(0) +

1

2
ϕ2(0)

= ϕ(0, 0)

= 〈δ, ϕ〉

So: distribution associated with the function E is an elementary solution of the operator D.

University of Msila 81 Saadi Abderachid



CHAPTER 4

FOURIER TRANSFORM

Among the various tools for the study of partial differential equations, we have the Fourier
transform, which is a fundamental tool that generalizes Fourier series from the periodic case.

Let E be a C-vector space, L a linear operator from E to E, and T > 0. Consider the
real variable Cauchy problem, with vector-valued solutions in E:

(C)

{
y′(t) = Ly(t),

y(0) = y0.
, t ∈ [0, T [, y0 ∈ E.

I) If E is of finite dimension and y0 is an eigenvector of L associated with the eigenvalue
λ0, then the function y defined as: y(x) = eλt.y0. is a solution to problem (C).

Thus, if y0 is a linear combination of eigenvectors e1, e2, . . . ek of L, associated with

eigenvalues λ1, λ2, . . . , λk, i.e., y0 =
k∑
j=1

aj.ej, then:

y(x) =
k∑
j=1

ajej.e
λjt,

is a solution of the problem (C).
Therefore, if we can determine the eigenvalues of L, it is easy to find explicit solutions

to problem (C).
II) If E is of infinite dimension, for example, a space of functions on [0, T [×R into C, we

obtain the problem:

(C)

{
y′(t, x) = Ly(t, x),

y(0, x) = y0(x).
, t ∈ [0, T [, x ∈ R.

We look for eigenvectors of the operator L, i.e., functions y satisfying for certain eigen-
values λ the equation: y′(t, x) = λy(t, x).
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The theory of Fourier series allows us to use the family ej = e
2πijx
T j ∈ Z as a Hilbert basis

of the space L2
T (R) of functions in L2

loc(R) and T -periodic functions of R into C, equipped
with the norm:

‖f‖L2
T (R) =

1

T

(∫ T
2

−T
2

f 2(x)dx

) 1
2

.

So, for all f ∈ L2
2π(R) we have: f =

∑
j∈Z

aj(f).ej, where

aj(f) =
1

T

∫ T
2

−T
2

e
−2πijs
T f(y)dy.

III) Now suppose that E is the space of functions defined on [0,+∞[×R, and consider
the same previous problem in [0,+∞[×R. In the case of non-periodic functions, we let T
tend to +∞ in the previous problem.

Formally, for T > 0:

f(x) =
1

2π

∑
j∈Z

2π

T

(∫ T
2

−T
2

e
−2πijy
T f(y)dy

)
e

2πijx
T .

If T tends to infinity, we obtain:

f(x) =
1

2π

∫ +∞

−∞

(∫ +∞

−∞
e−iy.ξf(y)dy

)
eix.ξdξ.

The quantity
∫ +∞

−∞
e−is.ξf(s)ds if it makes sense, is called the Fourier transform of f .

We can extend this to functions defined on Rn. In the following, we will study the Fourier
transform and its various properties.

4.1 Fourier transformation for functions

Definition 4.1 : Let f ∈ L1(Rn). The Fourier transform of f , a complex-valued function
denoted by f̂ or F(f), is defined for all ξ ∈ Rn as:

Ff(ξ) = f̂(ξ) =

∫
Rn
f(x)e−ix.ξdx, (4.1)

where x.ξ =
n∑
i=1

xiξi (dot product).

Remark 4.1 : The Fourier transform in L1(Rn) is well-defined, linear, and there exists
c > 0 such that: ‖f̂‖L∞(Rn) ≤ c‖f‖L1(Rn).

Indeed, let f ∈ L1(Rn). For all ξ ∈ Rn, we have:
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|f̂(ξ)| =

∣∣∣∣∫
Rn
f(x)e−ix.ξdx

∣∣∣∣
≤

∫
Rn
|f(x)|e−ix.ξdx

≤ 2

∫
Rn
|f(x)|dx

= 2|f |L1(Rn) < +∞.

Therefore, F is well-defined, and we have: |f̂ |L∞(Rn) ≤ 2|f |L1(Rn). It is said that F is a
continuous map from L1(Rn) to L∞(Rn).

Remark 4.2 : If f is separable in variables, i.e., f(x) =
n∏
i=1

fi(xi), then:

f̂(x) =
n∏
i=1

f̂i(xi).

Definition 4.2 : We define the conjugate Fourier transform in the same way for f ∈
L1(Rn):

F(f)(x) =

∫
Rn
f(ξ)eix.ξdξ. (4.2)

Example 4.1 : Let [a, b] be an interval. Then, we have:

Ff(ξ) =

∫ +∞

−∞
f(x)e−ix.ξdx

≤
∫ b

a

e−ix.ξdx

Finally:

F(χ[a,b])(x) =


e−iaξ − e−ibξ

iξ
: ξ 6= 0

b− a : ξ = 0

Proposition 4.1 : We have the following properties:

1. If f is an even function, then f̂ is an even function.

2. If f is an odd function, then f̂ is an odd function.

3. If f is a real function, then: f̂(−ξ) = f̂(ξ).

4. If f(−x) = f(x) for all x ∈ Rn, then f̂ is a real function.

5. Translation: For any a ∈ Rn, we have:

F(τaf) = e−ia.ξf̂ F(eia.xf) = τaf̂

6. Dilatation: F
(
f
(x
λ

))
= |λ|nf̂(λξ) for a nonzero real λ.
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Proof : Let f ∈ L1(R).

1. Suppose that f is even and let ξ ∈ Rn, on thena:

Ff(−ξ) =

∫
Rn
f(x)eix.ξdx

Let’s make the change of variable y = −x, we obtain:

Ff(−ξ) =

∫
Rn
f(−y)e−iy.ξdy

=

∫
Rn
f(y)e−iyx.ξdy

= Ff(ξ).

Thus, f̂ is an even function.

2. Similarly, we can prove that if f is an odd function, then f̂ is an odd function.

3. Suppose that f is a real function, then:

f̂(−ξ) =

∫
Rn
f(x)eix.ξdx

=

∫
Rn
f(x)e−ix.ξdx

=

∫
Rn
f(x)e−ix.ξdx

=

∫
Rn
f(x)e−ix.ξdx

= f̂(ξ)

4. Suppose that f(−x) = f(x) pour tout s ∈ Rn, then:

f̂(ξ) =

∫
Rn
f(x)e−ix.ξdx

=

∫
Rn
f(x)eix.ξdx

=

∫
Rn
f(−x)eix.ξdx

=

∫
Rn
f(y)e−iy.ξdy

= f̂(ξ).

Therefore: f̂ is a real function.
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5. Let a ∈ Rn, then:

F(τaf)(ξ) =

∫
Rn
τaf(x)e−ix.ξdx

=

∫
Rn
f(x− a)e−ix.ξdx

=

∫
Rn
f(y)e−i(y+a).ξdy

= e−ia
∫
Rn
f(y)e−iy.ξdy

= e−iaf̂(ξ).

So, F(τaf) = e−ia.ξf̂ .

F(eia.xf)(ξ) =

∫
Rn
eia.xf(x)e−ix.ξdx

=

∫
Rn
f(x)e−ix.(ξ−a)dx

= f̂(ξ − a)

= τaf̂(ξ).

Hence:F(eia.xf) = τaf̂ .

6. Let λ ∈ R∗. Then:
F
(
f
(x
λ

))
=

∫
Rn
f
(x
λ

)
e−ix.ξdx.

Let’s take the change of variable y =
x

λ
, we obtain:

∗) For λ > 0:
∫
Rn
f
(x
λ

)
e−ix.ξdx = λn

∫
Rn
f(y)e−iy.λξdy.

∗) For λ < 0:
∫
Rn
f
(x
λ

)
e−ix.ξdx = (−λ)n

∫
Rn
f(y)e−iy.λξdy.

So,

F
(
f
(x
λ

))
= |λ|n

∫
Rn
f(y)e−iy.λξdy = |λ|nf̂(λξ).

Theorem 4.1 (Riemann-Lebesgue Lemma): Let f ∈ L1(Rn). Then: f̂ is a continuous
function and tends to 0 as |ξ| tends to infinity.

Proof : Let f ∈ L1(Rn).
∗) Let a ∈ Rn. Then:

|f̂(ξ + a)− f̂(ξ)| = |ê−iaxf(ξ)− f(ξ)|

=

∣∣∣∣∫
Rn
e−ia.xf(x)e−ix.ξdx−

∫
Rn
f(x)e−ix.ξdx

∣∣∣∣
=

∣∣∣∣∫
Rn

(e−ia.x − 1)f(x)e−ix.ξdx

∣∣∣∣ .
The family of functions x 7→ (e−ia.x−1)f(x)e−ix.ξ is a measurable family, converges to 0 as |a|
tends to 0, and we have |(e−ia.x − 1)f(x)e−ix.ξ| ≤ 6|f(x)| for all a, ξ ∈ Rn, and f ∈ L1(Rn).
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According to the Dominated Convergence Theorem (Theorem 1.13 and Remark 1.4), we
obtain: lim

|a|→0
|f̂(ξ + a)− f̂(ξ)| = 0.

Thus, f̂ is continuous.
∗∗) Let ξ ∈ Rn such that ‖ξ‖ is sufficiently large. Then: there exists 1 ≤ i ≤ n such that
|ξi| sufficiently large. From the density of D(Rn) in L1(Rn), we deduce that for ε > 0 there
exists ϕ ∈ D(Rn) such that ‖f − ϕ‖L1(Rn) < ε. Then:

|f̂(ξ)| =

∣∣∣∣∫
Rn
e−ix.ξf(x)dx

∣∣∣∣
≤

∣∣∣∣∫
Rn
e−ix.ξ(f(x)− ϕ(x))dx

∣∣∣∣+

∣∣∣∣∫
Rn
e−ix.ξϕ(x)dx

∣∣∣∣ .
On one hand: ∣∣∣∣∫

Rn
e−ix.ξ(f(x)− ϕ(x))dx

∣∣∣∣ ≤ ∫
Rn
e−ix.ξ|f(x)− ϕ(x)|dx

≤ 2

∫
Rn
|f(x)− ϕ(x)|dx

= 2‖f − ϕ‖L1(Rn)

≤ 2ε.

On the other hand:∫
Rn
e−ix.ξϕ(x)dx =

[
−
∫
Rn−1

e−ix.ξ

ξi
ϕ(x)dx1 . . . dxi−1dxi+1 . . . dxn

]−∞
−∞

+

∫
Rn

e−ix.ξ

ξi

∂ϕ

∂xi
(x)dx

=
1

ξi
F
(
∂ϕ

∂xi

)
.

Then:
|f̂(ξ)| ≤ 2ε+

1

|ξi|

∣∣∣∣F ( ∂ϕ∂xi
)∣∣∣∣ .

Let ε tends to 0, we obtain:

|f̂(ξ)| ≤ 1

|ξi|

∣∣∣∣F ( ∂ϕ∂xi
)∣∣∣∣ ‖ξ‖→+∞
−→ 0 .

Theorem 4.2 : Let α ∈ Nn, and let f ∈ L1(Rn) such that xαf ∈ L1(Rn). Then:

Dαf̂ = F((−i)|α|xαf).

Proof : The Dominated Convergence Theorem of Lebesgue (Theorem 1.13 and Remark 1.4)
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allows us to write:

Dαf̂(ξ) = Dα

∫
Rn
f(x)e−ix.ξdx

=

∫
Rn
f(x)Dαe−ix.ξdx

=

∫
Rn
f(x)∂α1

ξ1
e−ix1.ξ1 . . . ∂αnξn . . . e

−ixn.ξndx

=

∫
Rn
f(x)(−i)α1+...αnxα1

1 . . . xαnn e−ix.ξdx

=

∫
Rn

(−i)|α|xαf(x)e−ix.ξdx

= F((−i)|α|xαf).

Theorem 4.3 : Let α ∈ Nn, and let f ∈ L1(Rn) telle que Dαf ∈ L1(Rn). Alors:

F(Dαf) = i|α|ξαf̂ .

Proof : Let 1 ≤ i ≤ n. Then:

F(∂if)(ξ) =

∫
Rn

∂f

∂xi
(x)e−ix.ξdx

=

∫
Rn

∂f

∂xi
(x)e−ix.ξdx1 . . . dxi . . . dxn

=

∫
Rn−1

[f(x)e−ix.ξ]+∞−∞dx1 . . . dxi−1dxi+1 . . . dxn + iξi

∫
Rn
f(x)e−ix.ξdx.

Since f ∈ L1(Rn), it approaches zero as it goes to infinity, so:

F(∂if)(ξ) = iξif̂ .

Then:
F(Dαf)(ξ) = F(∂α1

x1
. . . ∂αnxn f)(ξ)

= (iξ1)α1 . . . (iξn)αn f̂(ξ)

= i|α|ξαf̂(ξ).

Theorem 4.4 (convolution ) : Soit f, g ∈ L1(Rn). Alors: f̂ ∗ g = f̂ .ĝ.
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Proof : Let f, g ∈ L1(Rn). Then:

f̂ ∗ g(ξ) =

∫
Rn

(f ∗ g)(x)e−ix.ξdx

=

∫
Rn
e−ix.ξ

∫
Rn
f(y)g(x− y)dydx

=

∫
Rn
e−i(x−y).ξ.e−iy.ξ

∫
Rn
f(y)g(x− y)dydx

=

∫
Rn
f(y)e−iy.ξdy

∫
Rn
g(x− y)e−i(x−y).ξdx

=

∫
Rn
f(y)e−iy.ξdy

∫
Rn
g(z)e−iz.ξdz

= f̂(ξ).ĝ(ξ).

Therefore: f̂ ∗ g = f̂ .ĝ.

Remark 4.3 : Let f, g ∈ L2(Rn). then: f.g ∈ L1(Rn). Moreover, we have: f̂.g = f̂ ∗ ĝ.

Theorem 4.5 (inversion ) : Let f ∈ L1(Rn) such that f̂ ∈ L1(Rn). then: f =
1

(2π)n
F(f̂)

Proof : Let x ∈ Rn. then:

1

(2π)n
F(f̂)(x) =

1

(2π)n

∫
Rn
f̂(ξ)eix.ξdξ

=
1

(2π)n

∫
Rn
eix.ξ

∫
Rn
f(y)e−iy.ξdydξ

=
1

(2π)n

∫
Rn

∫
Rn
f(y)ei(x−y).ξdydξ.

The function (y, ξ) 7−→ f(y)ei(x−y).ξ may not necessarily be integrable, so we cannot apply
the Fubini’s Theorem. However, we can consider, for ε > 0 :

Iε(x) =
1

(2π)n

∫
Rn

∫
Rn
f(y)ei(x−y).ξe−

ε2‖ξ‖2
4 dydξ.

We have:
Iε(x) =

1

(2π)n

∫
Rn
eix.ξe−

ε2‖ξ‖2
4

∫
Rn
f(y)e−iy.ξdydξ

=
1

(2π)n

∫
Rn
eix.ξe−

ε2‖ξ‖2
4 f̂(ξ)dξ.

Set: Gε(ξ) =
1

(2π)n
eix.ξe−

ε2‖ξ‖2
4 f̂(ξ).

(Gε)ε>0 is a sequence of integrable functions, which converges a.e to the function G0 where

G0(ξ) =
1

(2π)n
eix.ξf(ξ). Moreover, we have: |Gε| ≤ G0 ∈ L1(Rn). The Dominated Conver-
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gence Theorem of Lebesgue (Theorem 1.13 and Remark 1.4) allows us to write:

lim
ε→0

Iε(x) = lim
ε→0

∫
Rn
Gε(x)dξ

=

∫
Rn
G0(x)dξ

=
1

(2π)n

∫
Rn
eix.ξf̂(ξ)dξ.

=
1

(2π)n
F(f̂) . . . . . . . . . (∗)

On the other hand, we have: Iε = Fε ∗ f où

Fε(z) =
1

(2π)n

∫
Rn
eiz.ξe−

ε2‖ξ‖2
4 dξ.

Let’s take the change of variable ζ = −ξ, we get:

Fε(z) =
1

(2π)n

∫
Rn
e−iz.ζe−

ε2‖ζ‖2
4 dζ = Fε(−z).

Let’s take the change of variable η = εξ, we obtain:

Fε(z) =
1

(2πε)n

∫
Rn
ei
z
ε
.ηe−

‖η‖2
4 dζ =

1

εn
F1

(z
ε

)
.

Then: ∫
Rn
F1(z)dz =

∫
Rn
F1(−z)dz

=
1

(2π)n

∫
Rn

∫
Rn
e−iz.ξe−

‖ξ‖2
4 dξdz.

=
1

(2π)n

∫
Rn
F
(
e−
‖ξ‖2
4

)
(z)dz.

By following arguments similar to those in exercise 4.2, we can show that

F
(
e−
‖ξ‖2
4

)
(z) = (2

√
π)ne−z

2

.

Therefore: ∫
Rn
F1(z)dz =

1

(2π)n

∫
Rn

(2
√
π)ne−z

2

dz =
1

(2π)n
.(2
√
π)n.(

√
π)n = 1,

which leads to: ∫
Rn

1

εn
Fε

(z
ε

)
dz =

∫
Rn
Fε(t)dt = 1.

Applying the result follows:
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We consider the sequence (Fε)ε > 0 ⊂ L1(Rn) such that
∫
Rn
Fε(t)dt = 1, and let

f ∈ L1(Rn). Then, Fε ∗ f converges to f in L1(Rn).

It follows that Iε converges to f in L1(Rn) . . . . . . . . . (∗∗).
From (*), (**), and considering that f ∈ L1(Rn), we obtain the result.

Remark 4.4 : There is another definition of the Fourier transform, which is:

Ff(ξ) = f̂(ξ) =

∫
Rn
f(x)e−2πix.ξdx. (4.3)

In this case, F−1 = F from L1(Rn) to L1(Rn), where:

F(f)(x) =

∫
Rn
f(ξ)e2πix.ξdξ. (4.4)

4.2 Rapid Growth, Slow Decay

Definition 4.3 (Schwartz space ) :

1. A function ϕ : Rn → C is said to have rapid decay if, for every m ∈ N, we have:

lim
|x|→+∞

|x|mϕ(x) = 0.

2. The Schwartz space S (Rn) is the space of functions ϕ ∈ C∞(Rn) such that, for every
multi-index α ∈ Nn, the function Dαϕ has rapid decay.

It is evident that the space S (Rn) is a vector space.

Remark 4.5 : It is equivalent to say that ϕ ∈ S (Rn) if the quantities

Np(ϕ) =
∑

|α|≤p,|β|≤p

‖xαDβϕ(x)‖L∞(Rn),

are finite for all p.

Indeed, if ϕ ∈ S (Rn), then we have lim
|x|→+∞

|xαDβϕ(x)| = 0, so |xαDβϕ(x)| is bounded

almost everywhere, which implies the boundedness of Np(ϕ).
Conversely, if Np(ϕ) is bounded, then |xixαDβϕ(x)| is bounded for some i such that |xi|

tends to infinity (i exists since |x| tends to infinity).

Therefore: lim
|x|→+∞

|xαDβϕ(x)| = lim
|x|→+∞

|xi.xαDβϕ(x)|
|xi|

= 0.

The space S (Rn) is stable under differentiation and multiplication by polynomials.
S (Rn) is a topological vector space, and its seminorms are given by (Np)p∈N.
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Definition 4.4 (convergence in S (Rn)) : We say that a sequence of functions {ϕj}j∈N in
S (Rn) converges to ϕ ∈ S (Rn) if for every p ∈ N, we have: lim

j→+∞
Np(ϕj − ϕ) = 0.

Proposition 4.2 : For all ϕ ∈ S (Rn) we have: xαϕ ∈ L1(Rn), lim
|x|→+∞

|xαϕ(x)| = 0, and

there exists constants Cp such that:∑
|α|≤p,|β|≤p

‖xαDβϕ(x)‖L1(Rn) ≤ CpNp+n+1(ϕ) ∀ϕ ∈ S (Rn).

Proof : Let ϕ ∈ S (Rn). It is clear lim
|x|→+∞

|xαϕ(x)| = 0.

Since xαϕ(x) is bounded, it is locally integrable.

It remains to prove that lim
A→+∞

∫
|x|>A

|xαϕ(x)|dx = 0. We have:

∫
|x|>A

|xαϕ(x)|dx =

∫
|x|>A

|(x2
1 + · · ·+ x2

n)xαϕ(x)|
|x|2

dx

Since ϕ ∈ S (Rn) we have: (x2
1 + · · ·+ x2

n)xαϕ(x) ∈ L∞(Rn). Then: there exists c > 0 such
that |(x2

1 + · · ·+ x2
n)xαϕ(x)| < c a.e. which leads to:∫
|x|>A

|xαϕ(x)|dx =

∫
|x|>A

|(x2
1 + · · ·+ x2

n)xαϕ(x)|
|x|2

dx

≤
∫
|x|>A

c

|x|2
dx

A→+∞
−→ 0 .

Hence, xαϕ(x) ∈ L1(Rn).

Using the same arguments to prove that:∑
|α|≤p,|β|≤p

‖xαDβϕ(x)‖L1(Rn) ≤ CpNp+n+1(ϕ) ∀ϕ ∈ S (Rn).

Remark 4.6 : Since S (Rn) ⊂ L1(Rn), we can introduce the Fourier transform in S (Rn).
Moreover:

The properties of the Fourier transform (derivative, translation, dilation, convolution,
and inversion) are always verified in the Schwartz space S (Rn).

Theorem 4.6 : The Fourier transform maps the space S (Rn) into itself, and for every
p ∈ N, there exists a constant Cp such that:

Np(ϕ̂) ≤ CpNp+n+1(ϕ) ∀ϕ ∈ S (Rn)

Proof : Let ξ ∈ Rn et α, β ∈ Nn. Then: |ξαDβϕ̂(ξ)| = |(i)|β|−|α|F(Dα(xβϕ))| and:
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Np(ϕ̂) =
∑

|α|≤p,|β|≤p

‖ξαDβϕ̂(x)‖L∞(Rn)

=
∑

|α|≤p,|β|≤p

‖(i)|β|−|α|F(Dα(xβϕ))‖L∞(Rn)

≤
∑

|α|≤p,|β|≤p

cα,β‖Dα(xβϕ)‖L1(Rn)

≤
∑

|α|≤p,|β|≤p

c′α,β‖xβDαϕ‖L1(Rn)

≤ CpNp+n+1(ϕ).

Proposition 4.3 (density of D(Rn) in S (Rn)) : Let ϕ ∈ S (Rn). Then , there exists a
sequence (ϕj)j∈N ⊂ D(Rn) such that:

lim
j→+∞

Np(ϕj − ϕ) = 0

Definition 4.5 (slow decay ) :

1. We say that a function ϕ : Rn → C has slow decay if there exist m ∈ N and C > 0

such that for all x ∈ Rn, we have:

|ϕ(x)| ≤ C(1 + |x|)m.

2. OM(Rn) is the space of functions ϕ ∈ C∞(Rn) such that for every α ∈ Nn, the function
Dαϕ has slow decay, i.e for all α ∈ Nn, there exists Cα > 0 et mα > 0 such that for
all x ∈ Rn we have:

|Dαf(x)| ≤ Cα(1 + |x|)mα

t immediately follows from the above definition:

Theorem 4.7 : Let ψ ∈ OM(Rn). Then: for all ϕ ∈ S (Rn) we have: ψ.ϕ ∈ S (Rn).

4.3 tempered distributions

Definition 4.6 : Let u ∈ D ′(Rn). We say that u is a tempered distribution, denoted u ∈
S ′(Rn), if there exists p ∈ N and C ≥ 0 such that:

|〈u, ϕ〉| ≤ CNp(ϕ) ∀ϕ ∈ D(Rn). (4.5)

This concept refers to the continuity of the linear form u in the context of the trace
topology from S (Rn) to D(Rn). Based on the density of D(Rn) in S (Rn), and according
to the Hahn-Banach Theorem (Corollary 1.1), we can extend the duality bracket 〈., .〉D ′,D to
the bracket 〈., .〉S ′,S as follows:
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Theorem 4.8 (duality extension ) : Let u ∈ S ′(Rn). The mapping ϕ → 〈u, ϕ〉, defined
on D(Rn), uniquely extends to a linear form on S (Rn) (denoted as ϕ→ 〈u, ϕ〉S ′,S ) which
satisfies:

|〈u, ϕ〉S ′,S | ≤ CNp(ϕ) ∀ϕ ∈ S (Rn) (4.6)

This extension of duality identifies S ′(Rn) with the space of linear forms on S (Rn) that
satisfy an estimate of the form (4.5).

Definition 4.7 (convergence in S ′(Rn)) : We say that the sequence (uj) of elements in
S ′(Rn) converges to u in S ′(Rn) if the following condition holds:

lim
j→+∞

〈uj, ϕ〉 = 〈u, ϕ〉 ∀ϕ ∈ S (Rn)

Using the duality extension 〈., .〉S ′,S to define the derivative of a tempered distribution
u as follows:

∀α ∈ Nn, ∀ϕ ∈ S (Rn) : 〈Dαu, ϕ〉 = (−1)|α|〈u,Dαϕ〉.

The quantity above is well-defined, and furthermore, we have the following result:

Theorem 4.9 : If u ∈ S ′(Rn), then all its partial derivatives belong to S ′(Rn). Moreover,
if uj → u in S ′(Rn), then Dαuj → Dαu in S ′(Rn).

Example 4.2 :

1. δ ∈ S ′(Rn) because for any ϕ ∈ S (Rn) we have:

|〈δ, ϕ〉| = |ϕ(0)| ≤ N0(ϕ).

2. L1(Rn) ⊂ S ′(Rn) because for any f ∈ L1(Rn) and ϕ ∈ S (Rn) we have:

|〈f, ϕ〉| =

∣∣∣∣∫
Rn
f(x)ϕ(x)dx

∣∣∣∣
≤ ‖ϕ‖L∞(Rn)

∫
Rn
|f(x)|dx

= ‖f‖L1(Rn)N0(ϕ).

3. L∞(Rn) ⊂ S ′(Rn) because for any f ∈ L∞(Rn) and ϕ ∈ S (Rn) we have:

|〈f, ϕ〉| =

∣∣∣∣∫
Rn
f(x)ϕ(x)dx

∣∣∣∣
≤ ‖f‖L∞(Rn)

∫
Rn
|ϕ(x)|dx

= ‖f‖L∞(Rn).‖ϕ‖L1(Rn)

= C‖f‖L∞(Rn)Nn+1(ϕ).
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4. L2(Rn) ⊂ S ′(Rn) because for any f ∈ L2(Rn) and ϕ ∈ S (Rn) we have:

|〈f, ϕ〉| =

∣∣∣∣∫
Rn
f(x)ϕ(x)dx

∣∣∣∣
≤

(∫
Rn
f 2(x)

) 1
2
(∫

Rn
ϕ2(x)dx

) 1
2

= ‖f‖L2(Rn)

(∫
Rn

ϕ(x)

(1 + ‖x‖)n+2
.(1 + ‖x‖)n+2.ϕ(x)dx

) 1
2

≤ C1‖f‖L2(Rn)(‖(1 + ‖x‖)n+2.ϕ‖L1(Rn))
1
2

= C|f‖L2 .N1+[n
2

](ϕ).

5. Lp(Rn) ⊂ S ′(Rn) (2 ≤ p < +∞) because for any f ∈ Lp(Rn) and ϕ ∈ S (Rn) we
have:

|〈f, ϕ〉| ≤ C|f‖Lp .N1+[ n
p′ ]

(ϕ)

(
1

p
+

1

p′
= 1

)
.

Proposition 4.4 :

1. A distribution with compact support is tempered, i.e E ′(Rn) ⊂ S ′(Rn).

2. A tempered distribution is necessarily of finite order

Proof : :

1. Let u ∈ E ′(Rn) and ϕ ∈ D(Rn). Then, ϕ ∈ C∞(Rn) and there exists a compact
K ⊂ Rn and m ∈ N et M > 0 such that:

|〈u, ϕ〉| ≤ M.PK,m(ϕ)

= M. sup
x∈K,|α|≤m

|Dαϕ(x)|

≤ M. sup
x∈Rn,|α|≤m

|Dαϕ(x)|

≤ M.Nm(ϕ).

Then: u ∈ S ′(Rn).

2. Let u ∈ S ′(Rn) and K ⊂ be a compact. There exists C ≥ 0 such that:

|〈u, ϕ〉| ≤ CNp(ϕ) ∀ϕ ∈ DK(Rn).

Hence:
|〈u, ϕ〉| ≤ C

∑
|α|≤p,|β|≤p

‖xαDβϕ(x)‖L∞(Rn) ∀ϕ ∈ DK(Rn).

Since K is a compact, then xα is bounded, so, there exists Cp > 0 such that for all
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ϕ ∈ DK(Rn) on a:

C
∑

|α|≤p,|β|≤p

‖xαDβϕ(x)‖L∞(Rn) ≤ Cp
∑
|β|≤p

‖Dβϕ(x)‖L∞(Rn)

≤ M sup
x∈K,β|≤p

|Dβϕ(x)|

= MPK,p(ϕ).

Then: |〈u, ϕ〉| ≤MPK,p(ϕ).
Therefore: u is with order less to p.

Theorem 4.10 : Let ψ ∈ OM(Rn). Then:

1. For all u ∈ S ′(Rn) on a: ψ.u ∈ S ′(Rn).

2. Si uj → u dans S ′(Rn) on a ψ.uj → f.u dans S ′(Rn)

Proof : Let ψ ∈ OM(Rn). For any γ ∈ Nn, there exists Cγ > 0 et mγ ∈ N such that for all
x ∈ Rn on a:

|Dγψ(x)| ≤ C(1 + |x|)mγ .

1. Let u ∈ S ′(Rn) and ϕ ∈ D(Rn). Then: ψ.ϕ ∈ D(Rn) and there exists Cp > 0, p ∈ N
such that:

|〈ψu, ϕ〉| = |〈u, ψϕ〉|
≤ CpNp(ψϕ)

= Cp
∑

|α|≤p,|β|≤p

‖xαDβ(ψ.ϕ)(x)‖L∞(Rn)

= Cp
∑

|α|≤p,|γ|≤p,|θ|≤p

‖Cγ,θxαDγψ(x).Dθϕ(x)‖L∞(Rn)

≤ C ′p
∑

|α|≤p,|γ|≤p,|θ|≤p

‖xα(1 + |x|)mγ .Dθϕ(x)‖L∞(Rn)

There exists q ∈ N such that ≤ max{p, |α|+mγ} ≤ q, which leads to:

|〈ψu, ϕ〉| ≤ Cq
∑

|λ|≤q,|θ|≤q

‖xλ.Dθϕ(x)‖L∞(Rn) = CqNq(ϕ)

. So, ψ.u ∈ S ′(Rn).

2. Based on the previous and Theorem 4.9.
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4.4 Fourier transform for tempered distributions

Consider u ∈ L1(Rn) and ϕ ∈ S (Rn). Then: û ∈ L1(Rn) and we have:

〈û, ϕ〉 =

∫
Rn
û(ξ)ϕ(ξ)dξ

=

∫
Rn

∫
Rn
u(x)e−ix.ξϕ(ξ)dξdx.

Let’s take the change of variable (y, ζ) = (ξ, x), we get:

〈û, ϕ〉 =

∫
Rn

∫
Rn
u(ζ)e−iy.ζϕ(y)dydζ.

=

∫
Rn
u(ζ)ϕ̂(ζ)dζ

= 〈u, ϕ̂〉.

Taking into account that for ϕ ∈ S (Rn) implies that ϕ̂ ∈ S (Rn), we can extend the above
result as follows:

Definition 4.8 : Let u ∈ S ′(Rn).

1. The Fourier transform of u is a tempered distribution denoted as û or Fu, defined for
any ϕ ∈ S (Rn) as: 〈û, ϕ〉 = 〈u, ϕ̂〉.

2. The conjugate F of F is defined for any ϕ ∈ S (Rn) as: 〈Fu, ϕ〉 = 〈u,Fϕ〉.

It immediately follows from the definition and the properties of the Fourier transform in
S (Rn):

Theorem 4.11 (inverse) : The Fourier transform is an isomorphism of S ′(Rn) onto itself,
with the inverse F−1 = (2π)−nF .

Theorem 4.12 (continuity ) : The Fourier transform on S ′(Rn) is continuous. If uj → u

in S ′(Rn), then: ûj → û in S ′(Rn)

Example 4.3 :

1. We have:
〈δ̂, ϕ〉 = 〈δ, ϕ̂〉 = ϕ̂(0)

=

∫
Rn
e−i0.xϕ(x)dx.

=

∫
Rn

1.ϕ(x)dx

= 〈1, ϕ〉.

Then: δ̂ = 1.
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2. We have:
〈1̂, ϕ〉 = 〈1, ϕ̂〉

=

∫
Rn
ϕ̂(ξ)dξ

=

∫
Rn

∫
Rn
e−ix.ξϕ(x)dxdξ.

Making the change of variable ζ = −ξ, we obtain:

〈1̂, ϕ〉 =

∫
Rn

∫
Rn
eix.ζϕ(x)dxdζ.

=

∫
Rn
F(ϕ)(x)dx.

= 〈1,F(ϕ)〉 = 〈F(1), ϕ〉.

Hence: 1̂ = F(1), which leads to: (2π)−n1̂ = (2π)−nF(1) = (2π)−nF(δ̂) = δ.

Therefore: 1̂ = (2π)nδ.

Proposition 4.5 : Let u ∈ S ′(Rn), α ∈ Nn and a ∈ Rn. Then, we have:

1. F(τau) = e−ia.ξû, F(eia.ξu) = τaû.

2. F(Dαu) = i|α|ξαû, Dαû = F((−i)|α|xαu).

3. δ̂a = e−ia.ξ, F(eia.ξ) = (2π)nδa.

4. F(Dαδ) = i|α|ξα, F(xα) = (2π)ni|α|Dαδ.

Proof : Let ϕ ∈ S (Rn). Then:

1. *)
〈F(τau), ϕ〉 = 〈τau, ϕ̂〉

= 〈u, τ−aϕ̂〉
= 〈u,F(eia.xϕ)〉

Therefore: F(τau) = e−ia.ξû.
**)

〈F(eia.ξu), ϕ〉 = 〈eia.ξu, ϕ̂〉
= 〈u, eia.ξϕ̂〉
= 〈u,F(τ−aϕ)〉
= 〈û, τ−aϕ〉
= 〈τaû, ϕ〉.

Therefore: F(eia.ξu) = τaû.
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2. *)
〈F(Dαu), ϕ〉 = 〈Dαu, ϕ̂〉

= (−1)|α|〈u,Dαϕ̂〉
= (−1)|α|〈u,F((−i)|α|xαϕ)〉
= 〈u,F(i|α|xαϕ)〉
= 〈û, i|α|xαϕ〉
= 〈i|α|ξαû, ϕ〉.

Therefore: F(Dαu) = i|α|ξαû.
*)

〈F((−i)|α|xαu), ϕ〉 = 〈ξαu, ϕ̂〉
= 〈u, (−i)|α|ξαϕ̂〉
= (−1)|α|〈u,F(Dαϕ)〉
= (−1)|α|〈û, Dαϕ)〉
= 〈Dαû, ϕ〉.

Therefore: Dαû = F((−i)|α|xαu).

3. *) δ̂a = F(τaδ) = e−ia.ξ δ̂ = e−ia.ξ.
*) F(eia.ξ) = τa1̂ = (2π)nτaδ = (2π)nδa.

4. *) F(Dαδ) = i|α|ξαδ̂ = i|α|ξα.

*) F(xα) =
1

(−i)|α|
Dα1̂ = (2π)ni|α|Dαδ.

Theorem 4.13 (convolution ) : Let T ∈ S ′(Rn) and S ∈ E ′(Rn), then:

T ∗ S ∈ S ′(Rn) et T̂ ∗ S = T̂ .Ŝ.

Example 4.4 : We provide two examples used in partial differential equations.

1. Consider in S ′(Rn) the Laplace equation:

∆u = 0.

Using the Fourier transform, we obtain: ∆̂u = 0. But:

∆̂u = F

(
n∑
i=1

∂2u

∂x2
i

)
=

n∑
i=1

F
(
∂2u

∂x2
i

)
=

n∑
i=1

(−ixj)2û

= −|x|2û

Then: û|Rn+ = 0 and supp û = {0}. Therefore: û =
∑

|α|≤m∈N

aαD
αδ.
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which leads to: u =
∑
|α|≤m

(2π)−naαF(Dαδ) =
∑
|α|≤m

(2π)−naαi
|α|ξα =

∑
|α|≤m

bαξ
α.

Hence: u is a polynomial.

2. Consider in S ′(Rn) the equation:

−∆u+ λu = f, où λ > 0, f ∈ S ′(Rn)

. Using the Fourier transform, we obtain: F(−∆u+ λu) = f̂ .

Then: (|x|2 + λ)û = f̂ .

Therefore: û =
f̂

|x|2 + λ
.

Finely: u = (2π)−nF

[
f̂

|x|2 + λ

]
.

For f = δ we obtain the elementary solution u0 = (2π)−nF
[

1

|x|2 + λ

]
.

Exercices

Exercise 4.1 : Calculate f̂ in the follows cases:

1. f(x) = χ[− 1
2
, 1
2

].

2. f(x) = e−α|x| (α > 0).

3. f(x) = H(x)e−αx (α > 0).

Exercise 4.2 :

1. Show that the function ξ 7→ f̂(ξ) = F(e−x
2
)(ξ) satisfy the differential equation :

y′(ξ) +
ξ

2
f̂(ξ) = 0.

2. Calculate f̂(0), and then determine the solution to the differential equation.

3. Use the dilation property to establish the result:

F(e−ax
2

)(ξ) =

√
π

a
.e−

ξ2

4a (a > 0).

Exercise 4.3 : Let T be the linear operator on S (R2) defined as follows:

∀ϕ ∈ S (R2) : 〈T, ϕ〉 =

∫
R
ϕ(x,−x)dx

1. Verify that T ∈ S ′(R2).
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2. Calculate in the distribution sense:
∂T

∂x
− ∂T

∂y
.

Exercise 4.4 : Consider the sequence of functions {fj}j∈N such that: fj = χ[−j,j].

1. Calculate f̂j.

2. Determinate lim
j→+∞

sin(jξ)

ξ
in S ′(Rn).

Exercise 4.5 : By using the equality δ′ ∗H = δ calculate Ĥ.

Exercise 4.6 : Let ψ ∈ D(R) such that ψ = 1 in the neighbourhood of 0. Set u = ψ.H

1. Calculate u′ in function of ψ.

2. Calculate û in function of ψ̂′.H.

Exercise 4.7 : Consider the function f defined as: f(x) = 1− 10x2 + 20x20.
Show that f ∈ S ′(R), then calculate f̂ .

Exercise 4.8 :

1. Show that vp 1
x
∈ S ′(R).

2. Find all tempered distributions u such that
dû

dξ
= 0.

3. Show that all tempered distributions u such that xu = 0 are of the form u = λδ (λ ∈ R).

4. What are the tempered distributions u such that xu′ + u = 0.

Solutions of exercises

Solution 4.1 : Let ξ ∈ R

1. f(x) = χ[− 1
2
, 1
2

].

f̂(ξ) =

∫ +∞

−∞
e−ix.ξχ[− 1

2
, 1
2

](x)dx

=

∫ 1
2

− 1
2

e−ix.ξdx.

=


1 : ξ = 0

e
iξ
2 − e− iξ2
iξ

: ξ 6= 1.

Then: f̂(ξ) =


1 : ξ = 0

sin ξ
2

ξ
2

: ξ 6= 1.
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2. f(x) = e−α|x| (α > 0).

f̂(ξ) =

∫ +∞

−∞
e−ix.ξe−α|x|dx

=

∫ 0

−∞
e(α−iξ).xdx+

∫ +∞

0

e−(α+iξ).xdx

=

[
e(α−iξ).x

α− iξ

]0

−∞
−
[
e−(α+iξ).x

α + iξ

]+∞

0

=
1

α− iξ
+

1

α + iξ

=
2α

α2 + ξ2
.

3. f(x) = H(x)e−αx (α > 0).

f̂(ξ) =

∫ +∞

−∞
e−ix.ξH(x)e−αxdx

=

∫ +∞

0

e−(α+iξ).xdx

= −
[
e−(α+iξ).x

α + iξ

]+∞

0

=
1

α + iξ

=
α− iξ
α2 + ξ2

.

