Sets, Relations, and Functions

2.1 Set Theory

A set is a collection of objects called **elements** or **members**. The elements in a set can be any types of objects. The members of a set do not even have to be of the same type. Set can be finite or infinite.

 $A = \{1, 2, 4, 6, 8, 9\}$. $\mathbb{Z}_+ = \{1, 2, 3, \dots, \}, \dots$

Let $A = \{1, 2, \text{red}\}$. This is read, " A is the set containing the elements 1, 2 and red. We use curly braces " $\{,\}$ " to enclose elements of a set.

Special sets

 \emptyset or {} The empty (or void, or null) set is the set which contains no elements.

U: The **universe** set is the set of all elements.

- N: The set of **natural** numbers. That is, $\mathbb{N} = \{0, 1, 2, 3, ..., \}$.
- Z: The set of **integers**. That is, $\mathbb{Z} = \{., ., ., -2, -1, 0, 1, 2, ., ., .\}$.
- \mathbb{Q} : The set of **rational** numbers, $\mathbb{Q} = \left\{ x \mid x = \frac{a}{b}, (a \in \mathbb{Z}, b \in \mathbb{Z}^*) \right\}$.
- $\mathbb{R}:$ The set of \mathbf{real} numbers.
- \mathbb{C} : The set of **complex** numbers.

 $\rho(A)$: The **power set** of any set A is the set of all subsets of A.

Let $A = \{1, 2\}$. The subsets of A are: $\emptyset, \{1\}, \{2\}$ and $\{1, 2\}$.

Therefore, $\rho(A) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}.$

Set Theory Notation

 $\{,\}:$ set.

 $\in x \in A$: x is an element of the set A or x belongs to A.

- $\notin : x \notin A: x$ is not an element of A.
- $\subset: A \subset B : A$ is a **proper subset** of *B*.
- $\subseteq : A \subseteq B : A$ is a **subset** of B or B is the **superset** of A.
- =: A = B :**Equal** sets.
- $\cap : A \cap B : A$ intersection of B.

 $\cup : A \cup B : A$ union of B.

 $\times : A \times B$ is the **Cartesian product** of A and B.

 $\backslash : A \setminus B$ is the **difference** of A and B.

A: is the **complement** of A.

Cardinality of Sets

A is said to be finite if it has a finite number of elements. The number of elements in a finite set A is called its **cardinality** (or size), and is denoted by |A| or n(A).

Hence, |A| is always non negative. If A is an infinite set, some authors would write $|A| = \infty$.

Examples

Let $A = \{1, 3, 7.8.9\}$. Then |A| = 5. $B = \{1, \{2, 3, 4\}, \emptyset\}$. Then |B| = 3. $C = \mathbb{Z}_+ = \{1, 2, 3, \dots, \}$. Then $|C| = \infty$.

Definition: Subset, proper subset, and Equality

Let A and B be sets.

• A is a subset of B, (denoted $A \subseteq B$), if all elements of A are also elements of B. The relation " \subseteq " is called the inclusion relation.

 $(A \subseteq B) \iff (\forall x \in A \Longrightarrow x \in B).$

• A is a **proper subset** of B (denoted $A \subset B$) if $A \subseteq B$ and $A \neq B$.

• A is equal to B, denoted A = B, if $A \subseteq B$ and $B \subseteq A$.

 $(A = B) \iff (\forall x \in A, x \in B \text{ and } \forall x \in B, x \in A).$

Examples

1) $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R}$ 2) The set $\{1, 2\}$ is a proper subset of the set $\{1, 2, 3\}$. 3) $A = \{2, 3, 4, 5\}$, $B = \{2, 3, 4\}$, $C = \{2, 3, 4, 5\}$. $B \subseteq A$, $B \subset A$ and $C \subseteq A$. 4) $\{1, 2, 7\} \subseteq \{1, 2, 3, 6, 7, 9\}$, but $\{1, 2, 7\} \notin \{1, 2.3.6.8.9\}$.

2.1.1 Operations on sets

Définition 2.1.1 : $A \cap B$

The **intersection** of two sets A and B is the set containing all elements that are in both A and B.

$$A \cap B = \{x \mid x \in A \land x \in B\}.$$
$$(x \in A \cap B) \iff (x \in A \land x \in B)$$
$$(x \notin A \cap B) \iff (x \notin A \lor x \notin B)$$

If $A \cap B = \emptyset$, so A and B are disjoint.

Définition 2.1.2 : $A \cup B$

The **union** of sets A and B is the set containing all elements which are elements of A or B or both.

$$A \cup B = \{x \mid x \in A \lor x \in B\}.$$
$$(x \in A \cup B) \iff (x \in A \lor x \in B).$$
$$(x \notin A \cup B) \iff (x \notin A \land x \notin B).$$

Examples

Let A = {0,1} and B = {1,2,3}.
 What is A ∪ B ?. A ∪ B = {0,1,2,3}.
 What is A ∩ B ?. A ∩ B = {1}.
 A = {x ∈ N |x is odd} and B = {x ∈ N |x is even}. A ∪ B = N, and A ∩ B = Ø.
 Write, in interval notation, [5,8[∪]6,9] and [5,8[∩]6,9].
 [5,8[∪]6,9] = [5,9], and [5,8[∩]6,9] =]6,8[.

Propositions: Let A, B, and C be three sets. We have:

1) $\emptyset \subset A$ and $A \subset A$.	8) $A \cap \emptyset = \emptyset$, and $A \cap A = A$.
2) $A \subset (A \cup B)$ and $B \subset (A \cup B)$.	9) $A \cup (B \cup C) = (A \cup B) \cup C.$
3) $(A \cap B) \subset A$, and $(A \cap B) \subset B$.	10) $A \cap (B \cap C) = (A \cap B) \cap C.$
$4) (A \cap B) \subset (A \cup B).$	11) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

12) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$

5) $A \cup \emptyset = A$, and $A \cup A = A$.

- 6) if $A \subseteq B$, then $A \cup B = B \cup A = B$.
- 7) if $A \subseteq B$, then $A \cap B = B \cap A = A$.

Let A and B be two sets in a univers U.

Définition 2.1.3 : A–B

The set difference A - B, sometimes written as $A \setminus B$ is the set containing all elements of A which are not elements of B.

$$A \setminus B = \{ x \in U \mid x \in A \land x \notin B \}.$$

Définition 2.1.4 : $A \triangle B$

The symmetric difference $A \triangle B$, is defined as :

$$A \triangle B = (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B).$$

Définition 2.1.5 : \overline{A}

The complement of A , denoted by \overline{A} , A^c , $C_U(A)$, is defined as $\overline{A} = U \ \setminus A = \{x \in U \mid x \notin A\}$.

Example

Let $U = \{1, 2, 3, 4, 5\}$, $A = \{1, 2, 3\}$, and $B = \{3, 4\}$. Find $A \cap B$, $A \cup B$, $A \setminus B$, $B \setminus A$, $A \triangle B$, \overline{A} , \overline{B} .

Solution

We have:

$A \cap B = \{3\}.$	$B \setminus A = \{4\}$.
$A \cup B = \{1, 2, 3, 4\}.$	$A riangle B = \{1, 2, 4\}$.
$A \setminus B = \{1, 2\}.$	$\overline{A} = \{4, 5\}$, and $\overline{B} = \{1, 2, 5\}$

Propositions

A \A = Ø, and A \Ø = A.
 A ∪ A = U, and A ∩ A = Ø.
 A → B = A.
 A ∩ B = A ∪ B, and A ∪ B = A ∩ B (De Morgan's laws).
 if A ⊂ B, then B ⊂ A.
 A \B = A ∩ B and (A\B) = A ∪ B.

Exercise

Prove the propositions (4) and (5). We prove that $\overline{A \cap B} = \overline{A} \cup \overline{B}$ Let $x \in \overline{A \cap B} \iff x \notin A \cap B$. $\iff \overline{x \in A \cap B}$. $\iff \overline{x \in A \text{ and } x \in B}$. $\iff \overline{x \in A} \text{ or } \overline{x \in B}$. $\iff x \notin A \text{ or } x \notin B$. $\iff x \in \overline{A} \text{ or } x \in \overline{B}$. $\iff x \in \overline{A} \cup \overline{B}$.

Définition 2.1.6 : $A \times B$

The **Cartesian product** of A and B is the set $A \times B = \{(x, y) | x \in A \land y \in B\}$.

Thus, $A \times B$ (read as "A cross B") contains all the ordered pairs in which the first elements are selected from A, and the second elements are selected from B.

We denoted $A^2 = A \times A$.

Example

1) $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} = \{(x, y) \mid x, y \in \mathbb{R}\}.$ 2) Let $A = \{1, 2\}$, and $B = \{2, 5, 6\}$. Then $A \times B = \{(1, 2), (1, 5), (1, 6), (2, 2), (2, 5), (2, 6)\}.$

2.2 Binary relation

Let X and Y be two sets. A binary relation \Re from X to Y is a subset $\Re \subseteq X \times Y$.

If \Re is a relation between X and Y and $(x, y) \in \Re$, we say x is related to y by \Re . We write $x \Re y$.

If \Re is a relation from X to X, then we say \Re is a relation on set X.

Examples

1) Let $A = \{0, 1, 2\}$ and $B = \{a, c\}$.

 $\{(0, a), (0, c), (1, a), (2, c)\}$ is a binary relation from A to B.

 $\{(0,0), (0,2), (1,2)\}$ is a binary relation on A.

2) We can define a relation \Re on the set of positive integers such that $x \Re y$ if and only if $x \mid y$.

