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Introduction  

The information processed by a computer can be of different types (text, numbers, 

etc.) but it is always represented and manipulated by the computer in binary form. 

All information will be processed as a series of 0 and 1. The coding of information 

consists in establishing correspondence between the external (usual) information 

representation of information and its internal representation in the machine, which is a 

series of bits. We use binary representation because it is simple and easy to make. 

 

1. Binary Coding : 

There are many binary coding: 

1.1 Binary coding pure (natural binary code) 

Binary coding pure binary is also qualified as natural binary. This coding has 

already been discussed in Chapter 1. Indeed, in this coding we associate with each 

positive integer the value which corresponds to it according to the binary number 

system. Thus, by having n bits we can code the values between [0 and 2
n
[. 

Example:  

On 6 bits: (35) 10 = (100011) 2 

Please note the value (35) 10 is not representable on 5 bits. Indeed, remember that to code a 

value on n bits, it must be between [0 and 2
n
[. 

In our case (5 bits) between [0 et 2
5
[ = [0 et 32[. 

 

For example the case for the transition from the decimal 3 to 4 for which the bits of weight 

1 and 2 go from 1 to 0 and the weight bit 3 pass from 0 to 1. (The Passage from 011 to 100 

implies the modification of 3 bits). 

To avoid this disadvantage, the Gray code is the most used. 
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1.2 Gray code (the reflected binary code) 
 

 
 

Like natural binary, Gray code can code any natural integer number.  

Note: a reflected code cannot be used for arithmetic operations. 

The link between a code n coded in Gray code and a code N coded in binary is as follows: 

 

There is another method to build the Gray code:  

 

The first bit on the left remains the same, then from left to right to make the sum of the 

adjacent bits without restraint  

1. (10010)
2
=(11011)

Gray
 

 

- Binary-to-Gray Code Conversion 
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Where the Gray code can be created as follows:  

1. A starting code is established: zero is coded 0 and one is coded 1. 

2. Then, each time you need an additional bit, we symmetrize the numbers already 

obtained (like a reflection in a mirror). 

3. We add a 1 at the start of the new numbers and a zero on the old ones. 
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- Gray Code-to-Binary Conversion 
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1.3 BCD code (Binary Coded Decimal) 

To move from decimal to binary, successive divisions must be made. There are 

other simplified methods for the transition from decimal to binary (the BCD code, 

Excess 3 ...). The BCD is the most used code. 

 

 

 

BCD code Decimal 

0000 0 

0001 1 

0010 2 

0011 3 

0100 4 

0101 5 

0110 6 

0111 7 

1000 8 

1001 9 
 

Remark:  

In the BCD code: For the addition, If there is a restraint or the result obtained not belonging to 

the BCD (the result is > 9) we must add 6 = (0110) 2 

Examples: 
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1.4 Excess3 code (BCD+3) 

              In Excess3, each decimal digit is coded separately in its binary + 3 equivalent. 

 

 

 

Remark: In excess3 code 3: For the addition, if there is a restraint we must add 3 

(+0011)2 if not we subtract 3 (- 0011)2 

Examples: 

 

 

 

 

 

1     2    9 
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2. Data types : 

2.1 Alphanumeric Data (Characters): 

 

2.2 Numeric Data (Numbers) 

 

3. Characters representation : 

Though computers deal use binary to represent data, humans usually deal with 

information as symbolic alphabetic and numeric data. So to allow computers to 

handle user readable alpha/numeric data, a system to encode characters as binary 

numbers was created. 

    

 

Example: use the Extended ASCII table to code the following characters 

 Code (41)16= (01000001)2 

Code (61)16 = (01100001)2 

 Code (3F) 16 = (00111111)2 
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4. Integer representation : 

 

      

Problem: how to indicate the machine that a number is negative or positive? 

