
2.1. Set Theory

Sets, Relations, and Functions

2.1 Set Theory

A set is a collection of objects called elements or members. The elements in a set can

be any types of objects. The members of a set do not even have to be of the same type. Set

can be …nite or in…nite.

A = 1; 2; 4; 6; 8; 9 : Z+ = 1; 2; 3; ::::::::: ; :::::::

Let A = 1; 2; red : This is read, " A is the set containing the elements 1, 2 and red.

We use curly braces " ; " to enclose elements of a set.

Special sets

or The empty (or void, or null) set is the set which contains no elements.

U : The universe set is the set of all elements.

N: The set of natural numbers. That is, N = 0; 1; 2; 3; ; ; ; .

Z: The set of integers. That is, Z = :; :; :; 2; 1; 0; 1; 2; :; :; : .

Q: The set of rational numbers, Q = x x = a
b
; (a Z; b Z ) :

R: The set of real numbers.

C: The set of complex numbers.

(A): The power set of any set A is the set of all subsets of A.

Let A = 1; 2 : The subsets of A are: ; 1 ; 2 and 1; 2 :

Therefore, (A) = ; 1 ; 2 ; 1; 2 :

Set Theory Notation

; : set.

: x A: x is an element of the set A or x belongs to A:

=: x = A: x is not an element of A:

: A B : A is a proper subset of B:

: A B : A is a subset of B or B is the superset of A:

=: A = B : Equal sets.

: A B : A intersection of B .
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2.1. Set Theory

: A B : A union of B.

: A B is the Cartesian product of A and B.

: A B is the di¤erence of A and B.

A : is the complement of A:

Cardinality of Sets

A is said to be …nite if it has a …nite number of elements. The number of elements in a

…nite set A is called its cardinality (or size), and is denoted by A or n(A):

Hence, A is always non negative. If A is an in…nite set, some authors would write

A = :

Examples

Let A = 1; 3; 7:8:9 : Then A = 5:

B = 1; 2; 3; 4 ; : Then B = 3:

C = Z+ = 1; 2; 3; ::::::::: : Then C = :

De…nition: Subset, proper subset, and Equality

Let A and B be sets.

A is a subset of B; (denoted A B ), if all elements of A are also elements of B. The

relation " " is called the inclusion relation.

(A B) ( x A = x B):

A is a proper subset of B (denoted A B) if A B and A = B.

A is equal to B, denoted A = B , if A B and B A:

(A = B) ( x A; x B and x B; x A):

Examples

1) N Z Q R

2) The set 1; 2 is a proper subset of the set 1; 2; 3 :

3) A = 2; 3; 4; 5 ; B = 2; 3; 4 ; C = 2; 3; 4; 5 :

B A , B A and C A.

4) 1; 2; 7 1; 2; 3; 6; 7; 9 ; but 1; 2; 7 * 1; 2:3:6:8:9 :
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2.1. Set Theory

2.1.1 Operations on sets

Dé…nition 2.1.1 : A B

The intersection of two sets A and B is the set containing all elements that are in both

A and B .

A B = x x A x B :

(x A B) (x A x B):

(x = A B) (x = A x = B):

If A B = , so A and B are disjoint.

Dé…nition 2.1.2 : A B

The union of sets A and B is the set containing all elements which are elements of A

or B or both.

A B = x x A x B :

(x A B) (x A x B):

(x = A B) (x = A x = B):

Examples

1) Let A = 0; 1 and B = 1; 2; 3 :

- What is A B ?: A B = 0; 1; 2; 3 :

- What is A B ?. A B = 1 :

2) A = x N x is odd and B = x N x is even : A B = N; and A B = :

3)Write, in interval notation, [5; 8[ ]6; 9] and [5; 8[ ]6; 9] :

[5; 8[ ]6; 9] = [5; 9] ; and [5; 8[ ]6; 9] = ]6; 8[ :

Propositions: Let A; B; and C be three sets. We have:

1) A and A A. 8) A = , and A A = A:

2) A (A B) and B (A B): 9) A (B C) = (A B) C:

3) (A B) A; and (A B) B: 10) A (B C) = (A B) C:

4) (A B) (A B): 11) A (B C) = (A B) (A C):
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2.1. Set Theory

5) A = A; and A A = A: 12) A (B C) = (A B) (A C):

6) if A B; then A B = B A = B:

7) if A B; then A B = B A = A:

Let A and B be two sets in a univers U .

