
Algorithmique et structures de données 1 Chapitre 3 : Instructions conditionnelles

Chapter 3: Conditional Instructions

1. Introduction
A program consists of instructions. Most of these instructions are executed in the order in which they

appear. Once an instruction is executed, it moves to the next instruction (sequential). Instructions are often

separated by a semicolon ";". However, some instructions modify the program flow, known as control

structures. For example: conditional structures, loops, function calls, and unconditional jump instructions. The

conditional structure comes in three types: the simple conditional structure (if then), the complex conditional

structure (if then else), and the multiple-choice structure (switch).

2. The Simple Conditional Structure "if then"
In programming, we often encounter cases where we need to decide whether an instruction should be

executed or not based on whether a condition is true or false. For example, in a dessert recipe, you might find

instructions like: If you have almonds, add them to the recipe, or if you like lemons, add a little more. The

program's execution flow will change as the input changes. To express conditions in programming, we use the

if...then test, which is the simplest conditional instruction. It consists of two parts:

 Condition: A Boolean expression with a value of either true or false.

 Block of instructions: executed if the condition is true, or ignored if the condition is false.

2.1. Syntax:

Algorithm C
if Condition then

Block of instructions

EndIf

The rest of the instructions

if (Condition)

{

Block of instructions

}

The rest of the instructions

The words "if," "then," and "EndIf" (or "fi") are reserved words in the algorithm. The same applies to

"if" in C. In the algorithm, the condition is always between "if" and "then," while in C, it is always enclosed

in parentheses (). To build the condition, we use comparison operations (>, <, =, ≠, ...) and logical operations

(and, or, not, ...).

Instructions belonging to the "if" in C are enclosed in curly braces {} which can be omitted if they

contain only one instruction. (Optional {}). If we find a set of instructions after the "if," and we don't find the

curly braces, then only the first instruction is associated with the condition, and the rest of the instructions will

always be executed regardless of the condition. However, if there is more than one instruction inside the curly

braces {}, then both curly braces are mandatory.

Note:

 In C, the Boolean type is represented by an int. False is represented by 0, and true is any number other

than 0.

 There is no ";" after }.

2.2. Flowchart

2.3. Execution

The execution process of the conditional instruction is performed by evaluating the condition, which

results in a Boolean logical value. If the result is true, the block of instructions between "then" and "EndIf" in

Cond

? Inst Bloc

inst

yes

No

Algorithmique et structures de données 1 Chapitre 3 : Instructions conditionnelles

the algorithm, or between {} in C, is executed, followed by the rest of the program instructions. If the result

is false, the instructions between "then" and "EndIf" are ignored, and the rest of the program instructions are

executed directly.

2.4. Example

Write a program that reads an integer, then displays a warning if it's negative, and finally shows its square.

Algorithm C screen
algorithm root

var x : integer
begin

write ("Enter a number: ")

read (x)

If x<0 then

write ("nbr is negative ")

End If

write ("the square is " , x*x)

end

#include <stdio.h>

int main()

{

int x ;

printf("Enter a number: \n") ;

scanf("%d", &x) ;

if (x<0)

{// can be removed

printf("nbr is negative

\n") ;

}

printf("the square is %d" ,

x*x) ;

}

3. The Complex Conditional Structure "if then else"
In a simple conditional, "if" specifies what to do if the condition is true, but not what to do if it's false.

However, sometimes it's necessary to decide what to do in both cases. This leads to the "if else" (if...then...else)

structure, which is an extension of the simple "if." The complex conditional structure "if else" consists of three

parts:

 Condition: A Boolean expression with a true or false value.

 First block of instructions: executed if the condition is true, or ignored if false.

 Second block of instructions: executed if the condition is false, or ignored if true.

3.1. Syntax:

Algorithm C
If Condition then

 instruction block 1

else

 instruction block 2

End If

The rest of the instructions

if (Condition)

{

instruction block 1

}

else

{

instruction block 2

}

The rest of the instructions

The word "Else" is a reserved word in the algorithm. The same applies to "else" in C. In C, {} can be omitted

if it contains only one instruction. If there is a set of instructions after "if" or after "else," and curly braces are

not found, it means that only the first instruction is related to "if" or "else."

3.2. Flowchart

3.3. Execution

3.3. Execution The conditional instruction is executed by evaluating the condition, which results in a Boolean

value. If the result is true, the first block of instructions between "then" and "else" in the algorithm, or between

Con

d?
Inst Bloc

inst

yes
no

Inst Bloc2

Algorithmique et structures de données 1 Chapitre 3 : Instructions conditionnelles

{} before "else" in C, is executed, followed by the rest of the program instructions. If the result is false, the

second block of instructions between "else" and "EndIf" in the algorithm, or between {} after "else" in C, is

executed, followed by the rest of the program instructions.

