2.1. Set Theory

Sets, Relations, and Functions

2.1 Set Theory

A set is a collection of objects called elements or members. The elements in a set can
be any types of objects. The members of a set do not even have to be of the same type. Set
can be finite or infinite.

A=1{1,2,4,6,8,9}.Z, ={1,2,3,......... |
Let A = {1,2,red}. This is read, " A is the set containing the elements 1, 2 and red.

We use curly braces " {, }" to enclose elements of a set.

Special sets

0 or {} The empty (or void, or null) set is the set which contains no elements.
U : The universe set is the set of all elements.

N: The set of natural numbers. That is, N ={0,1,2,3,,,, }.

Z: The set of integers. That is, Z={.,.,.,—2,—-1,0,1,2,.,.,.}.

Q: The set of rational numbers, Q = {z |z =%, (a € Z, b€ Z*)} .
R: The set of real numbers.

C: The set of complex numbers.

p(A): The power set of any set A is the set of all subsets of A.

Let A ={1,2}. The subsets of A are: (), {1},{2} and {1,2}.
Therefore, p(A) = {0, {1}, {2}, {1,2}}.

Set Theory Notation

{,}: set.

:x € A: x is an element of the set A or x belongs to A.

S

¢:x ¢ A: x is not an element of A.
C: A C B: Ais a proper subset of B.
C

:AC B: Ais asubset of B or B is the superset of A.

=: A= B : Equal sets.
N:ANB: A intersection of B .
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2.1. Set Theory

U:AUB: A union of B.

X : A xB is the Cartesian product of A and B.
\ : A \B is the difference of A and B.
A

: is the complement of A.

Cardinality of Sets
A is said to be finite if it has a finite number of elements. The number of elements in a
finite set A is called its cardinality (or size), and is denoted by |A| or n(A).

Hence, |A| is always non negative. If A is an infinite set, some authors would write

|A| = o0.

Examples

Let A={1,3,7.8.9}. Then |[A| = 5.

B =1{1,{2,3,4},0}. Then |B| = 3.
C=7Z;={1,2,3,...... }. Then |C| = oc.

Definition: Subset, proper subset, and Equality

Let A and B be sets.

e A is a subset of B, (denoted A C B ), if all elements of A are also elements of B. The
relation "C" is called the inclusion relation.

(ACB)<= (Vx e A=z € B).
e A is a proper subset of B (denoted A C B) if AC B and A # B.

oA is equal to B, denoted A= B ,if AC B and B C A.
(A=B)<—= (Vr€e A,x € Band Vz € B,z € A).

Examples

)NCZCQCR

2) The set {1,2} is a proper subset of the set {1,2,3}.

3) A={2,3,4,5}, B={2,3,4},C = {2,3,4,5} .
BCA,BCAandC CA.

4) {1,2,7} € {1,2,3,6,7,9}, but {1,2,7} ¢ {1,2.3.6.8.9}.
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2.1. Set Theory

2.1.1 Operations on sets

Définition 2.1.1 : AN B

The intersection of two sets A and B is the set containing all elements that are in both
Aand B .
ANB={z|r€e ANz € B}.
(re ANB) <= (xr€ ANz € B).
(x¢ ANB) <= (¢ AVaz ¢ B).

If AN B =1, so A and B are disjoint.

Définition 2.1.2 : AUB

The union of sets A and B is the set containing all elements which are elements of A
or B or both.
AUB={z |z € AVz e B}.
(€ AUB) <= (r € AVz € B).
(x¢ AUB) <= (z ¢ ANz ¢ B).

Examples

1) Let A= {0,1} and B ={1,2,3}.

- What is AUB ?. AUB =10,1,2,3}.

- Whatis ANB?. AnB={1}.

2) A={reN|zrisodd} and B={z €N |ziseven}. AUB =N, and AN B = 0.
3)Write, in interval notation, [5,8[U6,9] and [5,8[N]6,9] .

[5,8[U16,9] = [5,9], and [5,8[N]6,9] =16, 8.

Propositions: Let A, B, and C' be three sets. We have:

1) c Aand A C A. 8) AN =10,and AN A= A.

2) AC(AUB)and B C (AUB,). 9) Au(BUC)=(AUuB)UC.

3) (AnB) C A, and (AN B) C B. 10) AN(BNC)=(AnB)NnC.

4) (AnB) C (AUB). 11) Au(BNnC)=(AUB)N(AUC(C).
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2.1. Set Theory

5 AUD = A, and AUA = A. 12) AN(BUC)=(ANB)U(ANC).
6)if AC B,then AUB=BUA=B.
7if AC B,then ANB=BNA=A.

Let A and B be two sets in a univers U .
Définition 2.1.3 : A—B

The set difference A — B , sometimes written as A \ B is the set containing all elements

of A which are not elements of B .

A\B={ze€Ul|lre ANz ¢ B}.
Définition 2.1.4 : AAB

The symmetric difference AAB, is defined as :

AAB = (A\B) U (B \A) = (AUB) \(AN B).

Définition 2.1.5 : A
The complement of A | denoted by A, A°,Cy(A),isdefinedas A= U \A={r € U |z ¢ A}.

Example
Let U ={1,2,3,4,5}, A={1,2,3}, and B = {3,4}.
Find AN B, AUB, A\B, B\A, AAB, A, B.

Solution

We have:

ANB={3}. B\A = {4}.
AUB=1{1,2,3,4}. AAB ={1,2,4}.

A\B ={1,2}. A={4,5},and B = {1,2,5}.
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2.1. Set Theory

Propositions
A\NA=10,and A \() = A.
2) AUA=U,and ANA=0.

1)

)

3)A

4) ANB=AUB, and AU B = AN B (De Morgan’s laws).
5)if A C B, then B C A.

6)A\B=ANTB and (A\B) = AU B.

Exercise
Prove the propositions (4) and (5).
We prove that ANB=AUB
Let € ANB < x¢ ANB.
«— r€ANB.

<— g€ Aand z € B.

< zxe€AorzeEB.
< x¢Aorzx¢B.
< rcAorrEB
< 1€ AUB.

Définition 2.1.6 : Ax B

The Cartesian product of A and B is the set A x B = {(z,y) |t € ANy € B}.
Thus, A x B ( read as "A cross B") contains all the ordered pairs in which the first

elements are selected from A, and the second elements are selected from B.
We denoted A2 = A x A.

Example
HRE2=RxR={(z,y) | z,y € R}.
2)Let A= {1,2},and B = {2,5,6}. Then AxB = {(1,2),(1,5),(1,6),(2,2),(2,5), (2,6)} .
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2.2. Binary relation

2.2 Binary relation

Let X and Y be two sets. A binary relation  from X toY is asubset R C X x Y.
If R is a relation between X and Y and (z,y) € R, we say x is related to y by R. We
write z R y.

If R is a relation from X to X, then we say R is a relation on set X.
Examples
1) Let A= {0,1,2} and B = {a,c}.
{(0,a),(0,¢),(1,a),(2,¢)} is a binary relation frome A to B.
{(0,0),(0,2),(1,2)} is a binary relation on A.
2) We can define a relation R on the set of positive integers such that x R y if and only
if x| y.
(Ry<=zly) R={(2,4),(3,6),(1,5),(2,8), cccce...... }.
3R 6. But 13 is not related to 6 by R.
3) We can define a relation R on the set of real numbers such that a ® b if and only if
a>b+1. (aRb<=a>b+1).
2 is not related to 3. (2 > 3+ 1) is false.
5 is related to 3. because 5 > 3 + 1.

Définition 2.2.1 : Let R be a binary relation on X. We say that R is:

1) reflexive if: Vo € X : z R x.
e "="1is reflexive because x = x for any .
e "C" is reflexive because A C A for any set A.

e "< "is reflexive, but "< " is not reflexive, because x £ x.

2) symmetric if: Vz,y € X, s Ry =y R =.

"=" is symmetric: * = y = y = « for any x and y.

"C" is not symmetric) because A C B % B C A.
3) antisymmetric if: Vz,y € X, (zr Ryandy R2) =z =y.

4) transitive if : Vz,y,2 € X, (r Ryandy R 2) =z R 2.
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2.2. Binary relation

Exercise 1: Is the relation } defined on Z by:
TRy <= z=—y.

reflexive? Is it symmetric? Is it anti-symmetric? Is it transitive?

Solution

1) R is not reflexive: If it were, we would have:
VeeZ:x R x.

lLe.
Ve €Z:x = —u.

But 3z =1 € Z such that 1 =2, —x = —1.(1 # —1).

Hence, R is not reflexive.

2) R is symmetric because for all z,y € Z:

tRy<—=r=—-y—=y=-r<=y Rz
3) R is not anti-symmetric because: 31,—1 € Z : 1R(—1) and (—1)R1, but 1 # —1.

4) R is not transitive: For example, 31,—1 € Z : 1R(—1) and (—1)R1, but 1 is not
related to 1 by R.

Exercise 2
We can define a relation R on the set of positive integers such that z R y if and only if

e This relation is reflexive because x | z for all x.
¢" | "is NOT symmetric because, 32, 4 € Z : 2 R 4 but 4 is not related to 2 by R.
(2|4, but 412)

oThis relation is anti-symmetric because x | y and y | « implies that z = y.

oThis relation is transitive because = | y and y | z implies that x | z.
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2.2. Binary relation

2.2.1 Equivalence relation

Définition 2.2.2

An equivalence relation is a relation that is reflexive, symmetric and transitive.

Définition 2.2.3 (Equtvalence Classes)

Let R be an equivalence relation on X. The equivalence class of x € X, denoted by T
(or & ), is defined by:
T=z={yeX:zRy}.
7 is the set of all elements of X that are related to x.
The collection of all equivalent classes of X, denoted by X / R is called the quotient of
X by R, that is,

X/é)%:{:%;xex}.

Propositions

Let R be an equivalence relation on X and let 2 be the equivalent class of v € X. Then:
()VzeX:zel.

2) xRy <= z=1.

(3) If & # 4 , then 2 and § must be disjoint.

Exercise 01

Let R be a relations on the set X = {4,5,6, 7} defined by:
R ={(4,4),(5,5),(6,6),(7,7),(4,6),(6,4)} .

a) Show that R is an Equivalence Relation.

b) Determine its equivalence classes.

Solution
a.1) Reflexive: Relation R is reflexive as for every x € X . (z,z)€ R, i.e. (4,4),(5,5),(6,6),
and (7,7) € R.

a.2) Symmetric: Relation R is symmetric because whenever (a,b) € R;
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2.2. Binary relation

(b,a) also belongs to R. Example: (4,6) € R = (6,4) € R.

a.3) Transitive: Relation R is transitive because whenever (z,y) and (y, z) belongs to
R: (a,c) also belongs to K.

Example: (4,6) € R and (6,4) € ® = (4,4) € R.

As the relation R is reflexive, symmetric and transitive. Hence, R is an Equivalence
Relation.

b) The equivalence classes are as follows:

4=1{4,6} =6.
5}
{7}.

= o
(I
~

Exercise 02

We define on Z a relation & as follows:
rRy<=zr=y

Show that R is an equivalence relation.

Solution

This relation is reflexive because Vx € Z:x =2 =z R x.

2) R is symmetric because for all z,y € Z:

tRy<—=rv=y=—=y=c=—yRua.

3) R is transitive because for all z,y, z € Z:
Ry <= zr =y
A —r=z=2a RNz

YRz <= y==z2

Thus, R is an equivalence relation.
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2.2. Binary relation

Exercise 03
"divides": (x R y <= x | y ) is not an equivalence relation. Because is not symmetric.

32,4 € 7Z, : 2 R 4 but 4 is not related to 2 by R.