Dé…nition 2.1.3 : A B

The set di¤erence A B , sometimes written as A B is the set containing all elements

of A which are not elements of B .

A B = x U x A x = B :

Dé…nition 2.1.4 : A B

The symmetric di¤erence A B, is de…ned as :

A B = (A B) (B A) = (A B) (A B):

Dé…nition 2.1.5 : A

The complement of A , denoted byA, Ac; CU (A), is de…ned asA = U A = x U x = A :

Example

Let U = 1; 2; 3; 4; 5 , A = 1; 2; 3 , and B = 3; 4 :

Find A B; A B; A B; B A; A B; A; B:

Solution

We have:

A B = 3 : B A = 4 :

A B = 1; 2; 3; 4 : A B = 1; 2; 4 :

A B = 1; 2 : A = 4; 5 ; and B = 1; 2; 5 :
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2.1. Set Theory

Propositions

1) A A = ; and A = A:

2) A A = U , and A A = :

3) A = A:

4) A B = A B; and A B = A B (De Morgan’s laws).

5) if A B, then B A:

6)A B = A B and (A B) = A B:

Exercise

Prove the propositions (4) and (5).

We prove that A B = A B

Let x A B x = A B:

x A B:

x A and x B:

x A or x B:

x = A or x = B:

x A or x B

x A B:

Dé…nition 2.1.6 : A B

The Cartesian product of A and B is the set A B = (x; y) x A y B .

Thus, A B ( read as "A cross B") contains all the ordered pairs in which the …rst

elements are selected from A, and the second elements are selected from B:

We denoted A2 = A A:

Example

1) R2 = R R = (x; y) x; y R :

2) LetA = 1; 2 ; andB = 2; 5; 6 : ThenA B = (1; 2); (1; 5); (1; 6); (2; 2); (2; 5); (2; 6) :
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2.2. Binary relation

2.2 Binary relation

Let X and Y be two sets. A binary relation from X to Y is a subset X Y .

If is a relation between X and Y and (x; y) ; we say x is related to y by . We

write x y.

If is a relation from X to X, then we say is a relation on set X.

Examples

1) Let A = 0; 1; 2 and B = a; c :

(0; a); (0; c); (1; a); (2; c) is a binary relation frome A to B:

(0; 0); (0; 2); (1; 2) is a binary relation on A:

2) We can de…ne a relation on the set of positive integers such that x y if and only

if x y.

(x y x y ). = (2; 4); (3; 6); (1; 5); (2; 8); ::::::::::: :

3 6. But 13 is not related to 6 by .

3) We can de…ne a relation on the set of real numbers such that a b if and only if

a > b + 1. (a b a > b + 1):

2 is not related to 3. (2 > 3 + 1) is false.

5 is related to 3: because 5 > 3 + 1:

Dé…nition 2.2.1 : Let be a binary relation on X. We say that is:

1) re‡exive if: x X : x x.

"=" is re‡exive because x = x for any x.

" " is re‡exive because A A for any set A.

" " is re‡exive, but "< " is not re‡exive, because x x:

2) symmetric if: x; y X; x y = y x:

"=" is symmetric: x = y = y = x for any x and y:

" " is not symmetric) because A B ; B A:

3) antisymmetric if: x; y X; (x y and y x) = x = y:

4) transitive if : x; y; z X; (x y and y z) = x z.
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2.2. Binary relation

Exercise 1: Is the relation de…ned on Z by:

x y x = y:

re‡exive? Is it symmetric? Is it anti-symmetric? Is it transitive?