Solution 4.2 :

1. f(x) = e−x
2

f ′(x) = −2xe−x
2

= −2xf(x) f̂(ξ) = F(e−x
2
)(ξ).

df̂

dξ
= F(−ixf) =

i

2
F(−2xf) =

i

2
F(f ′) = −ξ

2
f̂(ξ)

. Then: f̂ verify the differential equation :

y′(ξ) +
ξ

2
f̂(ξ) = 0.

2. f̂(0) =

∫ +∞

−∞
e−x

2

dx =
√
π. Then:

f̂(ξ) =
√
πe−

ξ2

4 .

3. We have:

F(e−ax
2

)(ξ) = F(f(
√
ax))(ξ) =

√
1

a
.f̂

(
ξ√
a

)
=

√
π

a
.e−

ξ2

4a .
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Solution 4.3 : ∀ϕ ∈ S (R2) : 〈T, ϕ〉 =

∫
R
ϕ(t,−t)dt.

1. Let ϕ ∈ D(R2). Then, we have:

|〈T, ϕ〉| ≤
∫
R
|ϕ(t,−t)|dt

=

∫
R

1

1 + t2
.|(1 + t2)ϕ(t,−t)|dt

≤ ‖(1 + x2)ϕ(x, y)‖L∞(R2).
∫
R

1
1+t2

dt

≤ π.N2(ϕ).

Therefore: T ∈ S ′(R2).

2. Let ϕ ∈ S (R2).〈
∂T

∂x
− ∂T

∂y
, ϕ

〉
= −

〈
T,
∂ϕ

∂x
− ∂ϕ

∂y

〉
= −

∫ +∞

−∞

[
∂ϕ

∂x
(t,−t)− ∂ϕ

∂y
(t,−t)

]
dt

Set: Φ(t) = ϕ(t,−t). Then: Φ′(t) =
∂ϕ

∂x
(t,−t)− ∂ϕ

∂y
(t,−t).

Therefore: 〈
∂T

∂x
− ∂T

∂y
, ϕ

〉
= −

∫ +∞

−∞
Φ′(t)dt

= [−Φ(t)]+∞−∞
= [−ϕ(t,−t)]+∞−∞ = 0.

So,
∂T

∂x
− ∂T

∂y
= 0.

Solution 4.4 : fj = χ[−j,j] (j ∈ N∗).

1. We have:

f̂j(ξ) =

∫ +∞

−∞
e−ix.ξχ[−j,j](x)dx

=

∫ j

−j
e−ix.ξdx.

=

 2j : ξ = 0
eij − e−ij

iξ
: ξ 6= 1.

Then: f̂j(ξ) =

 2j : ξ = 0
2 sin(jξ)

ξ
: ξ 6= 1.
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2. Let ϕ ∈ S ′(Rn). Then:

lim
j→+∞

〈fj, ϕ〉 = lim
j→+∞

∫ +∞

−∞
fj(x)ϕ(x)dx

= lim
j→+∞

∫ j

−j
ϕ(x)dx

=

∫ +∞

−∞
ϕ(x)dx

= 〈1, ϕ〉.

So, lim
j→+∞

fj = 1, which leads to: lim
j→+∞

f̂j = 2πδ.

Then: lim
j→+∞

2 sin(jξ)

ξ
= 2πδ ,i.e lim

j→+∞

sin(jξ)

ξ
= πδ.

Solution 4.5 : We have δ′ ∗H = δ, then: δ̂′ ∗H = 1.
Therefore: F(δ′).Ĥ = 1, which leads to: iξ.Ĥ = 1.

finely: Ĥ =
1

iξ
= − i

ξ
.

Solution 4.6 : ψ ∈ D(R) such that ψ = 1 in the neighbourhood of 0. u = ψ.H

1. On a:
〈u′, ϕ〉 = −〈u, ϕ′〉

= −〈ψ.H, ϕ′〉
= −〈H,ψ.ϕ′〉

= −
∫ +∞

0

ψ(x)ϕ′(x)dx

= −[ψ(x)ϕ(x)]+∞0 +

∫ +∞

0

ψ′(x)ϕ(x)dx

= ϕ(0) +

∫ +∞

−∞
H(x).ψ′(x)ϕ(x)dx

= 〈δ + ψ′.H, ϕ〉.

Then: u′ = δ + ψ′.H.

2. û = F(δ + ψ′.H) = 1 + ψ̂′.H.

Solution 4.7 : f(x) = 1− 10x2 + 20x20.
∗) let ϕ ∈ D(R). on a:

|〈f, ϕ〉| =

∫ +∞

−∞
(1− 10x2 + 20x20).ϕ(x)dx

= ‖(1− 10x2 + 20x20).ϕ‖L1(Rn)

≤ C20N22(ϕ).

Then: f ∈ S ′(R).
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∗) We have:
f̂ = 1̂− 10F(x2) + 20F(x20)

= 2πδ − 10(2π).i2δ′′ + 20(2π).i20δ(20)

= 2π(δ + 10δ′′ + 20δ(20)).

Solution 4.8 :

1. Let ϕ ∈ D(R). We know from example 2.9 that:

|〈vp
1

x
, ϕ〉| ≤

∫ +∞

−∞

∫ 1

0

|ϕ′(tx)|dtdx.

Then:

|〈vp 1
x
, ϕ〉| ≤

∫ +∞

−∞

1

1 + x2

∫ 1

0

|(1 + x2)ϕ′(tx)|dtdx

≤ ‖(1 + x2)ϕ′‖L∞(R)

∫ +∞

−∞

1

1 + x2
dx

= πN2(α).

Hence: vp 1
x
∈ S ′(R).

2.
dû

dξ
= 0 implies that û = λ (λ ∈ R). Then: u = λδ.

3. We have: xu = 0, then: −̂ixu = 0, i.e
dû

dξ
= 0. Therefore: u = λδ (λ ∈ R).

4. We have: xu′ + u = 0, so: (xu)′ = 0 (see solution of exercise 2.8).
Then: xu = λδ (λ ∈ R).

Let χ ∈ D ′(R) such that χ = 1 in the neighbourhood of 0. Set: ϕ̃ = ϕ− ϕ(0).χ.
Then: ϕ̃(0) = 0. The Taylor formula can be written as:

ϕ̃(x) = x

∫ 1

0

ψ′(tx)dt = xθϕ(x) (θϕ ∈ D(R)).

Set: 〈u, ϕ〉 = 〈λδ, θϕ〉 = λθϕ(0).
taking into account: x̃ϕ = xϕ, then: θxϕ = ϕ. Therefore:
〈xu, ϕ〉 = 〈u, xϕ〉 = 〈λδ, ϕ〉, i.e xu = λδ.
Using arguments similar to the ones in the first question to prove that u is a tempered
distribution.
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CHAPTER 5

SOBOLEV SPACES

Let Ω ⊂ Rn be an open set, Γ = ∂Ω, p ∈ R with 1 ≤ p ≤ +∞, and p′ the conjugate de p,

i.e
1

p
+

1

p′
= 1. Note that a function u ∈ Lp(Ω) identifies a distribution over Ω, also denoted

u. We can define
∂u

∂xi
(i ∈ {1, cdots, n}) as a distribution over Ω and ∇u as a vectorial

distribution over Ω.
The purpose of introducing Sobolev spaces is to provide a functional framework for certain

partial differential equations and boundary value problems that can have solutions referred
to as «weak solutions».

I) Consider the following boundary value problem:

(P1)

{
−u′′(x) + u(x) = f(x) : x ∈ [a, b],

u(a) = u(b) = 0.

where f ∈ C ([a, b]).
A classical (strong) solution of problem (P1) is a function in C 2([a, b]). We will seek other

solutions of problem (P1), which are regular distributions. By multiplying both terms of the
first equation by a function ϕ ∈ D(a, b) and integrating over (a, b), we obtain:∫ b

a

−u′′(x)ϕ(x)dx+

∫ b

a

u(x)ϕ(x)dx =

∫ b

a

f(x)ϕ(x)dx.

Using integration by parts and considering ϕ(a) = ϕ(b) = 0, we get:∫ b

a

u′(x)ϕ′(x)dx+

∫ b

a

u(x)ϕ(x)dx =

∫ b

a

f(x)ϕ(x)dx. (5.1)

Note that D(a, b) ⊂ L2(a, b), then: ϕ et ϕ′ can be considered in L2(a, b) and the equation
(5.1) makes sense for u, u′ ∈ L2(a, b) where u′ is the derivative of u in the distributional
sense, i.e

〈u′, ϕ〉 = −
∫ b

a

u(x)ϕ′(x)dx, ∀ϕ ∈ D(a, b).
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This involves the existence of a function g ∈ L2(a, b), satisfying:∫ b

a

u(x)ϕ′(x)dx = −
∫ b

a

g(x)ϕ(x)dx, ∀ϕ ∈ D(a, b).

II) Now, consider the following boundary value problem:

(Pn)

{
−∆u(x) + u(x) = f(x) : x ∈ Ω,

u(x) = 0 : x ∈ Γ,

A classical (strong) solution of problem (Pn) for f ∈ C (Ω) is a function in C 2(Ω). We
will seek other solutions to problem (Pn), which are regular distributions. By multiplying
both terms of the first equation by a function ϕ ∈ D(Ω) and integrating over Ω, we obtain:∫

Ω

−∆u(x)ϕ(x)dx+

∫
Ω

u(x)ϕ(x)dx =

∫
Ω

f(x)ϕ(x)dx.

Applying Green’s formula and considering ϕ(x) = 0 on Γ, we obtain:

n∑
i=1

∫
Ω

∂u

∂xi
(x).

∂ϕ

∂xi
(x)dx+

∫
Ω

u(x)ϕ(x)dx =

∫
Ω

f(x)ϕ(x)dx. (5.2)

Note that ϕ,
∂ϕ

∂xi
(i ∈ {1, · · ·n}) can be considered in L2(Ω) and the equation (5.2) makes

sense for u,
∂u

∂xi
∈ L2(Ω) (i ∈ {1, · · ·n}) where

∂u

∂xi
is the partial derivative of u in the

distributional sense in the direction i, i.e.,〈
∂u

∂xi
, ϕ

〉
= −

∫
Ω

u(x)
∂ϕ

∂xi
(x)dx, ∀ϕ ∈ D(Ω).

This involves the existence of functions gi ∈ L2(Ω), satisfying:∫
Ω

u(x)
∂ϕ

∂xi
dx =

∫
Ω

gi(x)ϕ(x)dx, ∀ϕ ∈ D(Ω), ∀i ∈ {1, · · ·n}.

Sometimes, it is necessary to consider that ϕ and its partial derivatives belong to Lp′(Ω),
from which u and its partial derivatives belong to Lp(Ω). Such a space satisfying the above
properties is called a Sobolev space based on Lp(Ω). In general, we have:

5.1 Espace Wm,p(Ω)

Definition 5.1 : The Sobolev space of order 1, denoted as W 1,p(Ω), is defined as:

W 1,p(Ω) =

{
u ∈ Lp(Ω),∃g1, g2, · · · , gn ∈ Lp(Ω) :

∫
Ω

u.
∂ϕ

∂xi
= −

∫
Ω

giϕ;∀ϕ ∈ D(Ω)

}
.

In particular, we set H1(Ω) = W 1,2(Ω).
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Remark 5.1 :

i) The function gi, if it exists, is unique. Indeed, suppose there exist two functions, g1,i and
g2,i, in Lp(Ω) that satisfy:∫

Ω

u.
∂ϕ

∂xi
= −

∫
Ω

g1,iϕ = −
∫

Ω

g2,iϕ; ∀ϕ ∈ D(Ω).

Then: ∫
Ω

(g1,i − g2,i)ϕ = 0; ∀ϕ ∈ D(Ω).

According to Dubois-Reymond’s Lemma (Theorem 2.1), g1,i = g2,i a.e in Ω.

ii) The function gi is called the weak derivative of u in the direction i, and we have
∂u

∂xi
= gi.

iii) If
∂u

∂xi
exists in the usual sense and

∂u

∂xi
∈ Lp(Ω) then: u ∈ W 1,p(Ω).

Remark 5.2 : One can use a test function in D1(Ω) instead of a test function in D(Ω) due
to the density of D(Ω) in D1(Ω).

Example 5.1 Let u be the function from ]− 1, 1[ to R, defined as: u(x) = |x|. We have:∫ 1

−1

|u(x)|pdx =

∫ 1

−1

|x|pdx = 2

∫ 1

0

xpdx =
2

p+ 1
.

Then: u ∈ Lp(]− 1, 1[).
Let Now ϕ ∈ D(]− 1, 1[).Then:∫ 1

−1

u(x)ϕ′(x)dx =

∫ 1

−1

|x|ϕ′(x)dx

= −
∫ 0

−1

xϕ′(x)dx+

∫ 1

0

xϕ′(x)dx

= [−xϕ′(x)]0−1 +

∫ 0

−1

ϕ(x)dx+ [xϕ′(x)]10 −
∫ 1

0

xϕ(x)dx

=

∫ 0

−1

ϕ(x)dx−
∫ 1

0

ϕ(x)dx.

So, u′(x) =

{
−1 : x ∈]− 1, 0[,

1 : x ∈]0, 1[.∫ 1

−1

|u′(x)|pdx =

∫ 0

−1

dx+

∫ 1

0

= 2.

Therefore: u′ ∈ Lp(]− 1, 1[). Hence: u ∈ W 1,p(]− 1, 1[).