Exercise 04

We define on Z a relation R as follows:

xRy« xr+yis even.
a) Show that J is an equivalence relation.

b) What are the equivalence classes of 0 and 17

Solution
a.l) Let x € Z. Since x + x = 2z is always even, R is reflexive.
a.2) Let v,y € Z. v+ vy =y +x, x +y is even if and only if y + x is so. Thus R is

symmetric.

a.3) The relation R is transitive. To prove this, let x,y, z € Z, and assume that z R y
and y R z, i.e. x +y and y + z are even. So, there exist n,m € Z such that  +y = 2n
and y +z = 2m.

Thus, z+y +y+z=2n+2m=x+z2=2(n+m—y)

i.e. © + z is even, that is, z & z. (R is transitive).

Therefore R is is an equivalence relation.

b) equivalence classes of 0 and 1:

0={ycZ:0Ry} ={y€Z:0+yiseven} = {0,42 44, ..}.
1={yeZ: 1Ry} ={y€Z:1+yiseven} = {+1,+3, 45, ...}.
2={yeZ:2Ryt={yeZ:2+yiseven}={0,£2,+4,..}.(0 = 2, because 0 R 2.)

0 and 1 are the only equivalence classes withe respecte to this equivalence relation.
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2.2. Binary relation

2.2.2 Order relation

Définition 2.2.4 Partial order, total order

A relation R on a set X is called a partial order relation if it satisfies the following three
properties:

Relation R is Reflexive, i.e. Vo € X : z R x.

Relation R is Antisymmetric, i.e. Vo,y € X, (zr Ryandy Rz) = x =1y.

Relation R is transitive, i.e. Vo,y,z € X, (zr Ryandy R z) = = R z.

A partial order is said to be a total order if for any x,y € X either x R y or y R z.
A pair (X, R ), where R is a partial order over X, is called a partial order set or poset.
1) (Z; <) is a total order set.

2) (Z;)) is a partial ordere set but not total order set.

Exercise 01

Show that the "greater than or equal” relation (>) is a partial order on the set of integers.

(2Ry <= = >y)
Solution:
1) Reflexivity: = > z for every integer z.
2) Antisymmetry: If z > y and y > = ; then x = y.
3) Transitivity: If z > y and y > z; then z > =z .

These properties all follow from the order axioms for the integers.

Exercise 02

Show that the relation divides defined on N is a partial order relation.

Solution:

1) Reflexivity: We have x divides z, Vx € Z, . Therefore, relation "Divides" is reflexive.

2) Antisymmetry: If z and y are positive integers with = | y and y | x; then x = y.

3) Transitivity: Suppose that x divides y and that y divides z. Then, there are positive
integers k and [ such that y = zk and z = yl, z = x(kl ), so that x divides z.

22



2.2. Binary relation

Hence the relation is transitive. Therefore, the relation divides is a partial order on the

set of positive integers.

Exercise 03

Show that the inclusion relation "C" is a partial order on the power set of a set S.

Solution:

1) Reflexivity: A C A whenever A is a subset of S.

2) Antisymmetry: If A and B are subsets of S, with A C Band B C A ; then A = B.
3) Transitivity: If AC Band BC C ;then AC C' .

The properties all follow from the definition of set inclusion.

Upper Bounds, Lower Bounds, Sup, Inf

Let (X, <) be a partially ordered set, and let A be a subset of X.
Définition 2.2.5 ( upper bound )

u € X is an upper bound or majorant of A if every element of A is less then or equal
to . l.e. u > x for all x € A.

if A has an upper bound, then we say that A is bounded above.
Note that the upper bounds don’t need to belong to the subset).

Example

A =[-1,3][ C R. u =3 is an upper bound of A.(any real number ' > 3 is also an upper
bound of A.

A is bounded above.
2)let A=N={0,1,2,...} .A does not have any upper bound. Then A is not bounded

above.
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2.2. Binary relation

Définition 2.2.6 (lower bound)

[ € X is a lower bound or minorant of A if every element of A is greater then or
equal to [. i.e. [ < x for all x € A.
if A has an lower bound, then we say that A is bounded below.