 $(x \Re y \iff x \mid y). \Re = \{(2,4), (3,6), (1,5), (2,8), \dots \}.$

 $3\Re$ 6. But 13 is not related to 6 by \Re .

3) We can define a relation \Re on the set of real numbers such that $a \ \Re b$ if and only if a > b + 1. ($a \ \Re b \iff a > b + 1$).

2 is not related to 3. (2 > 3 + 1) is false.

5 is related to 3. because 5 > 3 + 1.

Définition 2.2.1 : Let \Re be a binary relation on X. We say that \Re is:

1) reflexive if: $\forall x \in X : x \Re x$.

- "=" is reflexive because x = x for any x.
- " \subseteq " is reflexive because $A \subseteq A$ for any set A.
- " \leq " is reflexive, but "< " is not reflexive, because $x \not< x$.

2) symmetric if: $\forall x, y \in X, x \Re y \Longrightarrow y \Re x$.

"=" is symmetric: $x = y \Longrightarrow y = x$ for any x and y.

" \subseteq " is not symmetric) because $A \subseteq B \Rightarrow B \subseteq A$.

3) antisymmetric if: $\forall x, y \in X$, $(x \Re y \text{ and } y \Re x) \Longrightarrow x = y$.

4) **transitive** if : $\forall x, y, z \in X$, $(x \Re y \text{ and } y \Re z) \Longrightarrow x \Re z$.

Exercise 1: Is the relation \Re defined on \mathbb{Z} by:

 $x \Re y \iff x = -y.$

reflexive? Is it symmetric? Is it anti-symmetric? Is it transitive?

Solution

1) \Re is **not reflexive**: If it were, we would have:

 $\forall x \in \mathbb{Z} : x \ \Re \ x.$

i.e.

 $\forall x \in \mathbb{Z} : x = -x.$

But $\exists x = 1 \in \mathbb{Z}$ such that $1 = x, -x = -1.(1 \neq -1)$.

Hence, \Re is not reflexive.

2) \Re is symmetric because for all $x, y \in \mathbb{Z}$:

 $x \Re y \iff x = -y \Longrightarrow y = -x \iff y \Re x.$

3) \Re is not anti-symmetric because: $\exists 1, -1 \in \mathbb{Z} : 1\Re(-1)$ and $(-1)\Re 1$, but $1 \neq -1$.

4) \Re is **not transitive**: For example, $\exists 1, -1 \in \mathbb{Z} : 1\Re(-1)$ and $(-1)\Re 1$, but 1 is not related to 1 by \Re .

Exercise 2

We can define a relation \Re on the set of positive integers such that $x \Re y$ if and only if $x \mid y$. $(x \Re y \iff x \mid y)$.

- This relation is reflexive because $x \mid x$ for all x.
- •" | " is **NOT symmetric** because, $\exists 2, 4 \in \mathbb{Z} : 2 \Re 4$ but 4 is not related to 2 by \Re . (2 | 4, but 4 \not 2)
- This relation is **anti-symmetric** because $x \mid y$ and $y \mid x$ implies that x = y.
- •This relation is **transitive** because $x \mid y$ and $y \mid z$ implies that $x \mid z$.

2.2.1 Equivalence relation

Définition 2.2.2

An equivalence relation is a relation that is reflexive, symmetric and transitive.

Définition 2.2.3 (Equivalence Classes)

Let \Re be an equivalence relation on X. The equivalence class of $x \in X$, denoted by \overline{x} (or $\overset{\bullet}{x}$), is defined by:

$$\overline{x} = \overset{\bullet}{x} = \{ y \in X : x \ \Re \ y \} \,.$$

 \overline{x} is the set of all elements of X that are related to x.

The collection of all equivalent classes of X, denoted by X / \Re is called the quotient of X by \Re , that is,

$$X / \Re = \left\{ \stackrel{\bullet}{x} : x \in X \right\}.$$

Propositions

Let \Re be an equivalence relation on X and let $\overset{\bullet}{x}$ be the equivalent class of $x \in X$. Then:

- (1) $\forall x \in X : x \in \overset{\bullet}{x}.$
- (2) $x \Re y \iff \overset{\bullet}{x} = \overset{\bullet}{y}$.
- (3) If $x \neq y$, then x and y must be disjoint.

Exercise 01

Let \Re be a relations on the set $X = \{4, 5, 6, 7\}$ defined by:

 $\Re = \{(4,4), (5,5), (6,6), (7,7), (4,6), (6,4)\}.$

a) Show that \Re is an Equivalence Relation.

b) Determine its equivalence classes.

Solution

a.1) **Reflexive**: Relation \Re is reflexive as for every $x \in X$. $(x, x) \in \Re$, i.e. (4, 4), (5, 5), (6, 6),and $(7, 7) \in \Re$.

a.2) Symmetric: Relation \Re is symmetric because whenever $(a, b) \in \Re$;

(b, a) also belongs to \Re . Example: $(4, 6) \in \Re \Longrightarrow (6, 4) \in \Re$.

a.3) **Transitive**: Relation \Re is transitive because whenever (x, y) and (y, z) belongs to \Re : (a, c) also belongs to \Re .

Example: $(4, 6) \in \Re$ and $(6, 4) \in \Re \Longrightarrow (4, 4) \in \Re$.

As the relation \Re is reflexive, symmetric and transitive. Hence, \Re is an Equivalence Relation.

- b) The equivalence classes are as follows:
- $\overline{4} = \{4, 6\} = \overline{6}.$ $\overline{5} = \{5\}$
- $\overline{7} = \{7\}.$

Exercise 02

We define on \mathbb{Z} a relation \Re as follows:

$$x \Re y \Longleftrightarrow x = y$$

Show that \Re is an equivalence relation.

Solution

This relation is **reflexive** because $\forall x \in \mathbb{Z} : x = x \Longrightarrow x \Re x$.

2) \Re is symmetric because for all $x, y \in \mathbb{Z}$:

$$x \Re y \iff x = y \Longrightarrow y = x \Longrightarrow y \Re x.$$

3) \Re is **transitive** because for all $x, y, z \in \mathbb{Z}$:

$$\begin{cases} x \Re y \iff x = y \\ \land \qquad \implies x = z \implies x \Re z. \\ y \Re z \iff y = z \end{cases}$$

Thus, \Re is an equivalence relation.

Exercise 03

"divides": $(x \Re y \iff x | y)$ is not an equivalence relation. Because is not symmetric. $\exists 2, 4 \in \mathbb{Z}_+ : 2 \Re 4$ but 4 is not related to 2 by \Re .

Exercise 04

We define on \mathbb{Z} a relation \Re as follows:

 $x \Re y \iff x + y$ is even.

a) Show that \Re is an equivalence relation.

b) What are the equivalence classes of 0 and 1?

Solution

a.1) Let $x \in \mathbb{Z}$. Since x + x = 2x is always even, \Re is reflexive.

a.2) Let $x, y \in \mathbb{Z}$. x + y = y + x, x + y is even if and only if y + x is so. Thus \Re is symmetric.

a.3) The relation \Re is **transitive**. To prove this, let $x, y, z \in \mathbb{Z}$, and assume that $x \Re y$ and $y \Re z$, i.e. x + y and y + z are even. So, there exist $n, m \in \mathbb{Z}$ such that x + y = 2nand y + z = 2m.

Thus, $x + y + y + z = 2n + 2m \Longrightarrow x + z = 2(n + m - y)$ i.e. x + z is even, that is, $x \Re z$. (\Re is transitive).

Therefore \Re is an equivalence relation.

b) equivalence classes of 0 and 1:

 $\overline{0} = \{ y \in \mathbb{Z} : 0 \Re y \} = \{ y \in \mathbb{Z} : 0 + y \text{ is even} \} = \{ 0, \pm 2, \pm 4, \dots \}.$

 $\overline{1} = \{ y \in \mathbb{Z} : 1 \Re y \} = \{ y \in \mathbb{Z} : 1 + y \text{ is even} \} = \{ \pm 1, \pm 3, \pm 5, \dots \}.$

 $\overline{2} = \{y \in \mathbb{Z} : 2 \Re y\} = \{y \in \mathbb{Z} : 2 + y \text{ is even}\} = \{0, \pm 2, \pm 4, \ldots\} . (\overline{0} = \overline{2}, \text{ because } 0 \Re 2.)$

 $\overline{0}$ and $\overline{1}$ are the only equivalence classes with respect to this equivalence relation.

2.2.2 Order relation

Définition 2.2.4 Partial order, total order

A relation \Re on a set X is called a partial order relation if it satisfies the following three properties:

Relation \Re is **Reflexive**, i.e. $\forall x \in X : x \ \Re x$. Relation R is **Antisymmetric**, i.e. $\forall x, y \in X$, $(x \ \Re y \text{ and } y \ \Re x) \Longrightarrow x = y$. Relation R is **transitive**, i.e. $\forall x, y, z \in X$, $(x \ \Re y \text{ and } y \ \Re z) \Longrightarrow x \ \Re z$.

A partial order is said to be a **total** order if for any $x, y \in X$ either $x \Re y$ or $y \Re x$.

A pair (X, \Re) , where \Re is a partial order over X, is called a partial order set or **poset**.

- 1) $(\mathbb{Z}; \leq)$ is a total order set.
- 2) (\mathbb{Z} ; |) is a partial order set but not total order set.