Solution

1) is not re‡exive: If it were, we would have:

x Z : x x.

i.e.

x Z : x = x:

But x = 1 Z such that 1 = x; x = 1.(1 = 1):

Hence, is not re‡exive.

2) is symmetric because for all x; y Z:

x y x = y = y = x y x:

3) is not anti-symmetric because: 1; 1 Z : 1 ( 1) and ( 1) 1; but 1 = 1:

4) is not transitive: For example, 1; 1 Z : 1 ( 1) and ( 1) 1; but 1 is not

related to 1 by :

Exercise 2

We can de…ne a relation on the set of positive integers such that x y if and only if

x y. (x y x y ).

This relation is re‡exive because x x for all x:

" " is NOT symmetric because, 2; 4 Z : 2 4 but 4 is not related to 2 by .

(2 4, but 4 - 2)

This relation is anti-symmetric because x y and y x implies that x = y.

This relation is transitive because x y and y z implies that x z.
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2.2. Binary relation

2.2.1 Equivalence relation

Dé…nition 2.2.2

An equivalence relation is a relation that is re‡exive, symmetric and transitive.

Dé…nition 2.2.3 (Equivalence Classes)

Let be an equivalence relation on X. The equivalence class of x X, denoted by x

(or x ), is de…ned by:

x = x = y X : x y :

x is the set of all elements of X that are related to x.

The collection of all equivalent classes of X, denoted by X = is called the quotient of

X by , that is,

X = =
n

x : x X
o

:

Propositions

Let be an equivalence relation on X and let x be the equivalent class of x X. Then:

(1) x X : x x:

(2) x y x = y:

(3) If x = y , then x and y must be disjoint.

Exercise 01

Let be a relations on the set X = 4; 5; 6; 7 de…ned by:

= (4; 4); (5; 5); (6; 6); (7; 7); (4; 6); (6; 4) :

a) Show that is an Equivalence Relation.

b) Determine its equivalence classes.

Solution

a.1)Re‡exive: Relation is re‡exive as for every x X . (x; x) , i.e. (4; 4); (5; 5); (6; 6);

and (7; 7) .

a.2) Symmetric: Relation is symmetric because whenever (a; b) ;
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2.2. Binary relation

(b; a) also belongs to . Example: (4; 6) = (6; 4) :

a.3) Transitive: Relation is transitive because whenever (x; y) and (y; z) belongs to

: (a; c) also belongs to .

Example: (4; 6) and (6; 4) = (4; 4) .

As the relation is re‡exive, symmetric and transitive. Hence, is an Equivalence

Relation.

b) The equivalence classes are as follows:

4 = 4; 6 = 6:

5 = 5

7 = 7 .

Exercise 02

We de…ne on Z a relation as follows:

x y x = y

Show that is an equivalence relation.

Solution

This relation is re‡exive because x Z : x = x = x x.

2) is symmetric because for all x; y Z:

x y x = y = y = x = y x:

3) is transitive because for all x; y; z Z: 8
>>><

>>>:

x y x = y

y z y = z

= x = z = x z:

Thus, is an equivalence relation.

20



2.2. Binary relation

Exercise 03

"divides": (x y x y ) is not an equivalence relation. Because is not symmetric.

2; 4 Z+ : 2 4 but 4 is not related to 2 by .

Exercise 04

We de…ne on Z a relation as follows:

x y x + y is even:

a) Show that is an equivalence relation.

b) What are the equivalence classes of 0 and 1?

Solution

a.1) Let x Z. Since x + x = 2x is always even, is re‡exive.

a.2) Let x; y Z. x + y = y + x; x + y is even if and only if y + x is so. Thus is

symmetric.

a.3) The relation is transitive. To prove this, let x; y; z Z; and assume that x y

and y z, i.e. x + y and y + z are even. So, there exist n; m Z such that x + y = 2n

and y +z = 2m.

Thus, x + y +y + z = 2n + 2m = x + z = 2(n + m y)

i.e. x + z is even, that is, x z: ( is transitive).