Note that the lower bounds don’t need to belong to the subset.

Values
Lower —— Upper
Bounds Bounds
Example
A=[-1,3[CR. I =—11is alower bound of A.(any real number I’ < —1 is also a lower

bound of A. (A is bounded below).
(I = —1.5 is a lower bound of A, but [ = —0.5 is NOT a lower bound of A.

Définition 2.2.7 (bounded sets)
we say that A is bounded If it is both bounded above and below.

Examples

1) A=[-1,3[ C R is bounded.
2) The set of natural numbers, i.e. N = {0,1,2,3,...} is a set which is bounded below
(by 0), but not bounded above.(N is not bounded)

3) B={1,-2,7} C Z. Then A is bounded above ( e.g. , by 7,8,10,...) and below (e.g.
,by —2,-3,-8,...)

4) Let C' = {1,2} be a subset of the set of natural numbers N, then 2,3,4,5,.... will
all be upper bounds of C' (C' is bounded above), and 0,1 will be lower bounds of C' (C' is
bounded below). Then we say that C' is bounded.
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2.2. Binary relation

5) Consider D = ]0,1] of R. Any real number greater than or equal to 1 is an upper
bound of D, and any real number less than or equal to 0 is a lower bound of D. (D is

bounded).

Définition 2.2.8 (supremum infimum)

Let X be a partially ordered set, and let A be a subset of X.

1) An element uy € X is a "least upper bound" or "supremum" of A if it is smallest
of all upper bounds u.

If a supremum exists, it is denoted by sup(A).

sup(A) may or may not belongs to set A.

2) An element [y € X is a "greatest lower bound" or infimum of A if it is greatest of
all lower bounds [.
If an infimum exists, it is denoted by inf(A).

inf(A) may or may not belongs to set A.

Remark

If up € A.We say that v is the maximum (greatest element) of A and write
up = max(A) = sup(A).

If Iy € A.We say that [y is the minimum (smallest element) of A and write

lo = min(A) = inf(A).
Example

1) ]0,1] is a subset of R. The set of all upper bounds of A is the set B = [1,4o00],
sup(A) =1. And 1 € A: 1 is the maximum of A. i.e. max(A) = 1.

The set of all lower bounds of A is the set C' = ]—00,0], inf(A) = 0. But min A does not
exists because inf(A) ¢ A.

2) S = {1,2,3,4} C N, then sup(S) = max(S) = 4, because 4 € S and every s € S
satisfies s < 4.

and inf(S) = min(S) = 1.

3)S = [0, 1], then sup(S) = max(S) = 1, and inf(S) = min(S) = 0.
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2.2. Binary relation

Propositions

1)The supremum or infimum of a set A is unique if it exists.

2) If A, B are nonempty sets, then sup(A + B) = sup(A4) & sup(B), inf(4A + B) =
inf(A) £ inf(B).

Exercise

Find the sup, inf, max, and min of the following set.

Solution
We write the first few terms of S:
S= {17 2 37 4’ }
Then sup(A) = 1 belongs to A, so max(A) = sup(A) = 1. On the other hand, inf(A) =0

doesn’t belong to A, (lim, ., % =0). So A has no minimum.
Exercise Let (£, <) be an ordered set, and let A be a subset of E.

Find the sup, inf, max, and min of the following sets, if it exists.
1) E=R, A={0,1,-5,3,5,—2}.

2) E=R, A=[-4,2].

3) E=R, A=]-1,1].

4) E =R, A=]-00,2].

5) E=[-1,1], A= {cos(Z, ne€Z}.
6) E=R, A={2?-1, z € R}.
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2.3. Functions

2.3 Functions

A function f : X — Y is a rule that, for every element x € X, associates an element
f(x) € Y. The element f(x) is sometimes called the image of x, and the subset of Y
consisting of images of elements in X is called the image of f. That is,

image(f) ={y €Y : y= f(z) for some z € X}

Is a function always a relation?