Exercise 01

Show that the "greater than or equal" relation (\geq) is a partial order on the set of integers.

$$(x\Re y \Longleftrightarrow x \ge y)$$

Solution:

- 1) **Reflexivity**: $x \ge x$ for every integer x.
- 2) Antisymmetry: If $x \ge y$ and $y \ge x$; then x = y.
- 3) **Transitivity**: If $x \ge y$ and $y \ge z$; then $x \ge z$.

These properties all follow from the order axioms for the integers.

Exercise 02

Show that the relation **divides** defined on \mathbb{N} is a partial order relation.

Solution:

- 1) **Reflexivity**: We have x divides $x, \forall x \in \mathbb{Z}_+$. Therefore, relation "Divides" is reflexive.
- 2) Antisymmetry: If x and y are positive integers with $x \mid y$ and $y \mid x$; then x = y.

3) **Transitivity**: Suppose that x divides y and that y divides z. Then, there are positive integers k and l such that y = xk and z = yl, z = x(kl), so that x divides z.

Hence the relation is transitive. Therefore, the relation **divides** is a partial order on the set of positive integers.

Exercise 03

Show that the **inclusion** relation " \subseteq " is a partial order on the power set of a set S.

Solution:

- 1) **Reflexivity**: $A \subseteq A$ whenever A is a subset of S.
- 2) Antisymmetry: If A and B are subsets of S, with $A \subseteq B$ and $B \subseteq A$; then A = B.
- 3) **Transitivity**: If $A \subseteq B$ and $B \subseteq C$; then $A \subseteq C$.

The properties all follow from the definition of set inclusion.

Upper Bounds, Lower Bounds, Sup, Inf

Let (X, \leq) be a partially ordered set, and let A be a subset of X.

Définition 2.2.5 (upper bound)

 $u \in X$ is an **upper bound** or **majorant** of A if every element of A is less than or equal to u. i.e. $u \ge x$ for all $x \in A$.

if A has an upper bound, then we say that A is **bounded above**.

Note that the upper bounds don't need to belong to the subset).

Example

 $A = [-1, 3] \subset \mathbb{R}$. u = 3 is an upper bound of A. (any real number $u' \ge 3$ is also an upper bound of A.

A is bounded above.

2) let $A = \mathbb{N} = \{0, 1, 2, ...\}$. A does not have any upper bound. Then A is not bounded above.

Définition 2.2.6 (lower bound)

 $l \in X$ is a **lower bound** or **minorant** of A if every element of A is greater then or equal to l. i.e. $l \leq x$ for all $x \in A$.

if A has an lower bound, then we say that A is **bounded below**.

Note that the lower bounds don't need to belong to the subset.

Example

 $A = [-1, 3] \subset \mathbb{R}$. l = -1 is a lower bound of A. (any real number $l' \leq -1$ is also a lower bound of A. (A is bounded below).

(l = -1.5 is a lower bound of A, but l = -0.5 is NOT a lower bound of A.

Définition 2.2.7 (bounded sets)

we say that A is **bounded** If it is both bounded above and below.

Examples

1) $A = [-1, 3] \subset \mathbb{R}$ is bounded.

2) The set of natural numbers, i.e. $\mathbb{N} = \{0, 1, 2, 3, ...\}$ is a set which is bounded below (by 0), but not bounded above. (\mathbb{N} is not bounded)

3) $B=\{1,-2,7\}\subset\mathbb{Z}.$ Then A is bounded above (e.g. , by 7, 8, 10, ...) and below (e.g. , by $-2,-3,-8,\ldots)$

4) Let $C = \{1, 2\}$ be a subset of the set of natural numbers \mathbb{N} , then 2, 3, 4, 5, will all be upper bounds of C (C is bounded above), and 0, 1 will be lower bounds of C (C is bounded below). Then we say that C is bounded. 5) Consider D = [0, 1] of \mathbb{R} . Any real number greater than or equal to 1 is an upper bound of D, and any real number less than or equal to 0 is a lower bound of D. (D is bounded).

Définition 2.2.8 (supremum infimum)

Let X be a partially ordered set, and let A be a subset of X.

1) An element $u_0 \in X$ is a "least upper bound" or "supremum" of A if it is smallest of all upper bounds u.

If a supremum exists, it is denoted by $\sup(A)$.

 $\sup(A)$ may or may not belongs to set A.

2) An element $l_0 \in X$ is a "greatest lower bound" or **infimum** of A if it is greatest of all lower bounds l.

If an infimum exists, it is denoted by inf(A).

 $\inf(A)$ may or may not belongs to set A.

Remark

If $u_0 \in A$. We say that u_0 is the **maximum** (greatest element) of A and write

$$u_0 = \max(A) = \sup(A).$$

If $l_0 \in A$. We say that l_0 is the **minimum** (smallest element) of A and write

$$l_0 = \min(A) = \inf(A).$$

Example

1)]0,1] is a subset of \mathbb{R} . The set of all upper bounds of A is the set $B = [1, +\infty[, \sup(A) = 1]$. And $1 \in A$: 1 is the maximum of A. *i.e.* $\max(A) = 1$.