Therefore is is an equivalence relation.

b) equivalence classes of 0 and 1:

0 = y Z : 0 y = y Z : 0 + y is even = 0; 2; 4; ::: :

1 = y Z : 1 y = y Z : 1 + y is even = 1; 3; 5; ::: :

2 = y Z : 2 y = y Z : 2 + y is even = 0; 2; 4; ::: :(0 = 2; because 0 2:)

0 and 1 are the only equivalence classes withe respecte to this equivalence relation.
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2.2. Binary relation

2.2.2 Order relation

Dé…nition 2.2.4 Partial order, total order

A relation on a set X is called a partial order relation if it satis…es the following three

properties:

Relation is Re‡exive, i.e. x X : x x.

Relation R is Antisymmetric, i.e. x; y X; (x y and y x) = x = y:

Relation R is transitive, i.e. x; y; z X; (x y and y z) = x z.

A partial order is said to be a total order if for any x; y X either x y or y x:

A pair (X; ), where is a partial order over X, is called a partial order set or poset.

1) (Z; ) is a total order set.

2) (Z; ) is a partial ordere set but not total order set.

Exercise 01

Show that the "greater than or equal" relation ( ) is a partial order on the set of integers.

(x y x y)

Solution:

1) Re‡exivity: x x for every integer x.

2) Antisymmetry: If x y and y x ; then x = y.

3) Transitivity: If x y and y z; then x z .

These properties all follow from the order axioms for the integers.

Exercise 02

Show that the relation divides de…ned on N is a partial order relation.

Solution:

1)Re‡exivity: We have x divides x, x Z+. Therefore, relation "Divides" is re‡exive.

2) Antisymmetry: If x and y are positive integers with x y and y x; then x = y.

3) Transitivity: Suppose that x divides y and that y divides z. Then, there are positive

integers k and l such that y = xk and z = yl, z = x(kl ), so that x divides z.
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2.2. Binary relation

Hence the relation is transitive. Therefore, the relation divides is a partial order on the

set of positive integers.

Exercise 03

Show that the inclusion relation " " is a partial order on the power set of a set S.

Solution:

1) Re‡exivity: A A whenever A is a subset of S.

2) Antisymmetry: If A and B are subsets of S, with A B and B A ; then A = B.

3) Transitivity: If A B and B C ; then A C .

The properties all follow from the de…nition of set inclusion.

Upper Bounds, Lower Bounds, Sup, Inf

Let (X; ) be a partially ordered set, and let A be a subset of X:

Dé…nition 2.2.5 ( upper bound )

u X is an upper bound or majorant of A if every element of A is less then or equal

to u. i.e. u x for all x A.

if A has an upper bound, then we say that A is bounded above.

Note that the upper bounds don’t need to belong to the subset).

Example

A = [ 1; 3[ R: u = 3 is an upper bound of A:(any real number u 3 is also an upper

bound of A:

A is bounded above.

2) let A = N = 0; 1; 2; ::: :A does not have any upper bound. Then A is not bounded

above.
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2.2. Binary relation

Dé…nition 2.2.6 (lower bound)

l X is a lower bound or minorant of A if every element of A is greater then or

equal to l. i.e. l x for all x A:

if A has an lower bound, then we say that A is bounded below.

Note that the lower bounds don’t need to belong to the subset.

Example

A = [ 1; 3[ R: l = 1 is a lower bound of A:(any real number l 1 is also a lower

bound of A: (A is bounded below).

(l = 1:5 is a lower bound of A, but l = 0:5 is NOT a lower bound of A:

Dé…nition 2.2.7 (bounded sets)

we say that A is bounded If it is both bounded above and below.

Examples

1) A = [ 1; 3[ R is bounded.

2) The set of natural numbers, i.e. N = 0; 1; 2; 3; ::: is a set which is bounded below

(by 0), but not bounded above.(N is not bounded)

3) B = 1; 2; 7 Z: Then A is bounded above ( e.g. , by 7; 8; 10; :::) and below (e.g.

,by 2; 3; 8; :::)

4) Let C = 1; 2 be a subset of the set of natural numbers N, then 2; 3; 4; 5; :::: will

all be upper bounds of C (C is bounded above), and 0; 1 will be lower bounds of C (C is

bounded below). Then we say that C is bounded.
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2.2. Binary relation

5) Consider D = ]0; 1] of R. Any real number greater than or equal to 1 is an upper

bound of D, and any real number less than or equal to 0 is a lower bound of D. (D is

bounded).

Dé…nition 2.2.8 (supremum in…mum)

Let X be a partially ordered set, and let A be a subset of X.

1) An element u0 X is a "least upper bound" or "supremum" of A if it is smallest

of all upper bounds u.

If a supremum exists, it is denoted by sup(A):

sup(A) may or may not belongs to set A:

2) An element l0 X is a "greatest lower bound" or in…mum of A if it is greatest of

all lower bounds l.

If an in…mum exists, it is denoted by inf(A):

inf(A) may or may not belongs to set A:

Remark

If u0 A:We say that u0 is the maximum (greatest element) of A and write

u0 = max(A) = sup(A):

If l0 A:We say that l0 is the minimum (smallest element) of A and write

l0 = min(A) = inf(A).

Example

1) ]0; 1] is a subset of R. The set of all upper bounds of A is the set B = [1; + [ ;

sup(A) = 1: And 1 A: 1 is the maximum of A: i:e: max(A) = 1:

The set of all lower bounds of A is the set C = ] ; 0] ; inf(A) = 0: But min A does not

exists because inf(A) = A:

2) S = 1; 2; 3; 4 N, then sup(S) = max(S) = 4; because 4 S and every s S

satis…es s 4.

and inf(S) = min(S) = 1:

3)S = [0; 1], then sup(S) = max(S) = 1, and inf(S) = min(S) = 0:
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2.2. Binary relation

Propositions

1)The supremum or in…mum of a set A is unique if it exists.

2) If A, B are nonempty sets, then sup(A B) = sup(A) sup(B), inf(A B) =

inf(A) inf(B).

Exercise

Find the sup, inf, max, and min of the following set.

A = 1
n
; n N

Solution

We write the …rst few terms of S:

S = 1; 1
2
; 1
3
; 1
4
; :::

Then sup(A) = 1 belongs to A, so max(A) = sup(A) = 1. On the other hand, inf(A) = 0

doesn’t belong to A; (limn
1
n

= 0): So A has no minimum.

Exercise Let (E; ) be an ordered set, and let A be a subset of E:

Find the sup, inf, max, and min of the following sets; if it exists.

1) E = R; A = 0; 1; 5; 3; 5; 2 :

2) E = R; A = [ 4; 2[ :

3) E = R; A = ] 1; 1[ :

4) E = R; A = ] ; 2[ :

5) E = [ 1; 1] ; A = cos( 7 n
2

; n Z :

6) E = R; A = x2 1; x R :
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2.3 Functions

A function f : X Y is a rule that, for every element x X; associates an element

f(x) Y: The element f(x) is sometimes called the image of x; and the subset of Y

consisting of images of elements in X is called the image of f . That is,

image(f) = y Y : y = f(x) for some x X

Is a function always a relation?

A function is always a relation. A function is a type of relation in which each input has

a unique output, mning an input does not have more than one output.

A relation is not a function if there is more than one output for an input. For example, in

the relation (1; 0) ; (1; 2); (2; 3) , the input of 1 gives two di¤erent outputs. So the relation

is not a function.

Dé…nition 2.3.1 (Image, Pre-image, Domain and Range of a Function)

Domain and co-domain: if f is a function from set X to set Y , then X is called

Domain and Y is called co-domain.

D(f) = x : x A for which f(x) is de…ned

Image and Pre-Image: If y Y is associated with an element x X, we write it as,

y = f(x)

which is read "y equals f of x":f (x) is known as the image of f at x or value of f at

x: and x is called the pre-image of y .

Range: Range of f is the set of all images of elements of X. Basically Range is subset

of co- domain. (R(f) Y )

R(f) = y : y Y; y = f(x) for all x X :

Examples

y = f(x) = x 1:Then f(x) is de…ned for x 1 0 i.e. x 1: Thus,

D(f) = x : x 1 = [1; [ :

R(f) = y : y 0 = [0; [ :
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2.3. Functions

2.3.1 Properties of Function

Addition and multiplication: let f and g are two functions from X to Y , then f + g

and f g are de…ned as:

f + g(x) = f(x) + g(x). (addition)

fg(x) = f(x)g(x). (multiplication)

Equality: If two functions f and g :X Y have a same domain , then they are said

to be equal i¤ f(x) = g(x) for every x X and is written as f = g:

Composition: If f : A B and g : B C be any two functions, then the composite

function of f and g; denoted by g f (read as "g of f") is the function g f : A C and

de…ned by the equation,

( g f )(x) = g(f(x)):

Figure 2.3.1 : composition of f and g
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2.3. Functions

Example

Let A; B and C denote the sets of real numbers. Suppose f : A B and g : B C are

de…ned by

f(x) = x 1; g(x) = x2

Then,

( g f )(x) = g(f(x)) = g(x 1):

= (x 1)2:

2.3.2 Direct image, inverse image

Dé…nition 2.3.2 (direct image of a set)

Let f : X Y and A X; the direct image of A under the function f written f(A) is

the set

f(A) = f(x) : x A

Dé…nition 2.3.3 (Inverse image, pre-image of an element )

Let f : X Y and b Y: Then the inverse image of b under f; f 1(b); is the set

f 1(b) = x X : f(x) = b :

Dé…nition 2.3.4 ( Inverse image, pre-image of a subset)

Let f : X Y is a function where B Y then the inverse image of B under the

function f is the set:

f 1(B) = x X : f(x) B :

Examples

Let f be as in Figure 2:3:2

Then f( b; c ) = 1; 3 , f 1(1) = a; b ; and f 1( 1; 3 ) = a; b; c; d :
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2.3. Functions

Figure 2.3.2 : Picture of f

Exercise

Let E = [0; 1] and F = [ 1; 0] be two intervals of R:

We consider a function f : E F; de…ned by f(x) = x2 1:

Determine f( 0; 1
2

); f 1( 1
2
), and f 1( 1

2
; 0 :

Solution

1) f( 0; 1
2

) = f(x) F; x 0; 1
2

:

x 0; 1
2

= 0 x < 1
2
= 0 x2 < 1

4
:

= 1 x2 1 < 3
4
:

f( 0; 1
2

) = 1; 3
4

:

2) f 1( 1
2
) = x [0; 1] ; f(x) = 1

2
:

f(x) = 1
2
= x2 1 = 1

2
= x2 = 1

2
:

= x = 1
2
(because x is a positive number):

f 1( 1
2
) = 1

2
:

3) f 1( 1
2

; 0 = x [0; 1] ; f(x) 1
2
; 0 :

f(x) 1
2
; 0 = 1

2
< x2 1 < 0 = 1

2
< x2 < 1:

= 1
2

< x < 1 =

8
<

:

1
2

< x < 1

1 < x < 1
2

:

But x [0; 1] ; then f 1( 1
2

; 0 =
i
1
2
; 1
h

:
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2.3.3 Types of functions: injective, surjective and bijective

Injective function or (one-to-one)

Dé…nition 2.3.5

Let f : X Y be a function. Then f is injective or "one -to-one" if for all elements

x1 and x2in X , if f(x1) = f(x2); then it must be the case that x1 = x2:

This is equivalent to saying if x1 = x2; then f(x1) = f(x2):(contrapositive)

IfX and Y are …nite sets and f : X Y is injective, then X Y :

Figure 2.3.3 : injective

Example

The function f : Z Z de…ned by f(x) = 2x is injective if :

f(x1) = f(x2) = 2x1 = 2x2, dividing both sides by 2 yields x1 = x2:

Surjective function or (onto)

Let f : X Y be a function. If every element of Y is the image of at least one element of

X. i.e. every element of Y has a pre-image, thenThat is, f(X) = Y .

Symbolically,

y Y; x X such that f(x) = y:

If X and Y are …nite sets and f : X Y is surjective, then X Y :
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Figure 2.3.4 : Surjective

Example: The function f : Z Z de…ned by f(x) = 2x is not surjective: there is no

integer x such that f(x) = 3;because

2x = 3 has no solutions in Z. So 3 is not in the image of f:

Bijective "one-to-one and onto"

Let f : X Y be a function. Then f is bijective or (one-to-one correspondence) if

it is injective and surjective; that is, every element y Y is the image of exactly one

element x X:

y Y; !x X such that f(x) = y:

If X and Y are …nite sets and f : X Y is bijective, then X = Y :

Figure 2.3.5 :
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Exercise

Figure 2.3.6 : Surjective / Not surjective

Inverse functions

Let f : A B be a one-to-one correspondence (bijection). Then the inverse function

of f , f 1 : B A; associates each element b of B with a unique element a of A such that

f(a) = b.

f 1(b) = a b = f(a):

The inverse is usually shown by putting a little " 1" after the function name, like this:

f 1:

Dé…nition 2.3.6 (Inverse function)

If f : A B and g : B A are functions, we say g is an inverse to f (and f is an

inverse to g) if and only if: f g = IB and g f = IA:
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Remark

- f 1(y) is not 1
f(y)

-(f 1) 1 = f

Properties

A function f : A B has an inverse if and only if it is bijective.

If f : A B has an inverse function then the inverse is unique.

The inverse of a bijective function is also a bijection.

The composition of two bijections is a bijection.

Example

Let f be the real function f(x) = x2: The function f is not a bijection, so it does not

have an inverse function. However the function

g : [0; [ [0; [

x x2

is a bijection. In this case, g 1(y) = y:

Bijection theorem

f : I R R

If f is continuous and strictly monotonic on I. Then:

1) f : I J = f(I) is a bijective.

2) f 1 is continuous and strictly monotonic on J; with the same direction of variation

as f:

Exercise

Let f : ]0; [ ]0; 1[ be the function de…ned by f(x) =
1

x + 1
:

1) Determine f(]2; 4]) and f 1(
i
1
2
; 3
2

i
):

2) Show that the function f is bijective and determine f 1:

Solution
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1) * f(]2; 4]) = y ]0; 1[ ; x ]2; 4] :

x ]2; 4] = 2 < x 4 = 3 < x + 1 5

=
1

5

1

x + 1
<

1

3
: Then f(]2; 4]) =

h
1
5
; 1

3

h
:

* f 1(
i
1
2
; 3
2

i
) =

n
x ]0; [ ; f(x)

i
1
2
; 3
2

io

f(x)
i
1
2
; 3
2

i
=

1

2
<

1

x + 1

3

2
=

1

3
x < 3:

f 1(
i
1
2
; 3
2

i
) = 1

3
; 3 :

2) Show that the function f is bijective and determine f 1:

We show that f is injective and surjective

a) f is injective: if f(x1) = f(x2); then x1 = x2 for all x1; x2 ]0; [

f(x1) = f(x2) =
1

x1 + 1
=

1

x2 + 1
= x1 = x2: Then f is injective

b) f is surjective: y ]0; 1[ ; x ]0; [ ; such that f(x) = y:

y = f(x) =
1

x + 1
= x + 1 =

1

y
= x =

1

y2
1

Then y ]0; 1[ ; x =
1

y2
1 ]0; [ such that y = f(x); therefore f is surjective.

f is injective and surjective therefore it is bijective, and

f 1 : ]0; 1[ ]0; [ de…ned by f 1(y) =
1

y2
1:
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