Sets, Relations, and Functions

2.1 Set Theory

A set is a collection of objects called elements or members. The elements in a set can be any types of objects. The members of a set do not even have to be of the same type. Set can be finite or infinite.

$$
A=\{1,2,4,6,8,9\} \cdot \mathbb{Z}_{+}=\{1,2,3, \ldots \ldots \ldots\}, \ldots \ldots
$$

Let $A=\{1,2$, red $\}$. This is read, " A is the set containing the elements 1,2 and red. We use curly braces " $\{$,$\} " to enclose elements of a set.$

Special sets

\emptyset or $\}$ The empty (or void, or null) set is the set which contains no elements.
U : The universe set is the set of all elements.
\mathbb{N} : The set of natural numbers. That is, $\mathbb{N}=\{0,1,2,3,,,$,$\} .$
\mathbb{Z} : The set of integers. That is, $\mathbb{Z}=\{., ., .,-2,-1,0,1,2, ., .,$.$\} .$
\mathbb{Q} : The set of rational numbers, $\mathbb{Q}=\left\{x \left\lvert\, x=\frac{a}{b}\right.,\left(a \in \mathbb{Z}, b \in \mathbb{Z}^{*}\right)\right\}$.
\mathbb{R} : The set of real numbers.
\mathbb{C} : The set of complex numbers.
$\rho(A)$: The power set of any set A is the set of all subsets of A.
Let $A=\{1,2\}$. The subsets of A are: $\emptyset,\{1\},\{2\}$ and $\{1,2\}$.
Therefore, $\rho(A)=\{\emptyset,\{1\},\{2\},\{1,2\}\}$.

Set Theory Notation

$\{$,$\} : set.$
$\in: x \in A: x$ is an element of the set A or x belongs to A.
$\notin: x \notin A: x$ is not an element of A.
$\subset: A \subset B: A$ is a proper subset of B.
$\subseteq: A \subseteq B: A$ is a subset of B or B is the superset of A.
$=: A=B$: Equal sets.
$\cap: A \cap B: A$ intersection of B.
$\cup: A \cup B: A$ union of B.
$\times: A \times B$ is the Cartesian product of A and B.
$\backslash: A \backslash B$ is the difference of A and B.
\bar{A} : is the complement of A.

Cardinality of Sets

A is said to be finite if it has a finite number of elements. The number of elements in a finite set A is called its cardinality (or size), and is denoted by $|A|$ or $n(A)$.

Hence, $|A|$ is always non negative. If A is an infinite set, some authors would write $|A|=\infty$.

Examples

Let $A=\{1,3,7.8 .9\}$. Then $|A|=5$.
$B=\{1,\{2,3,4\}, \emptyset\}$. Then $|B|=3$.
$C=\mathbb{Z}_{+}=\{1,2,3, \ldots \ldots \ldots$.$\} . Then |C|=\infty$.

Definition: Subset, proper subset, and Equality

Let A and B be sets.

- A is a subset of B, (denoted $A \subseteq B$), if all elements of A are also elements of B. The relation " \subseteq " is called the inclusion relation.
$(A \subseteq B) \Longleftrightarrow(\forall x \in A \Longrightarrow x \in B)$.
- A is a proper subset of $B(\operatorname{denoted} A \subset B)$ if $A \subseteq B$ and $A \neq B$.
- A is equal to B, denoted $A=B$, if $A \subseteq B$ and $B \subseteq A$.
$(A=B) \Longleftrightarrow(\forall x \in A, x \in B$ and $\forall x \in B, x \in A)$.

Examples

1) $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R}$
2) The set $\{1,2\}$ is a proper subset of the set $\{1,2,3\}$.
3) $A=\{2,3,4,5\}, B=\{2,3,4\}, C=\{2,3,4,5\}$.
$B \subseteq A, B \subset A$ and $C \subseteq A$.
4) $\{1,2,7\} \subseteq\{1,2,3,6,7,9\}$, but $\{1,2,7\} \nsubseteq\{1,2.3 .6 .8 .9\}$.

2.1.1 Operations on sets

Définition 2.1.1 : $A \cap B$

The intersection of two sets A and B is the set containing all elements that are in both A and B.

$$
\begin{aligned}
& A \cap B=\{x \mid x \in A \wedge x \in B\} \\
& (x \in A \cap B) \Longleftrightarrow(x \in A \wedge x \in B) . \\
& (x \notin A \cap B) \Longleftrightarrow(x \notin A \vee x \notin B) .
\end{aligned}
$$

If $A \cap B=\emptyset$, so A and B are disjoint.

Définition 2.1.2 : $A \cup B$

The union of sets A and B is the set containing all elements which are elements of A or B or both.

$$
\begin{aligned}
& A \cup B=\{x \mid x \in A \vee x \in B\} \\
& (x \in A \cup B) \Longleftrightarrow(x \in A \vee x \in B) \\
& (x \notin A \cup B) \Longleftrightarrow(x \notin A \wedge x \notin B)
\end{aligned}
$$

Examples

1) Let $A=\{0,1\}$ and $B=\{1,2,3\}$.

- What is $A \cup B ? . A \cup B=\{0,1,2,3\}$.
- What is $A \cap B$?. $A \cap B=\{1\}$.

2) $A=\{x \in \mathbb{N} \mid x$ is odd $\}$ and $B=\{x \in \mathbb{N} \mid x$ is even $\}$. $A \cup B=\mathbb{N}$, and $A \cap B=\emptyset$.
3)Write, in interval notation, $[5,8[\cup] 6,9]$ and $[5,8[\cap] 6,9]$.
$[5,8[\cup] 6,9]=[5,9]$, and $[5,8[\cap] 6,9]=] 6,8[$.

Propositions: Let A, B, and C be three sets. We have:

1) $\emptyset \subset A$ and $A \subset A$.
2) $A \subset(A \cup B)$ and $B \subset(A \cup B)$.
3) $(A \cap B) \subset A$, and $(A \cap B) \subset B$.
4) $(A \cap B) \subset(A \cup B)$.
5) $A \cap \emptyset=\emptyset$, and $A \cap A=A$.
6) $A \cup(B \cup C)=(A \cup B) \cup C$.
7) $A \cap(B \cap C)=(A \cap B) \cap C$.
8) $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$.
9) $A \cup \emptyset=A$, and $A \cup A=A$.
10) $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.
11) if $A \subseteq B$, then $A \cup B=B \cup A=B$.
12) if $A \subseteq B$, then $A \cap B=B \cap A=A$.

Let A and B be two sets in a univers U.

Définition 2.1.3 : A-B

The set difference $A-B$, sometimes written as $A \backslash B$ is the set containing all elements of A which are not elements of B.

$$
A \backslash B=\{x \in U \mid x \in A \wedge x \notin B\}
$$

Définition 2.1.4 : $A \triangle B$

The symmetric difference $A \triangle B$, is defined as :

$$
A \triangle B=(A \backslash B) \cup(B \backslash A)=(A \cup B) \backslash(A \cap B)
$$

Définition 2.1.5: \bar{A}

The complement of A, denoted by $\bar{A}, A^{c}, C_{U}(A)$, is defined as $\bar{A}=U \backslash A=\{x \in U \mid x \notin A\}$.

Example

Let $U=\{1,2,3,4,5\}, A=\{1,2,3\}$, and $B=\{3,4\}$.
Find $A \cap B, A \cup B, A \backslash B, B \backslash A, A \triangle B, \bar{A}, \bar{B}$.

Solution

We have:

$$
\begin{array}{ll}
A \cap B=\{3\} . & B \backslash A=\{4\} . \\
A \cup B=\{1,2,3,4\} . & A \triangle B=\{1,2,4\} . \\
A \backslash B=\{1,2\} . & \bar{A}=\{4,5\}, \text { and } \bar{B}=\{1,2,5\} .
\end{array}
$$

Propositions

1) $A \backslash A=\emptyset$, and $A \backslash \emptyset=A$.
2) $A \cup \bar{A}=U$, and $A \cap \bar{A}=\emptyset$.
3) $\overline{\bar{A}}=A$.
4) $\overline{A \cap B}=\bar{A} \cup \bar{B}$, and $\overline{A \cup B}=\bar{A} \cap \bar{B}$ (De Morgan's laws).
5) if $A \subset B$, then $\bar{B} \subset \bar{A}$.
6) $A \backslash B=A \cap \bar{B}$ and $\overline{(A \backslash B)}=\bar{A} \cup B$.

Exercise

Prove the propositions (4) and (5).
We prove that $\overline{A \cap B}=\bar{A} \cup \bar{B}$

$$
\text { Let } \begin{aligned}
x \in \overline{A \cap B} & \Longleftrightarrow x \notin A \cap B \\
& \Longleftrightarrow \overline{x \in A \cap B} . \\
& \Longleftrightarrow \overline{x \in A \text { and } x \in B} \\
& \Longleftrightarrow \overline{x \in A} \text { or } \overline{x \in B} . \\
& \Longleftrightarrow x \notin A \text { or } x \notin B . \\
& \Longleftrightarrow x \in \bar{A} \text { or } x \in \bar{B} \\
& \Longleftrightarrow x \in \bar{A} \cup \bar{B} .
\end{aligned}
$$

Définition 2.1.6 : $A \times B$

The Cartesian product of A and B is the set $A \times B=\{(x, y) \mid x \in A \wedge y \in B\}$.
Thus, $A \times B(\operatorname{read}$ as $" A$ cross B ") contains all the ordered pairs in which the first elements are selected from A, and the second elements are selected from B.

We denoted $A^{2}=A \times A$.

Example

1) $\mathbb{R}^{2}=\mathbb{R} \times \mathbb{R}=\{(x, y) \mid x, y \in \mathbb{R}\}$.
2) Let $A=\{1,2\}$, and $B=\{2,5,6\}$. Then $A \times B=\{(1,2),(1,5),(1,6),(2,2),(2,5),(2,6)\}$.

2.2 Binary relation

Let X and Y be two sets. A binary relation \Re from X to Y is a subset $\Re \subseteq X \times Y$.
If \Re is a relation between X and Y and $(x, y) \in \Re$, we say x is related to y by \Re. We write $x \Re y$.

If \Re is a relation from X to X, then we say \Re is a relation on set X.

Examples

1) Let $A=\{0,1,2\}$ and $B=\{a, c\}$.
$\{(0, a),(0, c),(1, a),(2, c)\}$ is a binary relation frome A to B.
$\{(0,0),(0,2),(1,2)\}$ is a binary relation on A.
2) We can define a relation \Re on the set of positive integers such that $x \Re y$ if and only if $x \mid y$.
$(x \Re y \Longleftrightarrow x \mid y) . \Re=\{(2,4),(3,6),(1,5),(2,8), \ldots \ldots \ldots \ldots\}$.
$3 \Re 6$. But 13 is not related to 6 by \Re.
3) We can define a relation \Re on the set of real numbers such that $a \Re b$ if and only if $a>b+1 .(a \Re b \Longleftrightarrow a>b+1)$.

2 is not related to $3 .(2>3+1)$ is false.
5 is related to 3 . because $5>3+1$.

Définition 2.2.1 : Let \Re be a binary relation on X. We say that \Re is:

1) reflexive if: $\forall x \in X: x \Re x$.

- " $=$ " is reflexive because $x=x$ for any x.
- " \subseteq " is reflexive because $A \subseteq A$ for any set A.
$\bullet " \leq "$ is reflexive, but " $<$ " is not reflexive, because $x \nless x$.

2) symmetric if: $\forall x, y \in X, x \Re y \Longrightarrow y \Re x$.
" $=$ " is symmetric: $x=y \Longrightarrow y=x$ for any x and y.
" \subseteq " is not symmetric) because $A \subseteq B \nRightarrow B \subseteq A$.
3) antisymmetric if: $\forall x, y \in X,(x \Re y$ and $y \Re x) \Longrightarrow x=y$.
4) transitive if : $\forall x, y, z \in X,(x \Re y$ and $y \Re z) \Longrightarrow x \Re z$.

Exercise 1: Is the relation \Re defined on \mathbb{Z} by:

$$
x \Re y \Longleftrightarrow x=-y .
$$

reflexive? Is it symmetric? Is it anti-symmetric? Is it transitive?

Solution

1) \Re is not reflexive: If it were, we would have:

$$
\forall x \in \mathbb{Z}: x \Re x .
$$

i.e.

$$
\forall x \in \mathbb{Z}: x=-x
$$

But $\exists x=1 \in \mathbb{Z}$ such that $1=x,-x=-1 .(1 \neq-1)$.
Hence, \Re is not reflexive.
2) \Re is symmetric because for all $x, y \in \mathbb{Z}$:
$x \Re y \Longleftrightarrow x=-y \Longrightarrow y=-x \Longleftrightarrow y \Re x$.
3) \Re is not anti-symmetric because: $\exists 1,-1 \in \mathbb{Z}: 1 \Re(-1)$ and $(-1) \Re 1$, but $1 \neq-1$.
4) \Re is not transitive: For example, $\exists 1,-1 \in \mathbb{Z}: 1 \Re(-1)$ and $(-1) \Re 1$, but 1 is not related to 1 by \Re.

Exercise 2

We can define a relation \Re on the set of positive integers such that $x \Re y$ if and only if $x \mid y .(x \Re y \Longleftrightarrow x \mid y)$.

- This relation is reflexive because $x \mid x$ for all x.
$\bullet " \mid "$ is NOT symmetric because, $\exists 2,4 \in \mathbb{Z}: 2 \Re 4$ but 4 is not related to 2 by \Re.
($2 \mid 4$, but $4 \nmid 2$)
-This relation is anti-symmetric because $x \mid y$ and $y \mid x$ implies that $x=y$.
\bullet This relation is transitive because $x \mid y$ and $y \mid z$ implies that $x \mid z$.

2.2.1 Equivalence relation

Définition 2.2.2

An equivalence relation is a relation that is reflexive, symmetric and transitive.

Définition 2.2.3 (Equivalence Classes)

Let \Re be an equivalence relation on X. The equivalence class of $x \in X$, denoted by \bar{x} (or \dot{x}), is defined by:

$$
\bar{x}=\dot{x}=\{y \in X: x \Re y\} .
$$

\bar{x} is the set of all elements of X that are related to x.
The collection of all equivalent classes of X, denoted by X / \Re is called the quotient of X by \Re, that is,

$$
X / \Re=\{\dot{x}: x \in X\} .
$$

Propositions

Let \Re be an equivalence relation on X and let \dot{x} be the equivalent class of $x \in X$. Then:
(1) $\forall x \in X: x \in \dot{\dot{x}}$.
(2) $x \Re y \Longleftrightarrow \dot{x}=\dot{y}$.
(3) If $\dot{x} \neq \dot{y}$, then \dot{x} and \dot{y} must be disjoint.

Exercise 01

Let \Re be a relations on the set $X=\{4,5,6,7\}$ defined by:
$\Re=\{(4,4),(5,5),(6,6),(7,7),(4,6),(6,4)\}$.
a) Show that \Re is an Equivalence Relation.
b) Determine its equivalence classes.

Solution

a.1) Reflexive: Relation \Re is reflexive as for every $x \in X .(x, x) \in \Re$, i.e. $(4,4),(5,5),(6,6)$, and $(7,7) \in \Re$.
a.2) Symmetric: Relation \Re is symmetric because whenever $(a, b) \in \Re$;
(b, a) also belongs to \Re. Example: $(4,6) \in \Re \Longrightarrow(6,4) \in \Re$.
a.3) Transitive: Relation \Re is transitive because whenever (x, y) and (y, z) belongs to $\Re:(a, c)$ also belongs to \Re.

Example: $(4,6) \in \Re$ and $(6,4) \in \Re \Longrightarrow(4,4) \in \Re$.
As the relation \Re is reflexive, symmetric and transitive. Hence, \Re is an Equivalence Relation.
b) The equivalence classes are as follows:
$\overline{4}=\{4,6\}=\overline{6}$.
$\overline{5}=\{5\}$
$\overline{7}=\{7\}$.

Exercise 02

We define on \mathbb{Z} a relation \Re as follows:

$$
x \Re y \Longleftrightarrow x=y
$$

Show that \Re is an equivalence relation.

Solution

This relation is reflexive because $\forall x \in \mathbb{Z}: x=x \Longrightarrow x \Re x$.
2) \Re is symmetric because for all $x, y \in \mathbb{Z}$:

$$
x \Re y \Longleftrightarrow x=y \Longrightarrow y=x \Longrightarrow y \Re x .
$$

3) \Re is transitive because for all $x, y, z \in \mathbb{Z}$:

$$
\left\{\begin{array}{rl}
x \Re y & \Longleftrightarrow x=y \\
& \wedge \\
y \Re z \Longleftrightarrow y=z
\end{array} \Longrightarrow x=z \Longrightarrow x \Re z .\right.
$$

Thus, \Re is an equivalence relation.

Exercise 03

"divides": $(x \Re y \Longleftrightarrow x \mid y)$ is not an equivalence relation. Because is not symmetric. $\exists 2,4 \in \mathbb{Z}_{+}: 2 \Re 4$ but 4 is not related to 2 by \Re.

Exercise 04

We define on \mathbb{Z} a relation \Re as follows:

$$
x \Re y \Longleftrightarrow x+y \text { is even. }
$$

a) Show that \Re is an equivalence relation.
b) What are the equivalence classes of 0 and 1 ?

Solution

a.1) Let $x \in \mathbb{Z}$. Since $x+x=2 x$ is always even, \Re is reflexive.
a.2) Let $x, y \in \mathbb{Z} . x+y=y+x, x+y$ is even if and only if $y+x$ is so. Thus \Re is symmetric.
a.3) The relation \Re is transitive. To prove this, let $x, y, z \in \mathbb{Z}$, and assume that $x \Re y$ and $y \Re z$, i.e. $x+y$ and $y+z$ are even. So, there exist $n, m \in \mathbb{Z}$ such that $x+y=2 n$ and $y+z=2 m$.

Thus, $x+y+y+z=2 n+2 m \Longrightarrow x+z=2(n+m-y)$
i.e. $x+z$ is even, that is, $x \Re z$. (\Re is transitive).

Therefore \Re is is an equivalence relation.
b) equivalence classes of 0 and 1 :
$\overline{0}=\{y \in \mathbb{Z}: 0 \Re y\}=\{y \in \mathbb{Z}: 0+y$ is even $\}=\{0, \pm 2, \pm 4, \ldots\}$.
$\overline{1}=\{y \in \mathbb{Z}: 1 \Re y\}=\{y \in \mathbb{Z}: 1+y$ is even $\}=\{ \pm 1, \pm 3, \pm 5, \ldots\}$.
$\overline{2}=\{y \in \mathbb{Z}: 2 \Re y\}=\{y \in \mathbb{Z}: 2+y$ is even $\}=\{0, \pm 2, \pm 4, \ldots\} .(\overline{0}=\overline{2}$, because $0 \Re 2$.)
$\overline{0}$ and $\overline{1}$ are the only equivalence classes withe respecte to this equivalence relation.

2.2.2 Order relation

Définition 2.2.4 Partial order, total order

A relation \Re on a set X is called a partial order relation if it satisfies the following three properties:

Relation \Re is Reflexive, i.e. $\forall x \in X: x \Re x$.
Relation R is Antisymmetric, i.e. $\forall x, y \in X,(x \Re y$ and $y \Re x) \Longrightarrow x=y$.
Relation R is transitive, i.e. $\forall x, y, z \in X,(x \Re y$ and $y \Re z) \Longrightarrow x \Re z$.

A partial order is said to be a total order if for any $x, y \in X$ either $x \Re y$ or $y \Re x$.
A pair (X, \Re), where \Re is a partial order over X, is called a partial order set or poset.

1) $(\mathbb{Z} ; \leq)$ is a total order set.
2) $(\mathbb{Z} ; \mid)$ is a partial ordere set but not total order set.