Solution: Three (3) representations (3 methods) had been proposed for signed integers: 
 

1.  Sign-Magnitude representation (Sign + Absolute value) 

2. One's Complement representation (1's Complement) 

3. Tow's Complement representation (2's Complement) 

  In all three (3) representations, leftmost bit (the most-significant bit (msb)) is called 

the sign bit. The sign bit is used to represent the sign of the integer, with 0 for positive 

integers and 1 for negative integers. 

 

In Signed-Magnitude representation (Sign + Absolute value), if we work on n bits, then: 

 the leftmost bit (the most-significant bit (msb)) is used to indicate the sign:  

 1 : negative sign  

 0 : positive sign  

 The other (n -1) bits represent the absolute value (magnitude) of the integer.  
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Example:  if we work on 4 bits. 

 

1001 is the representation of – 1 

 
 

0001 is the representation of + 1 

 

 
 

 

If using 3 bits, (on 3 bits) we obtain:  

 

 

 

 

 

 

 

 

 

 

 

Decimal  Sign-M 

+ 0 

+ 1 

+ 2 

+ 3 

000 

001 

010 

011 

 

- 0 

- 1 

- 2 

- 3 

100 

101 

110 

111 

 

 
 

Decimal Mag Sign  

+ 0 

+ 1 

+ 2 

+ 3 

00 

01 

10 

11 

0 

0 

0 

0 

- 0 

- 1 

- 2 

- 3 

00 

01 

10 

11 

1 

1 

1    

1 
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Decimal numbers are between -3 and +3 

-3 ≤  N  ≤ +3 

- (4-1) ≤ N ≤ + (4 -1) 

- (2
2

 -1) ≤ N ≤ + (2
2

-1) 

- (2 
(3 -1)

 -1) ≤ N ≤ + (2 
(3 -1)

 -1) 

 If we work on n bits, the range (interval) of the decimal numbers that we can represent 

in Sign-Magnitude is: 

- (2 
(n -1)

 -1) ≤ N ≤ + (2 
(n -1)

 -1) 
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Example:  

What is the decimal value represented by the value 101010 in 1's complement of 6 bits?  

- The MSB = 1 indicates that this is a negative number.  (Sign bit is 1 ⇒ negative) 

- Value = - (010101)
2
= - ( 21)

10
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If we work on 3 bits: 

Decimal Binary 1's C 

+ 0 

+ 1 

+ 2 

+ 3 

000 

001 

010 

011 

000 

001 

010 

011 

- 3 

- 2 

- 1 

- 0 

-011 

-010 

-001 

-000 

100 

101 

110 

111 

Decimal numbers are between -3 and +3 

-3 ≤  N  ≤ +3 

- (4-1) ≤ N ≤ + (4 -1) 

- (2
2

 -1) ≤ N ≤ + (2
2

-1) 

- (2 
(3 -1)

 -1) ≤ N ≤ + (2 
(3 -1)

 -1) 

 If we work on n bits, the range (interval) of the decimal numbers that we can represent 

in 1's complement is: 

- (2 
(n -1)

 -1) ≤ N ≤ + (2 
(n -1)

 -1) 
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Overflow problem 

The overflow occurs because the width of registers is finite. 

The overflow occurs when two numbers of n bits each are 

added and the result occupies n+1 digits. 

An overflow can be detected when the sign of the result is 

different from the sign of the two numbers. 

The overflow cannot occur when the two numbers have different signs. 
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Note: 

In unsigned integer addition, overflow occurs if there is end carry. 

4.2.3 Two's complement 

- Positive number is obtained by conversion to natural binary. 

- The 2's complement of negative number equals its 1's complement + 1 

 

Note: 

   The easiest way to obtain the 2's complement of a negative number is by 

starting from LSB (rightmost bit) of the positive value, leaving all the 0s and the 

first 1 unchanged and complements all the remaining bits. 