It is clear that W 1,p(Ω) is a sub-space of Lp(Ω).
We equip W 1,p(Ω) with the norm:

‖u‖W 1,p(Ω) = ‖u‖Lp(Ω) +
n∑
i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥
Lp(Ω)
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or the equivalent norm:

‖u‖W 1,p(Ω) =

(
‖u‖pLp(Ω) +

n∑
i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥p
Lp(Ω)

) 1
p

= (‖u‖pLp(Ω) + ‖∇u‖p(Lp(Ω))n)
1
p .

We equip H1(Ω) with the scalar product:

(u, v)H1(Ω) = (u, v)L2(Ω) +
n∑
i=1

(
∂u

∂xi
,
∂v

∂xi

)
L2(Ω)

,

=

∫
Ω

u(x).v(x)dx+
n∑
i=1

∫
Ω

∂u

∂xi
(x).

∂v

∂xi
(x)dx,

=

∫
Ω

u(x).v(x)dx+

∫
Ω

∇u(x).∇v(x)dx.

Theorem 5.1 : W 1,p(Ω) is a Banach space and H1(Ω) is a Hilbert space.

Proof : Let (uj)j∈Nbe a Cauchy sequence in dans W 1,p(Ω). Then, (uj)j∈N,

(
∂uj
∂xi

)
(1 ≤ i ≤

n) are Cauchy sequence in Lp(Ω). Since Lp(Ω) is a Banach space, it follows that (uj)j∈N

converges to u ∈ Lp(Ω) and
(
∂uj
∂xi

)
converges to gi ∈ Lp(Ω) for 1 ≤ i ≤ n.

Now, let ϕ ∈ D(Ω). Then, we have:∫
Ω

uj(x)
∂ϕ

∂xi
(x)dx = −

∫
Ω

∂uj
∂xi

(x)ϕ(x)dx.

Taking the limit, we obtain:∫
Ω

u(x)
∂ϕ

∂xi
(x)dx = −

∫
Ω

gi(x)ϕ(x)dx.

Then: u ∈ W 1,p(Ω).
The case of H1(Ω) is a particular case of this result.

Theorem 5.2 : The space W 1,p(Ω) is separable for 1 ≤ p < +∞, reflexive for 1 < p < +∞.

Proof : Consider the operator A de W 1,p(Ω) in (Lp(Ω))n+1, defined as:

∀u ∈ W 1,p(Ω) : Au =

(
u,

∂u

∂x1

, · · · , ∂u
∂xn

)
.

We equip (Lp(Ω))n+1 with the norm:

‖(u0, · · · , un)‖(Lp(Ω))n+1 =
n∑
i=0

‖ui‖Lp(Ω).

Then: for any u ∈ W 1,p(Ω) we have:

‖Au‖(Lp(Ω))n+1 = ‖u‖Lp(Ω) +
n∑
i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥
Lp(Ω)

= ‖u‖W 1,p(Ω).
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Then: the operator A is an isometric, so it is homeomorphism from W 1,p(Ω) to a closed part
B of (Lp(Ω))n+1.
Since Lp(Ω) is separable for 1 ≤ p < +∞, reflexive fo 1 < p < +∞, then (Lp(Ω))n+1 and its
closed subsets share the same properties.
As a result, W 1,p(Ω) is separable for 1 ≤ p < +∞ and reflexive for 1 < p < +∞.

Proposition 5.1 : Let u ∈ Lp(Ω). The following properties are equivalents:

1. u ∈ W 1,p(Ω).

2. ∃c > 0 :

∣∣∣∣∫
Ω

u(x)
∂ϕ

∂xi
(x)dx

∣∣∣∣ ≤ c‖ϕ‖Lp′ (Ω), ∀ϕ ∈ D(Ω), ∀i = 1, . . . , n.

Proof :

⇒ Let u ∈ W 1,p(Ω) et ϕ ∈ D(Ω). Then, u ∈ Lp(Ω), u ∈ L′p(Ω) and we have:∣∣∣∣∫
Ω

u(x)
∂ϕ

∂xi
(x)dx

∣∣∣∣ =

∣∣∣∣∫
Ω

∂u

∂xi
(x)ϕ(x)dx

∣∣∣∣ ,
≤

∫
Ω

∣∣∣∣ ∂u∂xi (x)

∣∣∣∣ .|ϕ(x)|dx,

≤
(∫

Ω

∣∣∣∣ ∂u∂xi (x)

∣∣∣∣p dx) 1
p

.

(∫
Ω

|ϕ(x)|p′dx
) 1

p′

,

=

∥∥∥∥ ∂u∂xi
∥∥∥∥
Lp(Ω)

.‖ϕ‖Lp′ (Ω),

≤ c.‖ϕ‖Lp′ (Ω),

where c = max
1≤i≤n

∥∥∥∥ ∂u∂xi
∥∥∥∥
Lp(Ω)

.

⇐ Let u ∈ W 1,p(Ω) be such that

∃c > 0 :

∣∣∣∣∫
Ω

u(x)
∂ϕ

∂xi
(x)dx

∣∣∣∣ ≤ c‖ϕ‖Lp′ (Ω), ∀ϕ ∈ D(Ω), ∀i = 1, . . . , n.

Then, the operator Ai : D(Ω) → Lp
′
(Ω) defined as: Aiϕ =

∫
Ω

u(x)
∂ϕ

∂xi
(x)dx est is

continuous, and since D(Ω) is dense in Lp′(Ω) we can extend the operator A to Lp′(Ω).
From the Riez’s theorem of representation (Theorem 1.12) there exists gi ∈ Lp(Ω) such
that

Aiϕ = −
∫

Ω

gi(x)ϕ(x)dx,

i.e
∫

Ω

u(x)
∂ϕ

∂xi
(x)dx = −

∫
Ω

gi(x)ϕ(x)dx. Then: u ∈ W 1,p(Ω).

Theorem 5.3 : Suppose that Ω is bounded, Lipschitz (or Ω = Rn
+). Then, for any u ∈

W 1,p(Ω), there exists U ∈ W 1,p(Rn), and a constant c = c(Ω) > 0 such that:
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i) U|Ω = u,

ii) ‖U‖Lp(Rn) ≤ c‖u‖Lp(Ω),

iii) ‖U‖W 1,p(Rn) ≤ c‖u‖W 1,p(Ω).

Definition 5.2 : Let m ∈ N (with m ≥ 2). The Sobolev space Wm,p(Ω) of order m is defined
as follows:

Wm,p(Ω) =

{
u ∈ Wm−1,p(Ω),

∂u

∂xi
∈ Wm−1,p(Ω), ∀i = 1, 2, . . . , n

}
.

In other words:

Wm,p(Ω) =

{
u ∈ Lp(Ω), ∀α ∈ Nn(|α| ≤ m),∃gα ∈ Lp(Ω) :

∫
Ω

u.Dαϕ = (−1)|α|
∫

Ω

gαϕ;∀ϕ ∈ D(Ω)

}
.

In particular, we set Hm(Ω) = Wm,2(Ω).

We equip Wm,p(Ω) with the norm:

‖u‖Wm,p(Ω) =
∑
|α|≤m

‖Dαu‖Lp(Ω)

Hm(Ω) is a Hilbert space, equipped with the scalar product:

(u, v)Hm(Ω) =
∑
|α|≤m

(Dαu,Dαv)Lp(Ω).

Using similar arguments as in Theorem 5.1 and Theorem 5.2, we can obtain the following
two theorems:

Theorem 5.4 : Wm,p(Ω) is a Banach spac and Hm(Ω) is a Hilbert space.

Theorem 5.5 : Wm,p(Ω) is a separable space for 1 ≤ p < +∞ and reflexive space for
1 < p < +∞.

The following lemma is important to proof the density of test functions space in certain
Sobolev spaces:

Lemma 5.1 Let f ∈ L1(Rn) and u ∈ W 1,p(Rn).

Then: f ∗ u ∈ W 1,p(Rn) and for any i ∈ {1, · · · , n} we have:
∂

∂xi
(f ∗ u) = f ∗ ∂u

∂xi
.

Proof : Let’s first assume that f has compact support. In this case, (fu) ∈ Lp(Rn), and for
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all ϕ ∈ D(Rn), we have:∫
Rn

(f ∗ u)(x)
∂ϕ

∂xi
(x)dx =

∫
Rn

∫
Rn
f(x− y)u(y)

∂ϕ

∂xi
(x)dxdy

=

∫
Rn
u(y)dy

∫
Rn
f(x− y)

∂ϕ

∂xi
(x)dx

=

∫
Rn
u(y)dy

∫
Rn
f̌(y − x)

∂ϕ

∂xi
(x)dx

=

∫
Rn
u(x)

(
f̌ ∗ ∂ϕ

∂xi

)
(x)dx

=

∫
Rn
u(x)

∂

∂xi
(f̌ ∗ ϕ)(x)dx

= −
∫
Rn

∂u

∂xi
(x)(f̌ ∗ ϕ)(x)dx

= −
∫
Rn

(
f ∗ ∂u

∂xi

)
(x)ϕ(x)dx.

Now, let’s consider the case where f does not have compact support. There exists a sequence
ρjj = 1+∞ in D(Rn) converging to f in L1(Rn). We then have:∫

Rn
(ρj ∗ u)(x)

∂ϕ

∂xi
(x)dx = −

∫
Rn

(
ρj ∗

∂u

∂xi

)
(x)ϕ(x)dx. (5.3)

Also, we have:

ρj ∗ u −→ f ∗ u in Lp(Rn) ρj ∗
∂u

∂xi
−→ f ∗ ∂u

∂xi
in Lp(Rn).

Using the Lebesgue Dominated Convergence Theorem (Theorem 1.13), we obtain:∫
Rn

(f ∗ u)(x)
∂ϕ

∂xi
(x)dx = −

∫
Rn

(
f ∗ ∂u

∂xi

)
(x)ϕ(x)dx. (5.4)

Hence, we get the result.

Theorem 5.6 : D(Rn) is dense in W 1,p(Rn).

Proof : Let u ∈ W 1,p(Rn) and the function χ ∈ D(Rn) such that 0 ≤ χ ≤ 1, suppχ ⊂ B(0, 2)

and χ = 1 on B(0, 1). Consider the sequence {χj}+∞
j=1 defined as: χj(x) = χ

(
x

j

)
. Then:

χj.u converges to u a.e. and |χj.u| ≤ |u| for all j. From the Lebesgue dominated convergence
theorem (Theorem 1.13), the sequence {χj.u}+∞

j=1 converges to u in Lp(Rn). Let {ρj.u}+∞
j=1

be a regularization sequence as in Definition 1.24. Set ϕj = χj.(ρi ∗ u). Then: ϕj ∈ D(Rn)

and we have:
ϕj − u = χj.[(ρj ∗ u)− u] + [χj.u− u].
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Knowing that:

‖χj.[(ρj ∗ u)− u]‖Lp(Rn) =

∫
Rn
|χj.[(ρj ∗ u)− u]|pdx

≤
∫
Rn
|(ρj ∗ u)− u|pdx

= ‖(ρj ∗ u)− u‖Lp(Rn),

we deduce that:

‖ϕj − u‖Lp(Rn) ≤ ‖(ρj ∗ u)− u‖Lp(Rn) + ‖χj.u− u‖Lp(Rn) −→ 0.

Using Lemma 5.1 we get:

∂ϕj
∂xi

=
∂χj
∂xi

.(ρj ∗ u) + χj

(
ρj ∗

∂u

∂xi

)
.

Then:

∂ϕj
∂xi
− ∂u

∂xi
=
∂χj
∂xi

.(ρj ∗ u) + χj

[(
ρj ∗

∂u

∂xi

)
− ∂u

∂xi

]
+

[
χj.

∂u

∂xi
− ∂u

∂xi

]
.

Noting that: ∥∥∥∥∂χj∂xi
.(ρj ∗ u)

∥∥∥∥
Lp(Rn)

=

∫
Rn

∣∣∣∣∂χj∂xi
.(ρj ∗ u)

∣∣∣∣p dx
≤

∥∥∥∥∂χj∂xi

∥∥∥∥
L∞(Rn)

∫
Rn
|ρj ∗ u|pdx

≤
∥∥∥∥∂χj∂xi

∥∥∥∥
L∞(Rn)

‖ρj‖L1(Rn)‖u‖Lp(Rn),

=
1

j

∥∥∥∥ ∂χ∂xi
∥∥∥∥
L∞(Rn)

‖u‖Lp(Rn),

Then:∥∥∥∥∂ϕj∂xi
− ∂u

∂xi

∥∥∥∥
Lp(Rn)

≤
∥∥∥∥∂χj∂xi

.(ρj ∗ u)

∥∥∥∥
Lp(Rn)

+

∥∥∥∥(ρj ∗ ∂u∂xi
)
− ∂u

∂xi

∥∥∥∥
Lp(Rn)

+

∥∥∥∥χj. ∂u∂xi − ∂u

∂xi

∥∥∥∥
Lp(Rn)

≤ 1

j

∥∥∥∥ ∂χ∂xi
∥∥∥∥
L∞(Rn)

‖u‖Lp(Rn) +

∥∥∥∥(ρj ∗ ∂u∂xi
)
− ∂u

∂xi

∥∥∥∥
Lp(Rn)

+

∥∥∥∥χj. ∂u∂xi − ∂u

∂xi

∥∥∥∥
Lp(Rn)

j→+∞−→ 0.

Using similar arguments as above, we can present other density results:

Theorem 5.7 : D(Rn) is dense in Wm,p(Rn).

Theorem 5.8 : C∞(Ω) ∩Wm,p(Ω) is dense in Wm,p(Ω).

Remark 5.3 : If Ω is bounded and of class Cm, then:
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i) D(Ω) is dense in Wm,p(Ω).

ii) For all k ≥ m, the space Dk(Ω) is dense in Wm,p(Ω). In particular, Dk(Rn) is dense in
Wm,p(Rn) for all k ≥ m.