Exercise 01

Show that the "greater than or equal" relation (\geq) is a partial order on the set of integers.

$$
(x \Re y \Longleftrightarrow x \geq y)
$$

Solution:

1) Reflexivity: $x \geq x$ for every integer x.
2) Antisymmetry: If $x \geq y$ and $y \geq x$; then $x=y$.
3) Transitivity: If $x \geq y$ and $y \geq z$; then $x \geq z$.

These properties all follow from the order axioms for the integers.

Exercise 02

Show that the relation divides defined on \mathbb{N} is a partial order relation.

Solution:

1) Reflexivity: We have x divides $x, \forall x \in \mathbb{Z}_{+}$. Therefore, relation "Divides" is reflexive.
2) Antisymmetry: If x and y are positive integers with $x \mid y$ and $y \mid x$; then $x=y$.
3) Transitivity: Suppose that x divides y and that y divides z. Then, there are positive integers k and l such that $y=x k$ and $z=y l, z=x(k l)$, so that x divides z.

Hence the relation is transitive. Therefore, the relation divides is a partial order on the set of positive integers.

Exercise 03

Show that the inclusion relation " \subseteq " is a partial order on the power set of a set S.

Solution:

1) Reflexivity: $A \subseteq A$ whenever A is a subset of S.
2) Antisymmetry: If A and B are subsets of S, with $A \subseteq B$ and $B \subseteq A$; then $A=B$.
3) Transitivity: If $A \subseteq B$ and $B \subseteq C$; then $A \subseteq C$.

The properties all follow from the definition of set inclusion.

Upper Bounds, Lower Bounds, Sup, Inf

Let (X, \leq) be a partially ordered set, and let A be a subset of X.

Définition 2.2.5 (upper bound)
$u \in X$ is an upper bound or majorant of A if every element of A is less then or equal to u. i.e. $u \geq x$ for all $x \in A$.
if A has an upper bound, then we say that A is bounded above.

Note that the upper bounds don't need to belong to the subset).

Example

$A=\left[-1,3\left[\subset \mathbb{R} . u=3\right.\right.$ is an upper bound of A.(any real number $u^{\prime} \geq 3$ is also an upper bound of A.
A is bounded above.
2) let $A=\mathbb{N}=\{0,1,2, \ldots\}$. A does not have any upper bound. Then A is not bounded above.

Définition 2.2.6 (lower bound)

$l \in X$ is a lower bound or minorant of A if every element of A is greater then or equal to l. i.e. $l \leq x$ for all $x \in A$.
if A has an lower bound, then we say that A is bounded below.
Note that the lower bounds don't need to belong to the subset.

Example

$A=\left[-1,3\left[\subset \mathbb{R} . l=-1\right.\right.$ is a lower bound of A.(any real number $l^{\prime} \leq-1$ is also a lower bound of A. (A is bounded below).
($l=-1.5$ is a lower bound of A, but $l=-0.5$ is NOT a lower bound of A.

Définition 2.2.7 (bounded sets)
we say that A is bounded If it is both bounded above and below.

Examples

1) $A=[-1,3[\subset \mathbb{R}$ is bounded.
2) The set of natural numbers, i.e. $\mathbb{N}=\{0,1,2,3, \ldots\}$ is a set which is bounded below (by 0), but not bounded above.(\mathbb{N} is not bounded)
3) $B=\{1,-2,7\} \subset \mathbb{Z}$. Then A is bounded above (e.g., by $7,8,10, \ldots$) and below (e.g. ,by $-2,-3,-8, \ldots$)
4) Let $C=\{1,2\}$ be a subset of the set of natural numbers \mathbb{N}, then $2,3,4,5, \ldots$ will all be upper bounds of C (C is bounded above), and 0,1 will be lower bounds of C (C is bounded below). Then we say that C is bounded.
5) Consider $D=] 0,1]$ of \mathbb{R}. Any real number greater than or equal to 1 is an upper bound of D, and any real number less than or equal to 0 is a lower bound of D. (D is bounded).

Définition 2.2.8 (supremum infimum)

Let X be a partially ordered set, and let A be a subset of X.

1) An element $u_{0} \in X$ is a "least upper bound" or "supremum" of A if it is smallest of all upper bounds u.

If a supremum exists, it is denoted by $\sup (A)$.
$\sup (A)$ may or may not belongs to set A.
2) An element $l_{0} \in X$ is a "greatest lower bound" or infimum of A if it is greatest of all lower bounds l.

If an infimum exists, it is denoted by $\inf (A)$.
$\inf (A)$ may or may not belongs to set A.

Remark

If $u_{0} \in A$. We say that u_{0} is the maximum (greatest element) of A and write

$$
u_{0}=\max (A)=\sup (A)
$$

If $l_{0} \in A$.We say that l_{0} is the minimum (smallest element) of A and write

$$
l_{0}=\min (A)=\inf (A)
$$

Example

1) $] 0,1]$ is a subset of \mathbb{R}. The set of all upper bounds of A is the set $B=[1,+\infty[$, $\sup (A)=1$. And $1 \in A: 1$ is the maximum of A. i.e. $\max (A)=1$.

The set of all lower bounds of A is the set $C=]-\infty, 0], \inf (A)=0$. But min A does not exists because $\inf (A) \notin A$.
2) $S=\{1,2,3,4\} \subset \mathbb{N}$, then $\sup (S)=\max (S)=4$, because $4 \in S$ and every $s \in S$ satisfies $s \leq 4$.
and $\inf (S)=\min (S)=1$.
3) $S=[0,1]$, then $\sup (S)=\max (S)=1$, and $\inf (S)=\min (S)=0$.

Propositions

1)The supremum or infimum of a set A is unique if it exists.
2) If A, B are nonempty sets, then $\sup (A \pm B)=\sup (A) \pm \sup (B), \inf (A \pm B)=$ $\inf (A) \pm \inf (B)$.

Exercise

Find the sup, inf, max, and min of the following set.

$$
A=\left\{\frac{1}{n}, n \in \mathbb{N}^{*}\right\}
$$

Solution

We write the first few terms of S :

$$
S=\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}
$$

Then $\sup (A)=1$ belongs to A, so $\max (A)=\sup (A)=1$. On the other hand, $\inf (A)=0$ doesn't belong to A, $\left(\lim _{n \rightarrow \infty} \frac{1}{n}=0\right)$. So A has no minimum.

Exercise Let (E, \leq) be an ordered set, and let A be a subset of E.

Find the sup, inf, max, and min of the following sets, if it exists.

1) $E=\mathbb{R}, A=\{0,1,-5,3,5,-2\}$.
2) $E=\mathbb{R}, A=[-4,2[$.
3) $E=\mathbb{R}, A=]-1,1[$.
4) $E=\mathbb{R}, A=]-\infty, 2[$.
5) $E=[-1,1], A=\left\{\cos \left(\frac{7 \pi n}{2}, n \in \mathbb{Z}\right\}\right.$.
6) $E=\mathbb{R}, A=\left\{x^{2}-1, x \in \mathbb{R}\right\}$.

2.3 Functions

A function $f: X \rightarrow Y$ is a rule that, for every element $x \in X$, associates an element $f(x) \in Y$. The element $f(x)$ is sometimes called the image of x, and the subset of Y consisting of images of elements in X is called the image of f. That is,

$$
\operatorname{image}(f)=\{y \in Y: y=f(x) \text { for some } x \in X\}
$$

Is a function always a relation?
A function is always a relation. A function is a type of relation in which each input has a unique output, mning an input does not have more than one output.

A relation is not a function if there is more than one output for an input. For example, in the relation $\{(1,0),(1,2),(2,3)\}$, the input of 1 gives two different outputs. So the relation is not a function.

Définition 2.3.1 (Image, Pre-image, Domain and Range of a Function)

Domain and co-domain: if f is a function from set X to set Y, then X is called Domain and Y is called co-domain.

$$
D(f)=\{x: x \in A \text { for which } f(x) \text { is defined }\}
$$

Image and Pre-Image: If $y \in Y$ is associated with an element $x \in X$, we write it as, $y=f(x)$
which is read " y equals f of x ". $f(x)$ is known as the image of f at x or value of f at x. and x is called the pre-image of y.

Range: Range of f is the set of all images of elements of X. Basically Range is subset of co- domain. $(R(f) \subseteq Y)$

$$
R(f)=\{y: y \in Y, y=f(x) \text { for all } x \in X\}
$$

Examples

$y=f(x)=\sqrt{x-1}$.Then $f(x)$ is defined for $x-1 \geq 0$ i.e. $x \geq 1$. Thus,

$$
\begin{gathered}
D(f)=\{x: x \geq 1\}=[1, \infty[\\
R(f)=\{y: y \geq 0\}=[0, \infty[
\end{gathered}
$$

2.3.1 Properties of Function

Addition and multiplication: let f and g are two functions from X to Y, then $f+g$ and $f \cdot g$ are defined as:
$f+g(x)=f(x)+g(x)$. (addition)
$f g(x)=f(x) g(x)$. (multiplication)
Equality: If two functions f and $g: X \rightarrow Y$ have a same domain, then they are said to be equal iff $f(x)=g(x)$ for every $x \in X$ and is written as $f=g$.

Composition: If $f: A \rightarrow B$ and $g: B \rightarrow C$ be any two functions, then the composite function of f and g, denoted by $g \circ f(\operatorname{read}$ as " g of f ") is the function $g \circ f: A \rightarrow C$ and defined by the equation,

$$
(g \circ f)(x)=g(f(x))
$$

Figure 2.3.1 : composition of f and g

Example

Let A, B and C denote the sets of real numbers. Suppose $f: A \rightarrow B$ and $g: B \rightarrow C$ are defined by

$$
f(x)=x-1 ; \quad g(x)=x^{2}
$$

Then,

$$
\begin{aligned}
(g \circ f)(x)=g(f(x)) & =g(x-1) \\
& =(x-1)^{2}
\end{aligned}
$$

2.3.2 Direct image, inverse image

Définition 2.3.2 (direct image of a set)