Example: convert the following values to 8-     -24 and -19 

                        +24= (00011000)                     +19=(00010011)2 

                        -24= (11101000)2                    -19= (11101101)2 
 

The range of numbers that can be represented by n-bit 2's complement is: 

[-2
n-1

, + (2
n-1

-1)] 
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If we work on 3 bits: 

Decimal Binary 2's C 

+ 0 

+ 1 

+ 2 

+ 3 

000 

001 

010 

011 

000 

001 

010 

011 

- 4 

- 3 

- 2 

- 1 

- 100 

- 011 

- 010 

- 001 

100 

101 

110 

111 

Decimal numbers are between -4 and +3 

-4 ≤  N  ≤ +3 

- (4) ≤ N ≤ + (4 -1) 

- (2
2

) ≤ N ≤ + (2
2

-1) 

- (2 
(3 -1)

) ≤ N ≤ + (2 
(3 -1)

 -1) 
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 If we work on n bits, the range (interval) of the decimal numbers that we can represent 

in 2's complement is: 

- (2 
(n -1)

) ≤ N ≤ + (2 
(n -1)

 -1) 
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5. Real number representation: 

    A real (fractional) number has two parts: integer part and fractional 

(decimal) part these parts are separated by a dot ( . ) called the decimal 

point. The problem in real (fractional) number representation is how to 

indicate to the machine the position of the decimal point?   There are two 

ways to represent real numbers: 

5.1 Fixed-Point Representation 

   In this representation, the most significant bit represents the sign (+/-), 

the integer part is represented on a fixed n bits and the fractional part on 

a fixed p bits. 

 

Sign Integer part Fractional part 

                      1bit                n bits                     p bits 

Example: assume a 6-bit real number with 3 bits for integer part and 2 bits for the 

fractional part. 
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In the early days of computing, each computer constructor (brand) had its own floating 

point format. This had the unfortunate effect that a code that worked perfectly well on one 

machine could crash on another one (portability limited). 

IEEE 754 Floating Point representation standard 

IEEE 754 is a technical standard for floating-point representation which was established in 

1985 by the Institute of Electrical and Electronics Engineers (IEEE).  

IEEE 754 has 3 basic components: 

1. The Sign 

2. The Biased Exponent 

3. The Mantissa 
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The IEEE754 Standard defines three (3) formats for representing floating point numbers: 
 

 Single precision on 32 bits 

 Double precision on 64 bits 

 Extended precision on 80 bits 

 

IEEE 754 single precision 

  Normalized Form: 
 

 

The following steps provide the method to convert a real number to floating point format: 

1. Convert the number to Binary 

2. Normalize the number under the form N= (+/- )(1.m)2.2
RE

      (m: mantissa) 

3. Calculate the Biased exponent, BE=RE+ bias= RE+127 

4. Store the sign, BE and the mantissa (m)  in 32 bits 

 

Note: 

 Since the first bit of a normalized binary floating point number is always 1 (always 

exists), we  don't need to store it explicitly in the memory. This bit is called "hidden bit".  

Examples: convert the following numbers to IEEE 754 single-precision. 

-3.625 +65.75 -0.125 

          N = - 3.625 

1. Convert to binary                         N = - (11.101)2 

2. Normalize                                    N = -(1.1101)2 x 2
+1

    ( Mantissa (M) = 1101 ) 

3. Calculate the Biased exponent , BE= RE+127= 1+127 = 128 = 10000000(2) 

4. Store S, BE and M in 32 bits 

1 10000000 11010000000000000000000 
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Examples: convert to decimal the following IEEE 754 single-precision numbers. 

                                 (C0980000)16                           (42484000)16 

 N= (C0980000)16 

Convert to binary N = (1 10000001 00110000000000000000000)2 

1. Calculate the Real exponent,    RE= BE-127 =129-127=+2 

2. N = - (1.0011)2 x 2
+2

 

3. Convert the value to decimal N = - (1.0011)2 x 2
+2

 = - (100.11)2 = - 4.75 

 

 (42484000)16 = +50.0625 

 Denormalized Form 

    Normalized form has a serious problem, with an implicit leading 1 for the fraction; it 

cannot represent the number zero! And the numbers close to zero. 