The set of all lower bounds of A is the set $C =]-\infty, 0]$, $\inf(A) = 0$. But $\min A$ does not exists because $\inf(A) \notin A$.

2) $S = \{1, 2, 3, 4\} \subset \mathbb{N}$, then $\sup(S) = \max(S) = 4$, because $4 \in S$ and every $s \in S$ satisfies $s \leq 4$.

and $\inf(S) = \min(S) = 1$. 3)S = [0, 1], then $\sup(S) = \max(S) = 1$, and $\inf(S) = \min(S) = 0$.

Propositions

1) The supremum or infimum of a set A is unique if it exists.

2) If A, B are nonempty sets, then $\sup(A \pm B) = \sup(A) \pm \sup(B)$, $\inf(A \pm B) = \inf(A) \pm \inf(B)$.

Exercise

Find the sup, inf, max, and min of the following set.

 $A = \left\{ \tfrac{1}{n}, \ n \in \mathbb{N}^* \right\}$

Solution

We write the first few terms of S:

$$S = \left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\right\}$$

Then $\sup(A) = 1$ belongs to A, so $\max(A) = \sup(A) = 1$. On the other hand, $\inf(A) = 0$ doesn't belong to A, $(\lim_{n\to\infty} \frac{1}{n} = 0)$. So A has no minimum.

Exercise Let (E, \leq) be an ordered set, and let A be a subset of E.

Find the sup, inf, max, and min of the following sets, if it exists.

1)
$$E = \mathbb{R}, A = \{0, 1, -5, 3, 5, -2\}.$$

2) $E = \mathbb{R}, A = [-4, 2[.$
3) $E = \mathbb{R}, A =]-1, 1[.$
4) $E = \mathbb{R}, A =]-\infty, 2[.$
5) $E = [-1, 1], A = \{\cos(\frac{7\pi n}{2}, n \in \mathbb{Z}\}.$
6) $E = \mathbb{R}, A = \{x^2 - 1, x \in \mathbb{R}\}.$

2.3 Functions

A function $f : X \to Y$ is a rule that, for every element $x \in X$, associates an element $f(x) \in Y$. The element f(x) is sometimes called the image of x, and the subset of Y consisting of images of elements in X is called the image of f. That is,

$$image(f) = \{y \in Y : y = f(x) \text{ for some } x \in X\}$$

Is a function always a relation?

A function is always a relation. A function is a type of relation in which each input has a unique output, mning an input does not have more than one output.

A relation is not a function if there is more than one output for an input. For example, in the relation $\{(1,0), (1,2), (2,3)\}$, the input of 1 gives two different outputs. So the relation is not a function.

Définition 2.3.1 (Image, Pre-image, Domain and Range of a Function)

Domain and **co-domain**: if f is a function from set X to set Y, then X is called **Domain** and Y is called **co-domain**.

$$D(f) = \{x : x \in A \text{ for which } f(x) \text{ is defined} \}$$

Image and Pre-Image: If $y \in Y$ is associated with an element $x \in X$, we write it as, y = f(x)

which is read "y equals f of x". f(x) is known as the **image** of f at x or value of f at x. and x is called the pre-image of y.

Range: Range of f is the set of all images of elements of X. Basically Range is subset of co- domain. $(R(f) \subseteq Y)$

$$R(f) = \{y : y \in Y, y = f(x) \text{ for all } x \in X\}.$$

Examples

 $y = f(x) = \sqrt{x-1}$. Then f(x) is defined for $x-1 \ge 0$ i.e. $x \ge 1$. Thus, $D(f) = \{x : x \ge 1\} = [1, \infty[.$

$$R(f) = \{y : y \ge 0\} = [0, \infty[.$$

2.3.1 Properties of Function

Addition and multiplication: let f and g are two functions from X to Y, then f + g and $f \cdot g$ are defined as:

f + g(x) = f(x) + g(x). (addition)

fg(x) = f(x)g(x). (multiplication)

Equality: If two functions f and $g: X \to Y$ have a same domain , then they are said to be equal iff f(x) = g(x) for every $x \in X$ and is written as f = g.

Composition: If $f : A \to B$ and $g : B \to C$ be any two functions, then the composite function of f and g, denoted by $g \circ f$ (read as "g of f") is the function $g \circ f : A \to C$ and defined by the equation,

$$(g \circ f)(x) = g(f(x)).$$

Figure 2.3.1 : composition of f and g

Example

Let A, B and C denote the sets of real numbers. Suppose $f : A \to B$ and $g : B \to C$ are defined by

 $f(x) = x - 1; \quad g(x) = x^2$

Then,

$$(g \circ f)(x) = g(f(x)) = g(x - 1).$$

= $(x - 1)^2$.

2.3.2 Direct image, inverse image

Définition 2.3.2 (direct image of a set)

Let $f: X \to Y$ and $A \subset X$, the direct image of A under the function f written f(A) is the set

$$f(A) = \{f(x) : x \in A\}$$

Définition 2.3.3 (Inverse image, pre-image of an element)

Let $f: X \to Y$ and $b \in Y$. Then the inverse image of b under f, $f^{-1}(b)$, is the set

$$f^{-1}(b) = \{x \in X : f(x) = b\}.$$

Définition 2.3.4 (Inverse image, pre-image of a subset)

Let $f : X \to Y$ is a function where $B \subset Y$ then the inverse image of B under the function f is the set:

$$f^{-1}(B) = \{x \in X : f(x) \in B\}$$

Examples

Let f be as in Figure 2.3.2

Then $f(\{b,c\}) = \{1,3\}, f^{-1}(1) = \{a,b\}, \text{ and } f^{-1}(\{1,3\}) = \{a,b,c,d\}.$

Figure 2.3.2 : Picture of f

Exercise

6

Let E = [0, 1] and F = [-1, 0] be two intervals of \mathbb{R} . We consider a function $f : E \to F$, defined by $f(x) = x^2 - 1$.

Determine $f([0, \frac{1}{2}[), f^{-1}(-\frac{1}{2}), \text{ and } f^{-1}(]\frac{-1}{2}, 0[$. Solution

1)
$$f(\left[0,\frac{1}{2}\right[) = \left\{f(x) \in F, x \in \left[0,\frac{1}{2}\right]\right\}$$
.
 $x \in \left[0,\frac{1}{2}\right[\Longrightarrow 0 \le x < \frac{1}{2} \Longrightarrow 0 \le x^2 < \frac{1}{4}$

$$\implies -1 \le x^2 - 1 < -\frac{3}{4}.$$

$$f(\left[0, \frac{1}{2}\right]) = \left[-1, -\frac{3}{4}\right].$$

$$2) \ f^{-1}(-\frac{1}{2}) = \left\{x \in [0, 1], f(x) = -\frac{1}{2}\right\}.$$

$$f(x) = -\frac{1}{2} \implies x^2 - 1 = -\frac{1}{2} \implies x^2 = \frac{1}{2}.$$

 $\implies x = \frac{1}{\sqrt{2}} (\text{because } x \text{ is a positive number}).$ $f^{-1}(-\frac{1}{2}) = \frac{1}{\sqrt{2}}.$ 3) $f^{-1}(\left]\frac{-1}{2}, 0\right[= \left\{x \in [0,1], f(x) \in \left]-\frac{1}{2}, 0\right[\right\}.$ $f(x) \in \left]-\frac{1}{2}, 0\right[\implies -\frac{1}{2} < x^2 - 1 < 0 \implies \frac{1}{2} < x^2 < 1.$

$$\implies \frac{1}{\sqrt{2}} < |x| < 1 \implies \begin{cases} \frac{1}{\sqrt{2}} < x < 1\\ -1 < x < -\frac{1}{\sqrt{2}} \end{cases}$$
But $x \in [0,1]$, then $f^{-1}(\left\lfloor \frac{-1}{2}, 0\right\rfloor = \left\lfloor \frac{1}{\sqrt{2}}, 1\right\rfloor$.

2.3.3 Types of functions: injective, surjective and bijective

Injective function or (one-to-one)

Définition 2.3.5

Let $f: X \to Y$ be a function. Then f is **injective** or "**one -to-one**" if for all elements x_1 and x_2 in X, if $f(x_1) = f(x_2)$, then it must be the case that $x_1 = x_2$.

This is equivalent to saying if $x_1 \neq x_2$, then $f(x_1) \neq f(x_2)$.(contrapositive) If X and Y are finite sets and $f: X \to Y$ is injective, then $|X| \leq |Y|$.

Figure 2.3.3 : injective

Example

The function $f : \mathbb{Z} \to \mathbb{Z}$ defined by f(x) = 2x is injective if : $f(x_1) = f(x_2) \Longrightarrow 2x_1 = 2x_2$, dividing both sides by 2 yields $x_1 = x_2$.

Surjective function or (onto)

Let $f: X \to Y$ be a function. If every element of Y is the image of at least one element of X. i.e. every element of Y has a pre-image, then That is, f(X) = Y. Symbolically,

$$\forall y \in Y, \exists x \in X \text{ such that } f(x) = y.$$

If X and Y are finite sets and $f: X \to Y$ is surjective, then $|X| \ge |Y|$.

Figure 2.3.4 : Surjective

Example: The function $f : \mathbb{Z} \to \mathbb{Z}$ defined by f(x) = 2x is not surjective: there is no integer x such that f(x) = 3, because

2x = 3 has no solutions in \mathbb{Z} . So 3 is not in the image of f.