Let $f: X \rightarrow Y$ and $A \subset X$, the direct image of A under the function f written $f(A)$ is the set

$$
f(A)=\{f(x): x \in A\}
$$

Définition 2.3.3 (Inverse image, pre-image of an element)

Let $f: X \rightarrow Y$ and $b \in Y$. Then the inverse image of b under $f, f^{-1}(b)$, is the set

$$
f^{-1}(b)=\{x \in X: f(x)=b\}
$$

Définition 2.3.4 (Inverse image, pre-image of a subset)

Let $f: X \rightarrow Y$ is a function where $B \subset Y$ then the inverse image of B under the function f is the set:

$$
f^{-1}(B)=\{x \in X: f(x) \in B\} .
$$

Examples

Let f be as in Figure 2.3.2
Then $f(\{b, c\})=\{1,3\}, f^{-1}(1)=\{a, b\}$, and $f^{-1}(\{1,3\})=\{a, b, c, d\}$.

Figure 2.3.2: Picture of f

Exercise

Let $E=[0,1]$ and $F=[-1,0]$ be two intervals of \mathbb{R}.
We consider a function $f: E \rightarrow F$, defined by $f(x)=x^{2}-1$.
Determine $f\left(\left[0, \frac{1}{2}[), f^{-1}\left(-\frac{1}{2}\right)\right.\right.$, and $f^{-1}(] \frac{-1}{2}, 0[$.

Solution

1) $f\left(\left[0, \frac{1}{2}[)=\left\{f(x) \in F, x \in\left[0, \frac{1}{2}[\}\right.\right.\right.\right.$.
$x \in\left[0, \frac{1}{2}\left[\Longrightarrow 0 \leq x<\frac{1}{2} \Longrightarrow 0 \leq x^{2}<\frac{1}{4}\right.\right.$.

$$
\Longrightarrow-1 \leq x^{2}-1<-\frac{3}{4} .
$$

$f\left(\left[0, \frac{1}{2}[)=\left[-1,-\frac{3}{4}[\right.\right.\right.$.
2) $f^{-1}\left(-\frac{1}{2}\right)=\left\{x \in[0,1], f(x)=-\frac{1}{2}\right\}$.
$f(x)=-\frac{1}{2} \Longrightarrow x^{2}-1=-\frac{1}{2} \Longrightarrow x^{2}=\frac{1}{2}$.

$$
\Longrightarrow x=\frac{1}{\sqrt{2}} \text { (because } x \text { is a positive number). }
$$

$f^{-1}\left(-\frac{1}{2}\right)=\frac{1}{\sqrt{2}}$.
3) $f^{-1}(] \frac{-1}{2}, 0\left[=\{x \in[0,1], f(x) \in]-\frac{1}{2}, 0[\}\right.$.
$f(x) \in]-\frac{1}{2}, 0\left[\Longrightarrow-\frac{1}{2}<x^{2}-1<0 \Longrightarrow \frac{1}{2}<x^{2}<1\right.$.

$$
\Longrightarrow \frac{1}{\sqrt{2}}<|x|<1 \Longrightarrow\left\{\begin{array}{c}
\frac{1}{\sqrt{2}}<x<1 \\
-1<x<-\frac{1}{\sqrt{2}}
\end{array} .\right.
$$

But $x \in[0,1]$, then $f^{-1}(] \frac{-1}{2}, 0[=] \frac{1}{\sqrt{2}}, 1[$.

2.3.3 Types of functions: injective, surjective and bijective

 Injective function or (one-to-one)
Définition 2.3.5

Let $f: X \rightarrow Y$ be a function. Then f is injective or "one -to-one" if for all elements x_{1} and x_{2} in X, if $f\left(x_{1}\right)=f\left(x_{2}\right)$, then it must be the case that $x_{1}=x_{2}$.

This is equivalent to saying if $x_{1} \neq x_{2}$, then $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.(contrapositive)
If X and Y are finite sets and $f: X \rightarrow Y$ is injective, then $|X| \leq|Y|$.

Figure 2.3.3 : injective

Example

The function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $f(x)=2 x$ is injective if :
$f\left(x_{1}\right)=f\left(x_{2}\right) \Longrightarrow 2 x_{1}=2 x_{2}$, dividing both sides by 2 yields $x_{1}=x_{2}$.

Surjective function or (onto)

Let $f: X \rightarrow Y$ be a function. If every element of Y is the image of at least one element of X. i.e. every element of Y has a pre-image, thenThat is, $f(X)=Y$.

Symbolically,

$$
\forall y \in Y, \exists x \in X \text { such that } f(x)=y
$$

If X and Y are finite sets and $f: X \rightarrow Y$ is surjective, then $|X| \geq|Y|$.

Figure 2.3.4: Surjective

Example: The function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $f(x)=2 x$ is not surjective: there is no integer x such that $f(x)=3$, because
$2 x=3$ has no solutions in \mathbb{Z}. So 3 is not in the image of f.

Bijective "one-to-one and onto"

Let $f: X \rightarrow Y$ be a function. Then f is bijective or (one-to-one correspondence) if it is injective and surjective; that is, every element $y \in Y$ is the image of exactly one element $x \in X$.

$$
\forall y \in Y, \exists!x \in X \text { such that } f(x)=y
$$

If X and Y are finite sets and $f: X \rightarrow Y$ is bijective, then $|X|=|Y|$.

Figure 2.3.5 :

Exercise

Figure 2.3.6 : Surjective / Not surjective

Inverse functions

Let $f: A \rightarrow B$ be a one-to-one correspondence (bijection). Then the inverse function of $f, f^{-1}: B \rightarrow A$, associates each element b of B with a unique element a of A such that $f(a)=b$.

$$
f^{-1}(b)=a \Longleftrightarrow b=f(a)
$$

The inverse is usually shown by putting a little " -1 " after the function name, like this: f^{-1}.

Définition 2.3.6 (Inverse function)

If $f: A \rightarrow B$ and $g: B \rightarrow A$ are functions, we say g is an inverse to f (and f is an inverse to g) if and only if: $f \circ g=I_{B}$ and $g \circ f=I_{A}$.

Remark

- $f^{-1}(y)$ is not $\frac{1}{f(y)}$
$-\left(f^{-1)-1}=f\right.$

Properties

A function $f: A \rightarrow B$ has an inverse if and only if it is bijective.
If $f: A \rightarrow B$ has an inverse function then the inverse is unique.
The inverse of a bijective function is also a bijection.

The composition of two bijections is a bijection.

Example

Let f be the real function $f(x)=x^{2}$. The function f is not a bijection, so it does not have an inverse function. However the function

$$
\begin{aligned}
g:[0, \infty[& \rightarrow[0, \infty[\\
& x \mapsto x^{2}
\end{aligned}
$$

is a bijection. In this case, $g^{-1}(y)=\sqrt{y}$.

Bijection theorem

$f: I \subset \mathbb{R} \rightarrow \mathbb{R}$
If f is continuous and strictly monotonic on I. Then:

1) $f: I \rightarrow J=f(I)$ is a bijective.
2) f^{-1} is continuous and strictly monotonic on J, with the same direction of variation as f.

Exercise

Let $f:] 0, \infty[\rightarrow] 0,1\left[\right.$ be the function defined by $f(x)=\frac{1}{\sqrt{x+1}}$.

1) Determine $f([2,4])$ and $\left.\left.f^{-1}(] \frac{1}{2}, \frac{\sqrt{3}}{2}\right]\right)$.
2) Show that the function f is bijective and determine f^{-1}.

Solution

1) $* f(] 2,4])=\{y \in] 0,1[, x \in] 2,4]\}$.
$x \in] 2,4] \Longrightarrow 2<x \leq 4 \Longrightarrow \sqrt{3}<\sqrt{x+1} \leq \sqrt{5}$

$$
\left.\left.\Longrightarrow \frac{1}{\sqrt{5}} \leq \frac{1}{\sqrt{x+1}}<\frac{1}{\sqrt{3}} \text {. Then } f(] 2,4\right]\right)=\left[\frac{1}{\sqrt{5}}, \frac{1}{\sqrt{3}}[.\right.
$$

* $\left.\left.\left.\left.f^{-1}(] \frac{1}{2}, \frac{\sqrt{3}}{2}\right]\right)=\{x \in] 0, \infty[, f(x) \in] \frac{1}{2}, \frac{\sqrt{3}}{2}\right]\right\}$
$\left.f(x) \in] \frac{1}{2}, \frac{\sqrt{3}}{2}\right] \Longrightarrow \frac{1}{2}<\frac{1}{\sqrt{x+1}} \leq \frac{\sqrt{3}}{2} \Longrightarrow \frac{1}{3} \leq x<3$.
$\left.\left.f^{-1}(] \frac{1}{2}, \frac{\sqrt{3}}{2}\right]\right)=\left[\frac{1}{3}, 3[\right.$.

2) Show that the function f is bijective and determine f^{-1}.

We show that f is injective and surjective
a) f is injective: if $f\left(x_{1}\right)=f\left(x_{2}\right)$, then $x_{1}=x_{2}$ for all $\left.x_{1}, x_{2} \in\right] 0, \infty[$
$f\left(x_{1}\right)=f\left(x_{2}\right) \Longrightarrow \frac{1}{\sqrt{x_{1}+1}}=\frac{1}{\sqrt{x_{2}+1}} \Longrightarrow x_{1}=x_{2}$. Then f is injective
b) f is surjective: $\forall y \in] 0,1[, \exists x \in] 0, \infty[$, such that $f(x)=y$.
$y=f(x)=\frac{1}{\sqrt{x+1}} \Longrightarrow \sqrt{x+1}=\frac{1}{y} \Longrightarrow x=\frac{1}{y^{2}}-1$

Then $\forall y \in] 0,1\left[, \exists x=\frac{1}{y^{2}}-1 \in\right] 0, \infty[$ such that $y=f(x)$, therefore f is surjective. f is injective and surjective therefore it is bijective, and
$\left.f^{-1}:\right] 0,1[\rightarrow] 0, \infty\left[\rightarrow\right.$ defined by $f^{-1}(y)=\frac{1}{y^{2}}-1$.