5.2 Inequalities and Sobolev embeddings

First, we have the following lemma:

Lemma 5.2 : Suppose that n ≥ 2 and let f1, · · · , fn ∈ Ln−1(Rn−1). For all x ∈ Rn and
i ∈ {1, · · · , n} we set: x̂i = (x1, · · · , xi, xi+1, · · · , xn) and let f be the function defined as:
f(x) = f1(x̂1).f2(x̂2) · · · fn(x̂n). Then: f ∈ L1(Rn) and we have:

‖f‖L1(Rn) ≤
n∏
i=1

‖fi‖Ln−1(Rn−1).

Theorem 5.9 (Gagliardo−Nirenberg − Sobolev) : Assume that n ≥ 2 and 1 ≤ p ≤ n.

Given p∗ such that
1

p∗
=

1

p
− 1

n
(Sobolev exponent), then: W 1,p(Rn) ⊂ Lp

∗
(Rn), and there

exists a constant c = c(p, n) > 0 such that:

‖u‖Lp∗ (Rn) ≤ c‖∇u‖Lp(Rn),∀u ∈ W 1,p(Rn)

Proof : Let ϕ ∈ D(Rn). Then, we have:

|ϕ(x)| =
∣∣∣∣∫ xi

−∞

∂ϕ

∂xi
(x1, · · · , xi, t, xi+1, · · · , xn)dt

∣∣∣∣ ≤ ∫ +∞

−∞

∣∣∣∣ ∂ϕ∂xi (x1, · · · , xi, t, xi+1, · · · , xn)

∣∣∣∣ dt
Set: fi(x̂i) =

∫ +∞

−∞

∣∣∣∣ ∂ϕ∂xi (x1, · · · , xi, t, xi+1, · · · , xn)

∣∣∣∣ dt.
Then: |ϕ(x)|n ≤

n∏
i=1

fi(x̂i), which leads to: |ϕ(x)|
n
n−1 ≤

n∏
i=1

f
1

n−1

i (x̂i).

From Lemma 5.2, on obtain:∫
Rn
|ϕ(x)|

n
n−1dx ≤

n∏
i=1

‖f
1

n−1

i ‖Ln−1(Rn−1),

=
n∏
i=1

(∫
Rn
fidx

) 1
n−1

,

=
n∏
i=1

‖fi‖
1

n−1

L1(Rn−1),

=
n∏
i=1

∥∥∥∥ ∂ϕ∂xi
∥∥∥∥ 1
n−1

L1(Rn)

.
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Then:

‖ϕ‖
L

n
n−1 (Rn)

≤
n∏
i=1

∥∥∥∥ ∂ϕ∂xi
∥∥∥∥ 1
n

L1(Rn)

. (5.5)

For t ≥ 1 we replace ϕ by |ϕ|t−1.ϕ, so we obtain:
∣∣∣∣∂(|ϕ|t−1.ϕ)

∂xi

∣∣∣∣ = t|ϕ|t−1 ∂ϕ

∂xi
. Then:

‖|ϕ|t−1.ϕ‖
L

n
n−1 (Rn)

≤ t

n∏
i=1

∥∥∥∥|ϕ|t−1.
∂ϕ

∂xi

∥∥∥∥ 1
n

L1(Rn)

.

Note that:

‖|ϕ|t−1.ϕ‖
L

n
n−1 (Rn)

=

(∫
Rn
|ϕ|

tn
n−1dx

)n−1
n

= ‖ϕ‖t
L

tn
n−1 (Rn)

,∥∥∥∥|ϕ|t−1.
∂ϕ

∂xi

∥∥∥∥
L1(Rn)

≤ ‖|ϕ|t−1‖Lp′ (Rn).

∥∥∥∥ ∂ϕ∂xi
∥∥∥∥
Lp(Rn)

= ‖ϕ‖t−1

Lp
′(t−1)(Rn)

.

∥∥∥∥ ∂ϕ∂xi
∥∥∥∥
Lp(Rn)

.

Therefore:

‖ϕ‖t
L

tn
n−1 (Rn)

≤ t‖ϕ‖t−1

Lp
′(t−1)(Rn)

.

n∏
i=1

∥∥∥∥ ∂ϕ∂xi
∥∥∥∥ 1
n

Lp(Rn)

.

Taking t =
n− 1

n
p∗ =

(n− 1)p

n− p
. Then:

tn

n− 1
= p′(t− 1) = p∗, which leads to

‖ϕ‖tLp∗ (Rn) ≤
(n− 1)p

np
‖ϕ‖t−1

Lp∗ (Rn)
.
n∏
i=1

∥∥∥∥ ∂ϕ∂xi
∥∥∥∥ 1
n

Lp(Rn)

.

Then:

‖ϕ‖Lp∗ (Rn) ≤
(n− 1)p

np
.
n∏
i=1

∥∥∥∥ ∂ϕ∂xi
∥∥∥∥ 1
n

Lp(Rn)

≤ c
n∏
i=1

∥∥∥∥ ∂ϕ∂xi
∥∥∥∥
Lp(Rn)

.

Hence:
‖ϕ‖Lp∗ (Rn) ≤ c‖∇u‖Lp(Rn), ∀ϕ ∈ D(Rn).

From the density of D(Rn) in W 1,p(Rn) we obtain the result.

Corollary 5.1 :

i) For n ≥ 2 et 1 ≤ p < n we have:

W 1,p(Rn) ↪→ Lq(Rn), ∀q ∈ [p, p∗].

ii) For n ≥ 2 we have:
W 1,n(Rn) ↪→ Lq(Rn), ∀q ∈ [n,+∞[.

Theorem 5.10 (Morry) : Let p > n.Then:

W 1,p(Rn) ↪→ L∞(Rn).
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Moreover, for any u ∈ W 1,p(Rn) we have:

|u(x)− u(y)| ≤ c(n, p)|x− y|
p−n
p , a.e x, y ∈ Rn.

The previous results remain valid for sufficiently regular open sets (see [1, 5]):

Theorem 5.11 : Assume that Ω is of class C 1 with Γ = ∂Ω is bounded (or Ω = Rn
+), and

1 ≤ p ≤ +∞. Then:

1. If 1 ≤ p < n, we have: W 1,p(Ω) ↪→ Lp
∗
(Ω).

2. If p = n, we have: W 1,p(Ω) ↪→ Lq(Ω), ∀q ∈ [p,+∞[.

3. If p > n we have: W 1,p(Ω) ↪→ L∞(Ω). Moreover, for any u ∈ W 1,p(Ω) we have:

|u(x)− u(y)| ≤ c(n, p)|x− y|
p−n
p , a.e x, y ∈ Ω.

In particular: W 1,p(Ω) ↪→ C (Ω).

Theorem 5.12 : Let m ∈ N∗ and 1 ≤ p ≤ +∞.

1. If 1− m

n
> 0, then: Wm,p(Rn) ↪→ Lq(Rn), where

1

q
=

1

p
− m

n
.

2. If 1− m

n
= 0, then: Wm,p(Rn) ↪→ Lq(Rn), for any q ∈ [p,+∞[.

3. If 1− m

n
< 0, then: Wm,p(Rn) ↪→ L∞(Rn).

The following theorem provides a more precise result:

Theorem 5.13 (Rellich−Kondrachov) : Suppose that Ω is bounded and of class C 1.
Then:

1. If p < n, then: W 1,p(Ω) ↪→ Lq(Ω), for any q ∈ [1, p∗[.

2. If p = n, then: W 1,p(Ω) ↪→ Lq(Ω), for any q ∈ [1,+∞[.

3. If p > n then: W 1,p(Ω) ↪→ C (Ω).

These embeddings are compact.

Remark 5.4 : For n = 1 and Ω = I be an interval we have the following properties:

i) For any u ∈ W 1,p(I), there exists ũ ∈ C (Ī) such that u = ũ a.e in I and

ũ(x)− ũ(y) =

∫ y

x

u′(t)dt, ∀x, y ∈ Ī .
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ii) For a function u ∈ L∞(I) to be in W 1,∞(I), it is necessary and sufficient that there exists
c > 0 such that:

u(x)− u(y) ≤ c|x− y|, p.p. x, y ∈ I.

iii) If I is bounded then:
*) W 1,p(I) ↪→ L∞(Ω), ∀ 1 ≤ p ≤ +∞.
**) W 1,p(I) ↪→ C(I), ∀ 1 < p ≤ +∞ with compactness.
***) The embedding W 1,1(I) ↪→ C (I) is continuous but n0t pas compact.
****) The embedding W 1,1(I) ↪→ Lq(I) is compact for any 1 ≤ q ≤ +∞.

5.3 The space W 1,p
0 (Ω)

Suppose that 1 ≤ p < +∞.

Definition 5.3 : The space W 1,p
0 (Ω) is the closure of D(Ω) dans W 1,p(Ω).

In particular H1
0 (Ω) = W 1,p

0 (Ω).

Remark 5.5 : From the density of D(Rn) in W 1,p(Rn), we deduce that: W 1,p
0 (Rn) =

W 1,p(Rn).

Theorem 5.14 : Suppose that Ω is of class C 1, and let u ∈ Lp(Ω) (1 < p < +∞). Then,
the following properties are equivalents:

i) u = 0 on Γ,

ii) u ∈ W 1,p
0 (Ω).

Here is another characterization of the space W 1,p
0 (Ω):

Theorem 5.15 : Suppose that Ω is of class C 1, and let u ∈ W 1,p(Ω) ∩ C (Ω). Then, the
following properties are equivalents:

i) u ∈ W 1,p
0 (Ω),

ii) there exists c > 0 such that for any i ∈ {1, · · ·n} and for any ϕ ∈ D(Rn) we have:∣∣∣∣∫
Ω

u
∂ϕ

∂xi
dx

∣∣∣∣ ≤ c.‖ϕ‖Lp′ (Ω).

iii) The function ũ, defined as: ũ(x) =

{
u(x) : x ∈ Ω,

0 : x /∈ Ω,
belongs to W 1,p(Rn).

In this case we have:
∂ũ

∂xi
=

(̃
∂u

∂xi

)
.

University of Msila 117 Saadi Abderachid



Distributions and Sobolev espaces Master 1 PDE and applications

Theorem 5.16 (Poincaré’s inequality ) : Suppose that Ω is bounded in a direction, i.e
there exists i ∈ {1, · · · , n}, ai, bi ∈ R such that: a ≤ xi ≤ b, ∀x ∈ Ω. Then, there exists a
constant c = c(Ω, p) such that:

‖u‖Lp(Ω) ≤ c‖∇u‖Lp(Ω), ∀u ∈ W 1,p
0 (Ω)

Proof : From the density of D(Ω) in W 1,p
0 (Ω), it suffices to prove this theorem for functions

in D(Ω). So let ϕ ∈ D(Ω). Then, we have:

|ϕ(x)| =

∣∣∣∣∫ xi

a

∂ϕ

∂xi
(x1, · · · , xi−1, t, xi−1, · · · , xn)dt

∣∣∣∣ ,
≤

∫ b

a

∣∣∣∣ ∂ϕ∂xi (x)dxi

∣∣∣∣ ,
≤

(∫ b

a

1.dxi

) 1
p′
(∫ b

a

∣∣∣∣ ∂ϕ∂xi (x)dxi

∣∣∣∣p)
1
p

,

= (b− a)
p−1
p

(∫ b

a

∣∣∣∣ ∂ϕ∂xi (x)dxi

∣∣∣∣p)
1
p

.

Therefore:
‖ϕ‖pLp(Ω) =

∫
Rn
|ϕ(x)|pdx

≤ (b− a)p−1

∫
Ω

∫ b

a

∣∣∣∣ ∂ϕ∂xi (x)

∣∣∣∣p dxidx,
= (b− a)p−1

∫ b

a

∫
Ω

∣∣∣∣ ∂ϕ∂xi (x)

∣∣∣∣p dxdxi,
≤ (b− a)p

∥∥∥∥ ∂ϕ∂xi
∥∥∥∥p
Lp(Ω)

,

≤ (b− a)p‖∇ϕ‖pLp(Ω).

Hence, the result follows by density.

Corollary 5.2 : For all u ∈ W 1,p
0 (Ω), we have: ‖∇u‖Lp(Ω) ≤ ‖u‖W 1,p(Ω) ≤ C‖∇u‖Lp(Ω).

Hence, we can consider ‖∇u‖Lp(Ω) as a norm on W 1,p
0 (Ω) that is equivalent to ‖u‖W 1,p(Ω).

here is another version of the Poincaré inequality:

Theorem 5.17 (Poincaré-Wirtinger inequality) : Suppose that Ω is connected, of class

C 1 and with bounded measure |Ω|. set: uΩ =
1

|Ω|

∫
Ω

u(x)dx. Then, there exists c > 0 such

that:
‖u− uΩ‖Lp(Ω) ≤ c‖∇u‖Lp(Ω), ∀u ∈ W 1,p(Ω).

5.4 The space W−1,p′(Ω)

Definition 5.4 : We denote by W−1,p′(Ω) the dual space of W 1,p
0 (Ω) and by H−1(Ω) the dual

space of H1
0 (Ω).
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Proposition 5.2 : We have

1. H1
0 (Ω) ↪→ L2(Ω) ↪→ H−1(Ω) with density.

2. If Ω is bounded and
2n

n+ 2
≤ p < +∞ then: W 1,p

0 (Ω) ↪→ Lp(Ω) ↪→ W−1,p(Ω), with
density.

3. Si Ω is not bounded and
2n

n+ 2
≤ p ≤ 2 then: W 1,p

0 (Ω) ↪→ Lp(Ω) ↪→ W−1,p(Ω).

We have the following characterization of elements in W−1,p′(Ω):

Theorem 5.18 : Let f ∈ W−1,p′(Ω). Then, there exists G0 ∈ Lp
′
(Ω), G = (G1, G2, . . . , Gn) ∈

(Lp
′
(Ω))n such that:

〈f, v〉 =

∫
Ω

G0.u+

∫
Ω

G.∇u, ∀u ∈ W 1,p
0 (Ω)

et max
0≤i≤n

‖Gi‖Lp′ (Ω) = ‖f‖.
If Ω is bounded, we can take G0 = 0.

Proof : Consider the space E = (Lp(Ω))n+1, equipped with the norm:

‖V ‖(Lp(Ω))n+1 = ‖(v0, v1, · · · vn)‖(Lp(Ω))n+1 =
n∑
i=0

‖vi‖Lp(Ω).

The operator A from W 1,p
0 (Ω) to (Lp(Ω))n+1, defied as:

∀u ∈ W 1,p
0 (Ω) : Au =

(
u,

∂u

∂x1

, · · · , ∂u
∂xn

)
.

is an isometric (see proof de Theorem 5.2). set F = A−1(W 1,p
0 (Ω)), we equip F with the

induced norm from E.
Let the linear continuous mapping ` defied on F by: `(v) = 〈f, A−1v〉. From Hahn-Banach
theorem de (Corollary 1.1), we can extend `to a linear continuous mapping L defined on E
with: ‖L‖E′ = ‖f‖.
The Riesz representation Theorem (Theorem 1.12) allows us to write:

〈L, h〉 =
n∑
i=0

∫
Ω

Gi.vi, ∀vi ∈ E.

aking into account v0 = u0 and vi =
∂ui
∂xi

(for 1 ≤ i ≤ n), we obtain the result.

For a bounded Ω, using the norm ‖∇u‖Lp(Ω) on W 1,p
0 (Ω), we can take G0 = 0.
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5.5 Sobolev spaces with fractional order, trace theorem
and Green’s formula

In this section, we provide a brief overview of Sobolev spaces of fractional order and the trace
theorem. First, we have the following theory, which demonstrates the relationship between
the spaces Hm(Rn) and the space of tempered distributions.

Theorem 5.19 : Hm(Rn) ⊂ S ′(Rn). Moreover, we have:

Hm(Rn) = {u ∈ S ′(Rn) : (1 + |ξ|2)
m
2 û ∈ L2(Rn), ξ ∈ Rn}.

This fundamental property has been leveraged to extend the concept of Sobolev spaces
of integer order to more general spaces known as Sobolev spaces with fractional order, which
are introduced in the following definition:

Definition 5.5 : Let s ∈ R. We define the space Hs(Rn) as follows:

Hs(Rn) = {u ∈ S ′(Rn) : (1 + |ξ|2)
s
2 û ∈ L2(Rn), ξ ∈ Rn}.

Generally, we have the following definition:

Definition 5.6 : Let 0 < s < 1 et p[1,+∞[. We define l’espace W s,p(Ω) as follows:

W s,p(Ω) = {u ∈ Lp(Ω) :
|u(x)− u(y)|
|x− y|s+

n
p

∈ Lp(Ω× Ω).

Si s > 1, by writing s = m+ r où m ∈ N et 0 < r < 1 we define W s,p(Ω) as follows:

W s,p(Ω) = {u ∈ Wm,p(Ω) : Dαu ∈ W s,p(Ω), ∀α ∈ Nn, |α| = 1}.

Theorem 5.20 (trace) : Suppose that Ω is of class C 1. Then:
The map γ0 : D(Ω) → C(Γ), defined as γ0v = v|Γ, can be continuously extended to a

continuous linear map from H1(Ω) into L2(Γ), also denoted as γ0.
γ0 is called the trace map, and γ0v is called the trace of v on Γ.
The map γ is surjective from H1(Ω) into H

1
2 (Γ).

In general, we can define the trace map γ0 fromW 1,p(Ω) into Lp(Γ). This map is surjective
from W 1,p(Ω) into W 1− 1

p
,p(Γ).

Note that W 1− 1
p
,p(Γ) is a Sobolev space defined on the submanifold Γ of dimension n−1,

using a specified coordinate system.

Remark 5.6 : W 1,p
0 (Ω) = {v ∈ W 1,p(Ω) : γ0v = v|Γ = 0}.

An important result of the trace theorem is the following:
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Theorem 5.21 (Green’s formua) : Suppose that Ω is bounded, of class C 1 by pieces and
let ν be the outward normal vector of Γ. Then:

i) For all u, v ∈ H1(Ω) we have:∫
Ω

∂u

∂xi
.vdx = −

∫
Ω

u.
∂v

∂xi
+

∫
Γ

u.v.νidσ(x).

ii) For all u, v ∈ W 2,p(Ω) we have:∫
Ω

−∆u.vdx =

∫
Ω

∇u.∇vdx−
∫

Γ

∂u

∂ν
.vσ(x).

Exercises

Exercise 5.1 : Let p ∈ [1,+∞[, H be the Heaviside function, and let ψ ∈ D(R).
Determine the conditions on ψ for H · ψ ∈ W 1,p(R)

Exercise 5.2 : Let u be the function defined on ]− 1, 1[ as: u(x) =
x+ |x|

2

1. Show that u ∈ H1(]− 1, 1[).

2. Is u ∈ H2(]− 1, 1[)?

Exercise 5.3 : Let p ∈ [1,+∞[ and let f be the function defined as:

f(x) =


x : x ∈ [0, 1],

−x+ 2 : x ∈ [1, 2],

0 : x /∈ [1, 2].

1. show that f ∈ W 1,p(R).

2. Is f ∈ W 2,p(R)?

Exercise 5.4 : Let Ω = {(x, y) ∈ R2 : x2 + y2 < 1}, and u be the function defined on
Ω \ {(0, 0)} as:

u(x, y) =

∣∣∣∣∣ln
√
x2 + y2

2

∣∣∣∣∣
α

where 0 < α <
1

2
.

Show that u ∈ H1(Ω) but does not have a continuous representation on Ω.

Exercise 5.5 : Let B be the unit ball in Rn, and let u be the function defined on B \ 0 as:

u(x) = |x|α .

Investigate the membership of u in H1(B).
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Exercise 5.6 : Let p ∈ [1,+∞[ and f be the function defined from ]0, 1[ to R as follow:

∀x ∈]0, 1[: f(x) = x−
1
p+1 .

1. Show that f ∈ Lp(]0, 1[).

2. Find the function g such that: ∀ϕ ∈ D(]0, 1[) :

∫ 1

0

f(x)ϕ′(x)dx = −
∫ 1

0

g(x)ϕ(x)dx.

3. Is f ∈ W 1,p(]0, 1[)?

4. Let u ∈ W 1,p
0 (]0, 1[) and {ϕn}∞n=1 be a sequence belongs to D(]0, 1[), converges to v in

W 1,p
0 (]0, 1[) (i.e lim

n→+∞
‖ϕ′n − u′‖Lp(]0,1[) = 0).

Show that: ∀n ∈ N :

∣∣∣∣∫ 1

0

f(x)ϕn(x)dx

∣∣∣∣ ≤ p+ 1

p
‖ϕ′n‖Lp(]0,1[).

5. Conclude.

Exercise 5.7 : let δ : D(]− 1, 1[)→ R, defined as: < δ, ϕ >= ϕ(0).

1. show that δ ∈ H−1(]− 1, 1[).

2. Find u0 ∈ H1
0 (]− 1, 1[) solution of the equation:

−T ′′ = δ in D ′(]− 1, 1[).

3. Show that this solution is unique.

Solutions of exercises

Solution 5.1 : p ∈ [1,+∞[, H the Heaviside function, ψ ∈ D(R). We have:∫ +∞

−∞
|H(x).ψ(x)|pdx =

∫ +∞

0

|ψ(x)|pdx = |ψ|pLp(]0,+∞[) < +∞.

Then: H.ψ ∈ Lp(R).
Now, let φ ∈ D(R). Then:∫ +∞

−∞
H(x).ψ(x)ϕ′(x)dx =

∫ +∞

0

ψ(x)ϕ′(x)dx

= [ψ(x)ϕ(x)]+∞0 −
∫ +∞

0

ψ′(x)ϕ(x)dx

= −ψ(0)ϕ(0)−
∫ +∞

0

ψ′(x)ϕ(x)dx

= −〈ψ(0)δ + ψ′, ϕ〉.

For H · ψ ∈ W 1,p(R), it is necessary that ψ(0) = 0.
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Solution 5.2 : x ∈]− 1, 1[, u(x) =
x+ |x|

2
=

{
0 : x ∈]− 1, 0],

x : x ∈]0, 1[

1. We have:
∫ 1

−1

u2(x)dx =

∫ 1

0

x2dx =
1

3
. Then: u ∈ L2(]− 1, 1[).

Let ϕ ∈ D(]− 1, 1[). Then:∫ 1

−1

u(x)ϕ′(x)dx =

∫ 1

0

xϕ′(x)dx

= [xϕ(x)]10 −
∫ 1

0

ϕ(x)dx,

= −
∫ 1

0

ϕ(x)dx.

Therefore: u′(x) =

{
0 : x ∈]− 1, 0],

1 : x ∈]0, 1[∫ 1

−1

u′2(x)dx =

∫ 1

0

dx =
1

2
. So, u′ ∈ L2(]− 1, 1[).

Hence: u ∈ H1(]− 1, 1[).

2. Let ϕ ∈ D(]− 1, 1[). Then:∫ 1

−1

u′(x)ϕ′(x)dx =

∫ 1

0

ϕ′(x)dx

= [ϕ(x)]10,

= −ϕ(0).

Hence: u′′ = δ /∈ L2(]− 1, 1[). So, u /∈ H2(]− 1, 1[).

Solution 5.3 : p ∈ [1,+∞[, f(x) =


x : x ∈ [0, 1],

−x+ 2 : x ∈ [1, 2],

0 : x /∈ [1, 2].

1. We have: ∀x ∈ R : |f(x)| ≤ 1, then: |f(x)|p ≤ 1. Hence: f ∈ Lp(R).
Let ϕ ∈ D(]− 1, 1[). Then:∫ +∞

−∞
f(x)ϕ′(x)dx =

∫ 1

0

xϕ′(x)dx+

∫ 2

1

(−x+ 2)ϕ′(x)dx

= [xϕ(x)]10 −
∫ 1

0

ϕ(x)dx+ [(−x+ 2)ϕ(x)]21 +

∫ 2

1

ϕ(x)dx,

= −
∫ 1

0

ϕ(x)dx+

∫ 2

1

ϕ(x)dx.

Therefore: f ′(x) =


1 : x ∈]0, 1[,

−1 : x ∈]1, 2[,

0 : x /∈]0, 2[.∫ +∞

−∞
|f ′(x)|pdx =

∫ 1

0

dx+

∫ 2

1

dx = 2. So, f ′ ∈ Lp(]− 1, 1[).
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hence: f ∈ W 1,p(R).

2. Let ϕ ∈ D(]− 1, 1[). Then:∫ +∞

−∞
f ′(x)ϕ′(x)dx =

∫ 1

0

ϕ′(x)dx−
∫ 2

1

ϕ′(x)dx

= [ϕ(x)]10 − [ϕ(x)]21,

= 2ϕ(1)− ϕ(2)− ϕ(0).

Hence: f ′′ = 2δ1 − δ2 − δ /∈ Lp(R[). So, f /∈ W 2,p(R).

Solution 5.4 : Ω = {(x, y) ∈ R2 : x2 + y2 < 1}, u(x, y) =

∣∣∣∣∣ln
√
x2 + y2

2

∣∣∣∣∣
α

, 0 < α <
1

2
.

We have: ∫
Ω

u2(x, y)dxdy =

∫
Ω

∣∣∣∣∣ln
√
x2 + y2

2

∣∣∣∣∣
2α

dxdy

=

∫ π

−π

∫ 1

0

r
∣∣∣ln r

2

∣∣∣2α drdθ
= 2π

∫ 1

0

r
∣∣∣ln r

2

∣∣∣2α drdθ < +∞.

Then: u ∈ L2(Ω).
Let ϕ ∈ D(Ω). Then:

∫
Ω

u(x, y)
∂ϕ

∂x
dxdy =

∫
Ω

(
− ln

√
x2 + y2

2

)α
∂ϕ

∂x
dxdy

= lim
ε→0

∫
Ω∩{x2+y2>ε2}

(
− ln

√
x2 + y2

2

)α
∂ϕ

∂x
dxdy
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Since ∂Ω = {x2 + y2 = ε2} ∪ {x2 + y2 = 1} and ϕ = 0 on {x2 + y2 = 1} we obtain:

∫
Ω∩{x2+y2>ε2}

(
− ln

√
x2 + y2

2

)α
∂ϕ

∂x
dxdy = −

∫
{x2+y2=ε2}

(
− ln

ε

2

)α
ϕ(x, y)νxdσ(x, y)

+

∫
Ω∩{x2+y2>ε2}

αx

2
√
x2 + y2

∣∣∣∣∣ln
√
x2 + y2

2

∣∣∣∣∣
α−1

dxdy

= −
(
− ln

ε

2

)α ∫ π

−π
ϕ(ε cos t, ε sin t) cos tdt

+

∫
Ω∩{x2+y2>ε2}

αx

2
√
x2 + y2

∣∣∣∣∣ln
√
x2 + y2

2

∣∣∣∣∣
α−1

dxdy

Noting that:

ϕ(ε cos t, ε sin t) cos t ' ϕ(0, 0). cos t+ ε

(
cos t

∂ϕ

∂x
(0, 0) + sin t

∂ϕ

∂y
(0, 0)

)
= ϕ(0, 0). cos t+

ε

2

(
(1 + cos 2t)

∂ϕ

∂x
(0, 0) + sin 2t

∂ϕ

∂y
(0, 0)

)
Then:

−
(
− ln

ε

2

)α ∫ π

−π
ϕ(ε cos t, ε sin t) cos tdt ' −πε

(
− ln

ε

2

)α
,

i.e lim
ε→0
−
(
− ln

ε

2

)α ∫ π

−π
ϕ(ε cos t, ε sin t) cos tdt = 0.

Therefore: ∫
Ω

u(x, y)
∂ϕ

∂x
dxdy =

∫
Ω

αx

2
√
x2 + y2

∣∣∣∣∣ln
√
x2 + y2

2

∣∣∣∣∣
α−1

dxdy.

Similarly: ∫
Ω

u(x, y)
∂ϕ

∂y
dxdy =

∫
Ω

αy

2
√
x2 + y2

∣∣∣∣∣ln
√
x2 + y2

2

∣∣∣∣∣
α−1

dxdy.

Then:

∂u

∂x
= − αx

2
√
x2 + y2

∣∣∣∣∣ln
√
x2 + y2

2

∣∣∣∣∣
α−1

,
∂u

∂y
= − αy

2
√
x2 + y2

∣∣∣∣∣ln
√
x2 + y2

2

∣∣∣∣∣
α−1

.

∫
Ω

(
∂u

∂x

)2

(x, y)dxdy =

∫
Ω

α2x2

4(x2 + y2)

∣∣∣∣∣ln
√
x2 + y2

2

∣∣∣∣∣
2α−2

dxdy

=
α2

4

∫ π

−π

∫ 1

0

r cos2 θ
∣∣∣ln r

2

∣∣∣2α−2

drdθ

≤ πα2

2

∫ 1

0

r
∣∣∣ln r

2

∣∣∣2α−2

drdθ < +∞.

Hence:
∂u

∂x
,
∂u

∂y
∈ L2(Ω).

Therefore: u ∈ H1(Ω).
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On a: lim
(x,y)→(0,0)

u(x, y) = +∞.
So,u does not have a continuous representation on Ω.

Solution 5.5 : Let B = {x ∈ Rn : |x| ≤ 1}, u(x) = |x|α.

1. *) Suppose that n = 1. Then:∫
Ω

u2(x)dx =

∫ 1

−1

|x|2αdx

= 2

∫ 1

0

x2αdx < +∞ si α > −1

2
.

hence: u ∈ L2(B) si α > −1

2
.

Let ϕ ∈ D(B). Then:∫
B

u(x)ϕ′(x)dx =

∫ 1

−1

|x|αϕ′(x)dx

=

∫ 0

−1

(−x)αϕ′(x)dx+

∫ 1

0

xαϕ′(x)dx

= lim
ε→0

(∫ −ε
−1

(−x)αϕ′(x)dx+

∫ 1

ε

xαϕ′(x)dx

)
= lim

ε→0

(
εα(ϕ(ε)− ϕ(−ε)) + α

∫ −ε
−1

(−x)α−1ϕ(x)dx− α
∫ 1

ε

xα−1ϕ(x)dx

)

We have: lim
ε→0

εα(ϕ(ε)− ϕ(−ε)) = lim
ε→0

2ε1+αϕ(ε)− ϕ(−ε)
2ε

= 0 si α > −1.

Then: for α > −1 we have:∫
B

u(x)ϕ′(x)dx =

∫ 0

−1

(−x)α−1ϕ(x)dx+ α

∫ 1

0

xα−1ϕ(x)dx.

In this case, u′(x) = αsign(x)|x|α−1, where sign(x) represents the sign of x.∫
B

u′2(x)dx = α2

∫ 1

−1

|x|2α−2dx

= 2α2

∫ 1

0

x2α−2dx < +∞ si α >
1

2
.

Therefore: u ∈ H1(B) pour α >
1

2
.

**) Suppose that n = 2. Then:∫
B

u2(x, y)dxdy =

∫
B

(x2 + y2)αdxdy

=

∫ π

−π

∫ 1

0

r2α+1drdθ

= 2π

∫ 1

0

r2α+1dr < +∞ si α > −1.
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Hence: u ∈ L2(B) si α > −1.
Let ϕ ∈ D(B). Using the same arguments as in Exercise 5.4, we obtain for α > −1:∫

B

u(x, y)
∂ϕ

∂x
dxdy =

∫
B

(x2 + y2)
α
2
∂ϕ

∂x
dxdy

= lim
ε→0

∫
B∩{x2+y2>ε2}

(x2 + y2)
α
2
∂ϕ

∂x
dxdy

= lim
ε→0

[
−πε1+α −

∫
B∩{x2+y2>ε2}

αx(x2 + y2)
α−2
2 ϕ(x, y)dxdy

]
=

∫
B

−αx(x2 + y2)
α−2
2 ϕ(x, y)dxdy.

Hence:
∂u

∂x
= αx(x2 + y2)

α−2
2

∂u

∂y
= αy(x2 + y2)

α−2
2 .

∫
B

(
∂u

∂x

)2

dxdy = α2

∫
B

x2(x2 + y2)α−2dxdy

=

∫ π

−π

∫ 1

0

cos2 θ.r2α−1drdθ

= π

∫ 1

0

r2α−1dr < +∞ si α > 0.

∫
B

(
∂u

∂x

)2

dxdy = α2

∫
B

y2(x2 + y2)α−2dxdy

=

∫ π

−π

∫ 1

0

sin2 θ.r2α−1drdθ

= π

∫ 1

0

r2α−1dr < +∞ si α > 0.

So, u ∈ H1(B) si α > 0.

***) Suppose that n ≥ 2 and set: x = (x1, · · · , xn), where

x1 = r cos θ1 cos θ2 · · · cos θn−1

x2 = r cos θ1 cos θ2 · · · sin θn−1

x2 = r cos θ1 cos θ2 · · · sin θn−2

...
xn−2 = r cos θ1 sin θ2

xn−1 = r sin θ1.

, r ∈]0, 1[, θ1, θ2, θn−2 ∈
]
−π

2
,
π

2

[
, θn−1 ∈]−π, π[.

Then:∫
B

u2(x)dx =

∫
B

|x|2αdx

=

∫ π
2

−π
2

· · ·
∫ π

2

−π
2

∫ π

−π

∫ 1

0

rn−1 cosn−2 θ1 · · · cos θn−1r
2αdrdθ1dθ2 · · · dθn−1

= M

∫ 1

0

r2α+n−1dr < +∞ si α > −n
2
.
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Hence: u ∈ L2(B) si α > −n
2
.

Let ϕ ∈ D(B).Using the same arguments as in Exercise 5.4, we obtain for α > −n
2
:

∫
B

u(x)
∂ϕ

∂xi
dxdy =

∫
B

|x|α ∂ϕ
∂xi

dx

= lim
ε→0

∫
B∩{|x|>ε}

|x|α∂ϕ
∂x
dxdy

= lim
ε→0

[∫
{|x|=ε}

εαϕ(x)νi(x)dσ(x)−
∫
{|x|>ε}

αxi|x|α−2ϕ(x)dx

]
= −

∫
B

αxi|x|α−2ϕ(x)dx.

So,
∂u

∂xi
= αxi|x|α−2.

∫
B

(
∂u

∂xi

)2

dx = α2

∫
B

x2
i |x|2α−4dx

= M ′
∫ 1

0

r2α+n−3dr < +∞ si α >
2− n

2
.

Solution 5.6 : p ∈ [1,+∞[,∀x ∈]0, 1[: f(x) = x−
1
p+1 .

1. We have: ∫ 1

0

|f(x)|pdx =

∫ 1

0

x−
p
p+1dx

= p+ 1 < +∞.

Then: f ∈ Lp(]0, 1[).

2. Let ϕ ∈ D(]0, 1). Then:∫ 1

0

f(x)ϕ′(x)dx =

∫ 1

0

x−
1
p+1ϕ′(x)dx

= [x−
1
p+1ϕ(x)]10 +

1

p+ 1

∫ 1

0

x−
p+2
p+1ϕ(x)dx,

=
1

p+ 1

∫ 1

0

x−
p+2
p+1ϕ(x)dx.

Then: g(x) = − 1

p+ 1
x−

p+2
p+1 .

3. We have:∫ 1

0

|g(x)|pdx =
1

(p+ 1)p

∫ 1

0

x−
p(p+2)
p+1 dx =∞ car − p(p+ 2)

p+ 1
≤ −1.

So, f /∈ W 1,p(]0, 1[).

4. u ∈ W 1,p
0 (]0, 1[), {ϕn}∞n=1 ⊂ D(]0, 1[), lim

n→+∞
‖ϕ′n − u′‖Lp(]0,1[) = 0.
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We have: ∫ 1

0

f(x)ϕn(x)dx =

∫ 1

0

x−
1
p+1ϕn(x)dx

=
p+ 1

p
[x

p
p+1ϕ(x)]10 −

p+ 1

p

∫ 1

0

x
p
p+1ϕ′n(x)dx,

= −p+ 1

p

∫ 1

0

x
p
p+1ϕ′n(x)dx.

Then: ∣∣∣∣∫ 1

0

f(x)ϕn(x)dx

∣∣∣∣ =

∣∣∣∣p+ 1

p

∫ 1

0

x
p
p+1ϕ′n(x)dx

∣∣∣∣
≤ p+ 1

p

∫ 1

0

x
p
p+1 |ϕ′n(x)|dx

≤ p+ 1

p

∫ 1

0

|ϕ′n(x)|dx

≤ p+ 1

p

(∫ 1

0

1p
′
dx

) 1
p′
(∫ 1

0

|ϕ′n(x)|pdx
) 1

p

=
p+ 1

p
‖ϕ′n‖Lp(]0,1[).

5. From the previous question we have:∣∣∣∣∫ 1

0

f(x)ϕn(x)dx

∣∣∣∣ ≤ p+ 1

p
‖ϕn‖W 1,p

0 (]0,1[).

By density:

∀u ∈ W 1,p
0 (]0, 1[) :

∣∣∣∣∫ 1

0

f(x)ϕn(x)dx

∣∣∣∣ ≤ p+ 1

p
‖u‖W 1,p

0 (]0,1[).

Then: f ∈ W−1,p′

0 (]0, 1[).

Solution 5.7 : δ : D(]− 1, 1[)→ R, < δ, ϕ >= ϕ(0)

1. Let ϕ ∈ D(]− 1, 1[). Then:

|〈δ, ϕ〉| = |ϕ(0)|

=

∣∣∣∣∫ 0

−1

ϕ′(x)dx

∣∣∣∣
≤

∫ 1

−1

|ϕ′(x)|dx

≤
(∫ 1

−1

12dx

) 1
2
(∫ 1

0

|ϕ′(x)|2dx
) 1

2

=
√

2‖ϕ‖H1
0 (]−1,1[).

By density, we deduce that δ ∈ H−1(]− 1, 1[).
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2. From the example 3.9 and Corollary 3.1, solutions of the equation −T ′′ = δ in
D ′(]− 1, 1[) are restrictions of the function f(x) = α|x|+ β.

Since u0 ∈ H1
0 (] − 1, 1[) we have: u0(−1) = u0(1) = 0, So, u0 can be expressed in the

form:

u0(x) =

{
a(x+ 1) : x ∈ [−1, 0]

b(x− 1) : x ∈]0, 1].

Hence: pour ϕ ∈ D(]− 1, 1[) on a:∫ 1

−1

u0(x)ϕ′(x)dx = a

∫ 0

−1

(x+ 1)ϕ′(x)dx+ b

∫ 1

0

(x− 1)ϕ′(x)dx

= a[(x+ 1)ϕ(x)]0−1 − a
∫ 0

−1

ϕ(x)dx+ b[(x− 1)ϕ(x)]10 − b
∫ 1

0

ϕ(x)dx

= (a+ b)ϕ(0)− a
∫ 0

−1

ϕ(x)dx− b
∫ 1

0

ϕ(x)dx.

Therefore: u′0 = −(a+ b)δ + f, où:

f(x) =

{
a : x ∈ [−1, 0]

b : x ∈]0, 1].

u ∈ H1
0 (]− 1, 1[) implicate to u′ ∈ L2(]− 1, 1[). Then: a+ b = 0, i.e b = −a. So,

u′0(x) =

{
a : x ∈ [−1, 0]

−a : x ∈]0, 1].

Hence: for ϕ ∈ D(]− 1, 1[) we have:∫ 1

−1

u′0(x)ϕ′(x)dx = a

∫ 0

−1

ϕ′(x)dx− a
∫ 1

0

ϕ′(x)dx

= a[ϕ(x)]0−1 − a[ϕ(x)]10
= 2aϕ(0).

Then: u′′ = 2a, which leads to: a =
1

2
. Hence:

u0(x) =
1− |x|

2
=


1 + x

2
: x ∈ [−1, 0]

1− x
2

: x ∈]0, 1].

3. Suppose there exists another function u1 ∈ H1
0 (]− 1, 1[) satisfying −u′′1 = δ.

Then, (u1 − u0)′′ = 0. Hence:∫ 1

−1

(u1 − u0)′(x)v′(x)dx = 0, ∀v ∈ H1
0 (]− 1, 1[).
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Set: v = u1 − u0, we obtain:
∫ 1

−1

(u′1 − u′0)2(x)dx = 0.

Then:
‖u1 − u0‖H1

0 (]−1,1[) = ‖u′1 − u′0‖L2(]−1,1[) = 0.

So, u1 = u0.
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