3.4. Example

Write a program that calculates the absolute value of an integer and displays it on the screen.

Algorithm C screen
algorithm absolute

var x, y : integer
begin

write ("Enter a nbr: ")

read (x)

if x>=0 than

yx

else

y-x

End If

write ("|" , x ,"|=",y)

end

#include <stdio.h>

int main(){

int x, y ;

printf("Enter a nbr:\n") ;

scanf("%d", &x) ;

if (x>=0)

{ // can be deleted

y=x ;

}

else

{ // can be deleted

y=-x ;

}

printf(("|%d|=%d", x, y)) ;

}

if (x>=0)

y=x ;

else

y=-x ;

3.5. Conditional assignment in C

If we have a variable v takes one of the values v1 or v2 depending on condition b, i.e. :
if (b)

 v=v1 ;

else

 v=v2 ;

In this case, the “? : ” can be used and its syntax is as follows:

condition ? expression_true : expression_false

 condition is a Boolean condition

 expression_true The expression returned if the condition is true.

 expression_false The expression returned if the condition is false

Example

v=b ? v1 :v2 ;

result = average >=10 ? " Admitted" : " Adjourned" ;

3.6. If-else extension

" If-else" can be used to test multiple conditions and to select the appropriate treatment for each case.

For instance: to determine whether a student is accepted or not, there are several cases. Either they are accepted

without compensation, or they are accepted with compensation, or they are accepted but with debts, or they

are postponed. To determine this, one must examine the averages of the first and second semesters (s1 and

s2), the annual average (MA), and the total earned credits (Crd).

The solution

Algorithm C
algorithm absolute

var s1, s2, MA: real
Crd : integer

begin

write ("Enter first and second

semester averages ")

read (s1,s2)

write ("Enter annual average ")

read (MA)

write ("Enter total credits ")

read (Crd)

If s1>=10 and s2>=10 then

#include <stdio.h>

int main(){

float s1, s2, MA ;

int Crd ;

printf("Enter first and second semester

averages \n") ;

scanf("%f%f", &s1, &s2) ;

printf("Enter annual average \n") ;

scanf("%f", &MA) ;

printf("Enter total credits \n") ;

scanf("%d", &Crd) ;

if (s1>=10 && s2>=10)

Algorithmique et structures de données 1 Chapitre 3 : Instructions conditionnelles

write("admitted without compensation

")

else

if MA>=10 then

write("admitted with

compensation")

else

if Crd>=45 then

write ("admitted with debts ")

else

write ("adjourned ")

end if

end if

end if

end

printf("admitted without

compensation") ;

else if (MA>=10)

printf("admitted with compensation") ;

else if (Crd>=45)

printf("admitted with debts ") ;

else

printf("adjourned ") ;

}

4. The Multiple-Choice Conditional Structure "switch"
To choose an action among multiple options, we use the "switch" statement. However, when dealing with

more than two options, nested "if" statements can be used, resulting in nested "if" statements for each choice.

This can make the program harder to read. The "switch" test is a special case of nested "if else" statements. It

determines which block of code to execute based on the value of the tested variable. It is used when we have

multiple outcomes and the condition is tested multiple times using the same variable. The "switch" statement

is more readable and consists of:

 The expression to test, typically a variable.

 The values to test with corresponding blocks of instructions.

 An optional default block if there is no match with any value.

4.1. Syntax

Algorithm C
case expression of

val_1 : instruction block 1

val_2 : instruction block 2

…

val_n : instruction block n

else

 another instruction block

End case

The rest

switch (expression) {

case val_1 :

instruction block 1

break ;

…

case val_n :

instruction block n;

break ;

default:

another instruction block

}

The rest

The words "Case" "else" and "End Case" (or " EndCase") are reserved words in the algorithm. The same

applies to "switch" "case" and "default" in C.

 Expression: An expression that calculates an integer or character value. It's typically a variable.

 val_1, ..., val_n : Values or constants of the same type as the expression.

 Block of instructions: One or more instructions executed if the expression value matches Value_i.

Note: switch is used instead of nested “if” we're going to test a single instruction or variable, of integer or

character type, several times with constant values.

4.2. Rules regarding switch

 The curly braces {} of the switch and the parentheses () are necessary and cannot be omitted.

 Each Value_i must be different from the others. For example, writing "case 1" twice is illegal.

 Value_i can be placed in any order. However, it's recommended to order them in ascending order for

better readability.

 A block of instructions can contain any number and type of instructions.

Algorithmique et structures de données 1 Chapitre 3 : Instructions conditionnelles

 The "break;" statement is optional. It's used to exit a switch immediately, moving the program flow

out of the switch.

 The default block is optional. If no Value_i matches, the execution context will move to the default

block. It should be the last case.