Denormalized form was devised to represent zero and other numbers. 
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  For BE=0, the numbers are in the Denormalized form. An implicit leading 0 (instead of 1) is used 

for the Mantissa (fraction); and the actual exponent is always -126. Hence, the number zero can be 

represented with E=0 and M=0 (because 0.0×2
-126

=0). 

  We can also represent very small positive and negative numbers in de-normalized form with E=0. 

For example, if S=1, BE=0, and M=011 0000 0000 0000 0000 0000. The actual Mantissa 

(fraction) is: 0.011=1×2
-2

+1×2
-3

=0.375. Since S=1, it is a negative number. With BE=0, the actual 

exponent is -126. Hence the number is -0.375×2
-126

, which is an extremely small negative number 

(close to zero). 

 

             

In summary, the value (N) is calculated as follows: 

 For 1 ≤ BE ≤ 254, N = (-1)S × 1.M × 2(EB-127). These numbers are in the so-called 

Normalized form. The sign-bit represents the sign of the number. Fractional part (1.M) is 

normalized with an implicit leading 1. The exponent is bias (or in excess) of 127, so as to 

represent both positive and negative exponent. The range of exponent is -126 to +127. 

 For E = 0, N = (-1)S × 0.M × 2(-126). These numbers are in the so-called 

Denormalized form. The exponent of 2
-126 evaluates to a very small number. 

Denormalized form is needed to represent zero (with M=0 and BE=0). It can also represent 

very small positive and negative number close to zero. 

 For E = 255, it represents special values, such as ±INF (positive and negative infinity) and 

NaN (not a number).  

Summary of the different possible representations on the IEEE 754 standard (Simple Precision) 
 

Sign B𝐸 M Value 

1 
11111111 = 255 = 0 −∞ 

0 +∞ 
∀ 11111111 = 255 ≠ 0 NaNs 

1 
00000000 = 0 = 0 −0 

0 +0 
1 0 < B𝐸 < 255 

Normalized 
∀ M N = −1.𝑀 × 2BE−127

 

0 N = +1.𝑀 × 2B𝐸−127
 

1 
 00000000 = 0 

Denormalized 
≠ 0 

N = −0.𝑀 × 2−126 

0 N = +0.𝑀 × 2−126 
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Question: What is the largest and smallest positive number in normalized form? 

Answer:  We have in normalized form: 

        1 ≤ BE ≤ 254         - 126 ≤ RE ≤ +127  

        1.00…0(2) ≤ 1.M ≤ 1.11…1(2)          1(10) ≤ RE ≤ (2-2-23)(10)     

Smallest normalized positive number = 1,0 x 2-126 = 2-126 

Largest normalized positive number = (2-2-23) x 2+127 

Note: 

   There is a compromise between the size of the mantissa (23 bits) representing 

the accuracy  and the size of the exponent (8 bits) representing the range. 

             

Note: 

  The IEEE754 Standard defines three (3) formats for representing floating point numbers: 
 

 Single precision on 32 bits (1bit 8bits  23 bits   Bias= 127) 

 Double precision on 64 bits (1 bit 11bits  52 bits  Bias= 1023 ) 

 Extended precision on 80 bits (1 bit 15 bits 64 bit Bias= 16383 ) 

     

                      IEEE 754 Addition/Subtraction operations 

  Floating point arithmetic is more complicated than the fixed point. To calculate A+B  

(or A- B) we have to follow these steps: 

1- Write the two numbers in normalized form 

2- Align the exponents (smaller exponent aligned to the larger)  

3-  Add/subtract the mantissas 

4- Renormalize if necessary 

 

Example: 

Assume A and B two IEEE 754 single precision numbers. Calculate A+B , A-B and B-A 

 

 

A = 0 10000010 10101000000000000000000 

B = 0 10000001 00100000000000000000000 
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