A function is always a relation. A function is a type of relation in which each input has
a unique output, mning an input does not have more than one output.

A relation is not a function if there is more than one output for an input. For example, in
the relation {(1,0),(1,2),(2,3)}, the input of 1 gives two different outputs. So the relation

is not a function.

Définition 2.3.1 (Image, Pre-image, Domain and Range of a Function)

Domain and co-domain: if f is a function from set X to set Y, then X is called

Domain and Y is called co-domain.

D(f) ={x: 2z € A for which f(z) is defined}

Image and Pre-Image: If y € Y is associated with an element x € X, we write it as,
y=f(z)

which is read "y equals f of z".f (x) is known as the image of f at = or value of f at
x. and x is called the pre-image of y .

Range: Range of f is the set of all images of elements of X. Basically Range is subset
of co- domain. (R(f) CY)

R(f)={y:y€eY, y=f(x) forallz € X}.
Examples
y = f(r) = Vx — 1.Then f(z) is defined for z — 1 > 0 i.e. # > 1. Thus,
D(f)={x:x>1} =[1,00[.

R(f)={y:y>0}=10,00[.
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2.3. Functions

DOMAIN CODOMAIN

2.3.1 Properties of Function

Addition and multiplication: let f and g are two functions from X to Y, then f + g
and f - g are defined as:

f+g(x)= f(z) + g(z). (addition)

fg(x) = f(x)g(x). (multiplication)

Equality: If two functions f and g :X — Y have a same domain , then they are said
to be equal iff f(z) = g(x) for every x € X and is written as f = g.

Composition: If f: A — B and g: B — C be any two functions, then the composite
function of f and g, denoted by go f (read as "g of f") is the function go f : A — C and
defined by the equation,

(gof)(x)=g(f(z))

A 4 B 8 C

Figure 2.3.1 : composition of f and g
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2.3. Functions

Example
Let A, B and C denote the sets of real numbers. Suppose f : A — Band g: B — C are
defined by

fl@)=2-1; g(x)=a?
Then,

2.3.2 Direct image, inverse image

Définition 2.3.2 (direct image of a set)

Let f: X — Y and A C X, the direct image of A under the function f written f(A) is
the set

f(A) ={f(z):x € A}
Définition 2.3.3 (Inverse image, pre-image of an element )

Let f: X —Y and b€ Y. Then the inverse image of b under f, f~1(b), is the set

f7H0) = {z € X : f(z) = b}.
Définition 2.3.4 ( Inverse image, pre-image of a subset)

Let f : X — Y is a function where B C Y then the inverse image of B under the

function f is the set:

fYB)={re X : f(x) € B}.

Examples

Let f be as in Figure 2.3.2
Then f({b,c}) = {1,3}, f*(1) = {a,b}, and f~1({1,3}) = {a,b,c,d}.
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2.3. Functions
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Figure 2.3.2 : Picture of f

Exercise
Let £ =10,1] and F = [—1,0] be two intervals of R.
We consider a function f : E — F, defined by f(z) = 2% — 1.

Determine f([0,3]), f~*(—3%), and f~(] 5, 0.

Solution

) £(0,3D = {f) € P e [0.3]}.

ze0,3]=0<2<i=0<2?<1.

— 1< -1< -3
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2.3. Functions

2.3.3 Types of functions: injective, surjective and bijective

Injective function or (one-to-one)

Définition 2.3.5

Let f: X — Y be a function. Then f is injective or "one -to-one" if for all elements
x1 and zoin X | if f(x1) = f(x2), then it must be the case that x; = xs.

This is equivalent to saying if 21 # x5, then f(x1) # f(z2).(contrapositive)

If X and Y are finite sets and f : X — Y isinjective, then | X| < |Y|.

>

HWN -
v
0o ~NOoO~O w

f:A--->B

Figure 2.3.3 : injective

Example
The function f : Z — 7Z defined by f(z) = 2z is injective if :
f(x1) = f(xe) = 221 = 24, dividing both sides by 2 yields x; = .