4.3. Flowchart

4.4. Execution

The "switch" statement is executed by evaluating the expression, then jumping to the block of

instructions corresponding to the matched Value_i. After that block is executed, the execution will continue

until it encounters a "break;" statement or reaches the end of the switch. If there is no match, the execution

will move to the default block (if present), then continue with the rest of the program instructions.

The execution of "switch" in C slightly differs from the algorithm's "case" In C, after executing the

block for Value_i, if no "break;" statement is encountered, the execution will continue with the subsequent

block until a "break;" statement is reached. The execution will then move to the rest of the instructions outside

the switch.

To make "switch" equivalent to "case algo" a "break;" statement should be added at the end of each

block.

If multiple values share the same block of instructions, the algorithm can use a comma. In C, the first

value should not have instructions or a "break;" statement. Assuming values 7 and 9 have the same treatment:

Algorithm:

algorithm C
7 ,9 : instruction block case 7 :

case 9 :

instruction block

break ;

4.5. Example

Write a program that reads an integer less than 10 and displays the corresponding English word on the screen.

Algorithm C The display

insts

exp=

val2
inst Bloc 2

yes

no

exp=

val1
inst Bloc 1

yes

no

exp=

val n
inst Bloc n

yes

no
Other inst bloc

Algorithmique et structures de données 1 Chapitre 3 : Instructions conditionnelles

algorithm conversion

var nb : integer
begin

write ("enter a nbr ")

read (nb)

case nb of

0 : write ("zero")

1 : write ("one")

2 : write ("two")

…

9 : write ("nine")

else

 write ("not treated")

End case

end

#include <stdio.h>

int main(){

int nb ;

printf("enter a nbr \n") ;

scanf("%d", &nb) ;

switch (nb) {

case 0 : printf("zero") ;

break ;

case 1 : printf("one") ;

break ;

…

case 9 : printf("nine") ;

break ;

default:

printf("not treated") ;

}

return 0 ;

}

5. Branching Instructions
Branching is the process of moving between executed program instructions by the processor, where it

performs a "jump" to a specific address instead of continuing to execute instructions sequentially. There are

four instructions in C that can unconditionally modify the execution flow of a program: break, goto, continue,

and return.

5.1. Break Statement

We've already seen it with "switch," where it ends the "switch" instruction, moving the flow to the first

instruction after "switch." In the case of a nested "switch," it only exits the immediate enclosing "switch." It's

also used to exit loops (covered in the next lesson). In this case, "break;" is usually within an "if."

Example

switch (grade){

 case ‘A’ :

 case ‘a’ : printf("excellent\n") ;

 break ;

 case ‘b’ : printf("good\n") ;

 case ‘c’ : printf("you can do better\n") ;

 break ;

 default : printf("try again\n") ;

}

 If grade contains the letter a or A, excellent.

 If it contains b ،it will appear good and you can do better

 If it contains the letter c, it only shows that you can do better.

 If it contains another character, try again.

5.2. Goto Statement

It transfers the program execution to a named instruction. This name, or "label," is preceded by a colon

":". Any instruction can be named with a valid identifier followed by a colon.

Label syntax: label : instruction;

where label is a valid identifier. Such as:
here : printf("zero") ;

Syntax for calling: To access this instruction from anywhere, use the following syntax:

 goto label ;

where "label" is the name of the instruction, e.g.: To access the instruction "here" from anywhere, use:

goto here ;

Note:

Algorithmique et structures de données 1 Chapitre 3 : Instructions conditionnelles

 "case" and "default" are special naming methods used within a "switch."

 Goto can be used to repeat instructions without the need for loops.

 It's advisable not to use "goto" and labels extensively, as it makes the program difficult to understand

and maintain for humans.

Example:

again :

…

goto again ;

5.3. continue Statement

It's used with loops to move the flow to the end of the loop and directly to the next iteration, without

completing the loop instructions. It's typically within an "if."

Syntax continue ;

5.4. Return Statement

It's used to exit functions and return a result. (semester 2)

Syntax: return expression ;

Example: return 0 ;

As commonly used at the end of the main() function

	Chapter 3: Conditional Instructions
	1. Introduction
	2. The Simple Conditional Structure "if then"
	2.1. Syntax:
	2.2. Flowchart
	2.3. Execution
	2.4. Example

	3. The Complex Conditional Structure "if then else"
	3.1. Syntax:
	3.2. Flowchart
	3.3. Execution
	3.4. Example
	3.5. Conditional assignment in C
	3.6. If-else extension

	4. The Multiple-Choice Conditional Structure "switch"
	4.1. Syntax
	4.2. Rules regarding switch
	4.3. Flowchart
	4.4. Execution
	4.5. Example

	5. Branching Instructions
	5.1. Break Statement
	5.2. Goto Statement
	5.3. continue Statement
	5.4. Return Statement