Bijective "one-to-one and onto"

Let $f : X \to Y$ be a function. Then f is **bijective** or (**one-to-one correspondence**) if it is **injective** and **surjective**; that is, every element $y \in Y$ is the image of exactly one element $x \in X$.

$$\forall y \in Y, \exists x \in X \text{ such that } f(x) = y$$

If X and Y are finite sets and $f: X \to Y$ is **bijective**, then |X| = |Y|.

Exercise

Figure 2.3.6 : Surjective / Not surjective

Inverse functions

Let $f : A \to B$ be a one-to-one correspondence (bijection). Then the **inverse function** of f, $f^{-1} : B \to A$, associates each element b of B with a unique element a of A such that f(a) = b.

$$f^{-1}(b) = a \Longleftrightarrow b = f(a)$$

The inverse is usually shown by putting a little "-1" after the function name, like this: f^{-1} .

Définition 2.3.6 (Inverse function)

If $f : A \to B$ and $g : B \to A$ are functions, we say g is an inverse to f (and f is an inverse to g) if and only if: $f \circ g = I_B$ and $g \circ f = I_A$.

Remark

-
$$f^{-1}(y)$$
 is not $\frac{1}{f(y)}$
- $(f^{-1)-1} = f$

Properties

A function $f : A \to B$ has an inverse if and only if it is bijective. If $f : A \to B$ has an inverse function then the inverse is unique. The inverse of a bijective function is also a bijection.

The composition of two bijections is a bijection.

Example

Let f be the real function $f(x) = x^2$. The function f is not a bijection, so it does not have an inverse function. However the function

$$g: [0, \infty[\to [0, \infty[$$
$$x \mapsto x^2$$

is a bijection. In this case, $g^{-1}(y) = \sqrt{y}$.

Bijection theorem

$$f:I\subset\mathbb{R}\to\mathbb{R}$$

If f is continuous and strictly monotonic on I. Then:

1) $f: I \to J = f(I)$ is a bijective.

2) f^{-1} is continuous and strictly monotonic on J, with the same direction of variation as f.

Exercise

Let $f: [0, \infty[\rightarrow]0, 1[$ be the function defined by $f(x) = \frac{1}{\sqrt{x+1}}$.

1) Determine f(]2,4]) and $f^{-1}(\left]\frac{1}{2},\frac{\sqrt{3}}{2}\right]$).

2) Show that the function f is bijective and determine f^{-1} .

Solution

1) * $f(]2,4]) = \{y \in]0,1[,x \in]2,4]\}.$ $x \in]2,4] \Longrightarrow 2 < x \le 4 \Longrightarrow \sqrt{3} < \sqrt{x+1} \le \sqrt{5}$

$$\implies \frac{1}{\sqrt{5}} \le \frac{1}{\sqrt{x+1}} < \frac{1}{\sqrt{3}}. \text{ Then } f(]2,4]) = \left[\frac{1}{\sqrt{5}}, \frac{1}{\sqrt{3}}\right].$$
* $f^{-1}(\left]\frac{1}{2}, \frac{\sqrt{3}}{2}\right]) = \left\{x \in \left]0, \infty\right[, f(x) \in \left]\frac{1}{2}, \frac{\sqrt{3}}{2}\right]\right\}$

$$f(x) \in \left[\frac{1}{2}, \frac{\sqrt{3}}{2}\right] \Longrightarrow \frac{1}{2} < \frac{1}{\sqrt{x+1}} \le \frac{\sqrt{3}}{2} \Longrightarrow \frac{1}{3} \le x < 3.$$
$$f^{-1}\left(\left[\frac{1}{2}, \frac{\sqrt{3}}{2}\right]\right) = \left[\frac{1}{3}, 3\right[.$$

2) Show that the function f is bijective and determine f^{-1} .

We show that f is injective and surjective

>

a) f is injective: if $f(x_1) = f(x_2)$, then $x_1 = x_2$ for all $x_1, x_2 \in [0, \infty[$

$$f(x_1) = f(x_2) \Longrightarrow \frac{1}{\sqrt{x_1 + 1}} = \frac{1}{\sqrt{x_2 + 1}} \Longrightarrow x_1 = x_2$$
. Then f is injective

b) f is surjective: $\forall y \in [0, 1[, \exists x \in]0, \infty[$, such that f(x) = y.

$$y = f(x) = \frac{1}{\sqrt{x+1}} \Longrightarrow \sqrt{x+1} = \frac{1}{y} \Longrightarrow x = \frac{1}{y^2} - 1$$

Then $\forall y \in [0,1[, \exists x = \frac{1}{y^2} - 1 \in]0, \infty[$ such that y = f(x), therefore f is surjective. f is injective and surjective therefore it is bijective, and

$$f^{-1}: [0,1[\to]0,\infty[\to \text{defined by } f^{-1}(y) = \frac{1}{y^2} - 1.$$