Surjective function or (onto)

Let f: X — Y be a function. If every element of Y is the image of at least one element of
X. i.e. every element of Y has a pre-image, thenThat is, f(X) =Y.

Symbolically,
Vy € Y, 3z € X such that f(z) =y.

If X and Y are finite sets and f: X — Y is surjective, then |X| > |Y].
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<
=

fiX -5y
Figure 2.3.4 : Surjective

Example: The function f : Z — Z defined by f(x) = 2x is not surjective: there is no

integer x such that f(z) = 3,because

2x = 3 has no solutions in Z. So 3 is not in the image of f.

Bijective "one-to-one and onto"

Let f: X — Y be a function. Then f is bijective or (one-to-one correspondence) if

it is injective and surjective; that is, every element y € Y is the image of exactly one

element 2 € X.

Yy € Y, Az € X such that f(z) =y.

If X and Y are finite sets and f: X — Y is bijective, then | X| = |Y|.

A B
1 D
2 >6
3 7
4 8
f: A--->B
Figure 2.3.5 :
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Exercise

Surjective Function Not a Surjective Function

A B Vv A B X

o oTo

Nt
p-3

\[ 1| b
%

BV

p-d

r

(@)

Figure 2.3.6 : Surjective / Not surjective

Inverse functions
Let f: A — B be a one-to-one correspondence (bijection). Then the inverse function

of f, f!: B — A, associates each element b of B with a unique element a of A such that

f(a) = 0.

7)) =a<+=b= f(a).

The inverse is usually shown by putting a little "—1" after the function name, like this:

.
Définition 2.3.6 (Inverse function)

If f: A— Bandg: B — A are functions, we say ¢ is an inverse to f (and f is an

inverse to ¢) if and only if: fog=1Ig and go f = I4.
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Remark

-1 . 1
- f~!(y) is not ol
_<f_1)_1 fd f

Properties
A function f: A — B has an inverse if and only if it is bijective.
If f: A — B has an inverse function then the inverse is unique.

The inverse of a bijective function is also a bijection.
The composition of two bijections is a bijection.

Example
Let f be the real function f(x) = x?. The function f is not a bijection, so it does not
have an inverse function. However the function
g :10,00[ = [0,00]
2

r— X

is a bijection. In this case, g~'(y) = /¥.

Bijection theorem

f:ICR—-R

If f is continuous and strictly monotonic on I. Then:

1) f:1— J= f(I) is a bijective.

2) f~! is continuous and strictly monotonic on J, with the same direction of variation

as f.

Exercise

1

Let f :]0,00[ — ]0, 1] be the function defined by f(z) = ————.
v +1

27 2

1) Determine f(]2,4]) and f—l(}l ﬁ})
2) Show that the function f is bijective and determine f~*.

Solution
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2.3. Functions

1) * f(12,4]) ={y €]0,1[,z € ]2,4]}.
re]2 4 =2<2<4=V3<Vr+1<+5

1 1

1
= < < . Then f(]2,4]) = | %, 2 1|.
Vi VaFl V3 el
58] = {reloool f@) €42}
1 1 V3 1
f(:)s)E}%,‘/Tﬂﬁ—< < - — <z <3
2 vr+1 2 3
P58 = 8l
2) Show that the function f is bijective and determine f~1.
We show that f is injective and surjective
a) f is injective: if f(z1) = f(x2), then x; = x5 for all x1, 25 € ]0, 0]
1 1
flz1) = fae) = = —> 11 = x3. Then f is injective

\/{lfl—l—l \/1‘2—|—1

b) f is surjective: Yy € |0, 1[, 3z € ]0, 0o[, such that f(z) = y.

1 1 1
y=flzr)=— =V +l=—=—=2a=—-1
vae+1 Y Y

1
Then Vy € ]0,1[, 3z = — 1 € ]0,00[ such that y = f(x), therefore f is surjective.
Yy

f is injective and surjective therefore it is bijective, and

f71:1]0,1[ — ]0, 00[ — defined by f~1(y) = L _1
y2

35



