
TP N°2: La Chaleur Latente

Manipulation N° 2

La Chaleur Latente de Fusion de la Glace.

1-Introduction:

Un corps pur donné peut se présenter sous 4 états : solide, liquide, gazeux et plasma. Le changement d'état physique nécessite un échange de chaleur avec le milieu extérieur.

Un changement physique se produit lorsqu'il n'y a pas transformation de la matière comme par Exemple, l'eau liquide qui s'évapore reste toujours de l'eau, H_2O .

Mais ce changement physique est accompagné d'un dégagement ou absorption de chaleur selon le cas

Ainsi, la fusion de la glace est un phénomène physique qui absorbe de la chaleur.

$$H_2O(s) + 6.03 \text{ kj} -----> H_2O(l)$$

Toutes les réactions chimiques dégagent ou absorbe de la chaleur.

Ainsi, la combustion de la paraffine est un phénomène chimique qui degage de la chaleur.

$$C_{25}H_{52}(s) + 38 O_2(g) ----> 25 CO_2(g) + 26 H_2O(g) + 15200 kJ$$

L'énergie mise en jeu lors d'une réaction chimique est beaucoup plus considérable que celle qu'on retrouve dans les transformations physiques.

2-But du travail:

- 1- Etude des phénomènes de changements d'état.
- 2- Détermination de la Capacité calorifique du calorimètre (C_{cal}).
- 3- Détermination de la chaleur latente de fusion de la glace (L_f).

TP Chimie II 1er Année LMD ST

TP N°2: La Chaleur Latente

3- Partie théorique :

3-1 . Définition de la chaleur latente :

A pression constante, pour un corps pur (comme l'eau) ayant atteint sa température de changement d'état, il lui faut une quantité d'énergie supplémentaire pour changer d'état : c'est l'énergie massique de changement d'état (appelée aussi « chaleur latente de changement d'état »), notée L. On la mesure par la variation d'énergie thermique Q, telle que :

$$Q = m.L$$
, m étant la masse.

3-2 . Principe de la mesure de L :

Un morceau de glace à $T_2 = 0$ C (pris dans un mélange eau-glace fondante), de masse connue m_2 est plongé dans un calorimètre contenant une masse d'eau m_1 de température T_1 . L'ensemble est agité jusqu'à fusion complète du glaçon. On relève la température d'équilibre T_f .

On a alors:

$$\sum Q = 0$$
. (Calorimètre isolé)
 $Q_1 + Q_{cal} + Q_2 + Q_{fus} = 0$.
 $m_1 \cdot c_e \cdot (T_f - T_1) + C_{cal} \cdot (T_f - T_1) + m_2 \cdot c_e \cdot (T_f - T_2) + m_2 \cdot L_f = 0$.

 C_{cal} : la capacité calorifique du calorimètre en Joule par Kelvin ($J.K^{-1}$).

m1: masse de l'eau en kilogramme (kg).

m₂: masse de glace en kilogramme (kg).

 c_e : la capacité calorifique massique de l'eau liquide, soit 4180 J. $K^{\text{-}1}$. $Kg^{\text{-}1}$.

L_f: chaleur latente de fusion en Joule par Kilogramme (J.Kg⁻¹).

On se propose ici de déterminer la valeur de la chaleur latente de fusion de l'eau $L_{\rm f}$.

TP Chimie II 1^{er} Année LMD ST

TP N°2: La Chaleur Latente

4- Partie Expérimentale :

1- Détermination de la Capacité calorifique du calorimètre (C) :

- a) Dans le calorimètre, introduire m_1 =50 g d'eau à la température **ambiante**. Noter la température d'équilibre T_1 (Eau + Calorimètre).
- b) Ajouter m_2 =50 g d'eau tiède à la température T_2 (25° $C < T_2 < 40$ °C). Noter T_2 .
- c) Noter la nouvelle température T_f (température minimale atteinte dans le calorimètre)(Eau a la T_f empérature $T_1 + C_f$ a la T_f empérature T_2).
- d) Déterminer (C) La Capacité Calorifique d'un Calorimètre sachant que :
 - la quantité de chaleur Q_2 cédée par l'eau chaude est $Q_2 = m c_{eau} (T_f T_2)$.
 - la quantité de chaleur Q_{cal} reçue par le calorimètre $+Q_1$ reçue par l'eau froide. $Q_{cal}+Q_1=\mu c_{cal} (T_f-T_1)+m_1 c_{eau} (T_f-T_1)=(\mu+m_1) c_{eau} (T_f-T_1)$.
 - Et le système isolé permet d'écrire : $\sum Q = 0$ \implies $Q_1 + Q_{cal} + Q_2 = 0$

2- Détermination de la chaleur latente de fusion de la glace (L_f) .

- a) Mettre une masse $m_1 = 50g$ d'eau chaude $(T = 70 \, ^{\circ}C)$ dans le calorimètre. Noter T_1 .
- b) Préparer 3 ou 4 glaçons à $(T_2 = 0 \, {}^{\bullet}C)$ de masse m_2 peser précisément, puis les immerger rapidement dans l'eau du calorimètre.
- c) Relever la température T_f . à l'équilibre thermique, la glace doit être entièrement fondue et la température ne doit plus varier beaucoup.
- d) Déterminer la chaleur latente de fusion de la glace L_f sachant que :
 - La quantité de chaleur Q_1 cédée par l'eau chaude.
 - La quantité de chaleur Q_{cal} cédée par le calorimètre.
 - La quantité de chaleur Q_{fus} nécessaire pour faire fondre la glace.
 - La quantité de chaleur Q_2 reçue par l'eau a $(T_2 = 0 \, {}^{\circ}C)$, nécessaire pour l'élever à la température T_f .

TP Chimie II 1^{er} Année LMD ST

TP N°2 : La Chaleur Latente

1- <u>Manipulation N :1</u>	
• Détermination de la Capacité calorifique	te du calorimètre (C_{cal}) :
$(m_1 = \ldots, m_2 = \ldots, T_1 = \ldots, T_2 = \ldots, T_f = \ldots, c_e = \ldots)$	
1. Manipulation N :2	
• Détermination de la chaleur latente de f	
$(m_1 = \ldots, m_2 = \ldots, T_1 = \ldots$, $T_2 = \ldots$, $T_f = \ldots$, $c_e = \ldots$)
	Nom:
	Nom:
	Nom: