Chapter 2: Data Representation

Introduction
The information processed by a computer can be of different types (text, numbers,
etc.) but it is always represented and manipulated by the computer in binary form.
All information will be processed as a series of 0 and 1. The coding of information
consists in establishing correspondence between the external (usual) information
representation of information and its internal representation in the machine, which is a

series of bits. We use binary representation because it is simple and easy to make.

Data representation is defined as the methods used to represent data in computers. In other

words, it refers to the form in which data is stored and processed.
1. Binary Coding :

There are many binary coding:

1.1 Binary coding pure (natural binary code)

Binary coding pure binary is also qualified as natural binary. This coding has
already been discussed in Chapter 1. Indeed, in this coding we associate with each
positive integer the value which corresponds to it according to the binary number

system. Thus, by having n bits we can code the values between [0 and 2"[.

Example:
On 6 bits: (35) 10 = (100011) ,
Please note the value (35) 14 is not representable on 5 bits. Indeed, remember that to code a
value on n bits, it must be between [0 and 2"[.
In our case (5 bits) between [0 et 2°[= [0 et 32].

In this code, numbers are represented in straight binary (b=2). This code is simple and easy
to implement, but it has the disadvantage of changing more binary digits between two
consecutive numbers.
For example the case for the transition from the decimal 3 to 4 for which the bits of weight
1 and 2 go from 1 to 0 and the weight bit 3 pass from 0 to 1. (The Passage from 011 to 100

implies the modification of 3 bits).

To avoid this disadvantage, the Gray code is the most used.

Chapter 2: Data Representation

1.2 Gray code (the reflected binary code)

In Gray code two consecutive numbers differ from each other by only one bit. Gray code is
not suitable for arithmetic operations but it is widely used in digital transmission systems to
aid in error correction (minimizes the occurrence of errors), improves the signal’s quality and

consumes less power.

Like natural binary, Gray code can code any natural integer number.
Note: a reflected code cannot be used for arithmetic operations.

The link between a code n coded in Gray code and a code N coded in binary is as follows:

N & 2N
n—=——
2
There is another method to build the Gray code:

& & B
T~y

1 0 0 1 O
3 5 5 8 &
1 1 0 1 1

The first bit on the left remains the same, then from left to right to make the sum of the
adjacent bits without restraint
1. (10010)2=(11011)Gray
- Binary-to-Gray Code Conversion
Conversion between binary code and Gray code is sometimes useful. The following rules

explain how to convert from a binary number to a Gray code word:

1. The most significant bit (left-most) in the Gray code is the same as the corresponding
MSB in the binary number.

2. Going from left to right, add each adjacent pair of binary code bits to get the next
Gray code bit. Discard carries.

Note: the Gray code always has the same number of bits as the natural binary

representation.

Chapter 2: Data Representation

Example: consider a 4-digit number written in natural binary (b;bsb;by),, the Gray code

(23228180)ec 15 oObtained as follows :

+

NN

Binary code js f; \[, fﬂ
Gray code g; gz g 9o

For example, the conversion of the binary number 10110 to Gray code is as follows:

l-+—>0-+—=1-+—=1-+—0 Binary
| l ! l |
1 1 l 0 1 Gray

The Gray code is 11101.

Example: convert values 35 and 36 to straight binary and Gray code

Binary 35=(100 01 1), 36=(100 100),

Gray code 35=(110 01 0)g 36=(110 110)

Note: the Gray code is called reflected binary, because the n-1 bits are generated by reflection

(mirror).
Where the Gray code can be created as follows:
1. A starting code is established: zero is coded 0 and one is coded 1.
2. Then, each time you need an additional bit, we symmetrize the numbers already
obtained (like a reflection in a mirror).

3. We add a 1 at the start of the new numbers and a zero on the old ones.

0 .00 0 .00 0 000
1 .01 1 01 1001
2 .11 o 11 2 011
3 .10 3 10 3 010
4 . & AR 4 110
5. ‘E; k;;x 5111
6 . - 6 101
7 . L 7 100

Chapter 2: Data Representation

Example: write numbers from 0 to 15 in natural binary and Gray code

decimal Binary Gray
0 0000 0000
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100
9 1001 1101
10 1010 1111
11 1011 1110
12 1100 1010
13 1101 1011
14 1110 1001
15 1111 1000

- Gray Code-to-Binary Conversion

- The MSB remains the same as in Gray code (unchanged)
- Starting from left to right, each bit of the binary code is added to its diagonal neighbor in
Gray code. The sum is carried over to the lower line which corresponds to the binary code.

Carries are neglected.

Gray code gs gz g: 90
+ +
b; b; bl bﬂ

For example, the conversion of the Gray code word 11011 to binary is as follows:

Binary code

1 1 0 1 1 Gray
L+ b _+ b+ +7
1 0 0 1 0 Binary

The binary number is 10010.
Example: convert the Gray (1 10 01 0)y into decimal

(11T0010)e=(100011), =35
4

Chapter 2: Data Representation

1.3 BCD code (Binary Coded Decimal)

To move from decimal to binary, successive divisions must be made. There are
other simplified methods for the transition from decimal to binary (the BCD code,

Excess 3 ...). The BCD is the most used code.
In BCD, each decimal digit is replaced by its 4-bit binary equivalent.

decimal 0 1 2 3 4 5 6 7 8 9

Binary 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

Example: convert the number 275 into BCD Decimal BCD code
2 = (0010
()2 0 0000
7= (0111)2 1 0001
5= (0101)> 2 0010
275= (0010 0111 0101) gep | 3 0011
4 0100
1 2 9 o 6 2 5 0101
/ J \ / J \ 6 0110
0001 0010 1001 0101 0110 0010 7 0111
8 1000
129 = (0001 0010 1001)gcp 562 = (0101 0110 0010)gcp | 9 1001
Remark:

In the BCD code: For the addition, If there is a restraint or the result obtained not belonging to
the BCD (the result is > 9) we must add 6 = (0110) ,

5 o0nom 137= 000100176111
t) 00100101 + 99 +0000] 1001|1001
= 0111011 »9 0001 | 1101 | 0000
010 46 + 0110/0110
0100 0001 0010|0011 0110

= 2 3 6

Chapter 2: Data Representation

1.4 Excess3 code (BCD+3)

In Excess3, each decimal digit is coded separately in its binary + 3 equivalent.

Decimal BCD Excess-3
8421 BCD +0011
0 0000 0011 1 2 9
1 0001 0100
2 0010 0101
3 0011 0110 / \
4 0100 044
5 0101 1000
6 0110 1001
7 i I 60 $:0045.0
8 1000 20 4
9 1001 1509

Remark: In excess3 code 3: For the addition, if there is a restraint we must add 3
(+0011), if not we subtract 3 (- 0011),

Examples:
45 = 001LP| 0111] 1000 137 = 01o@| b11§| 1010
+90 40011 1100] 0011 + 90 +0011] 1100] 1100
0111| 0011| 1011 1000 0011/ 0110
0011 | +0011J- 0011 0011 | +0011}4+ 0011
=0100| 0110] 1000 =0101| 0110 1001
=1 3 5 =2 3 6

Chapter 2: Data Representation

2. Data types :
2.1 Alphanumeric Data (Characters):
Set of characters including letters, special characters and numerals that are not used in
calculations. E.g : address, name
2.2 Numeric Data (Numbers)
Is a data in the form of numbers that can be used in arithmetic calculations.
- Unsigned Integers (positive numbers). E.g : age, number of students in class,...

- Signed Integers. E.g : temperature,...

- Real numbers. E.g score, weight, size.....

3. Characters representation :

Though computers deal use binary to represent data, humans usually deal with
information as symbolic alphabetic and numeric data. So to allow computers to
handle user readable alpha/numeric data, a system to encode characters as binary

numbers was created.

The set of alphanumeric characters includes letters 'a'......"2", 'A....... /', numerals 0.....9, and
special characters +,-.*, ? #. The character representationis done by a correspondence table

specific to each code used.

There are a number of standards, we can cite examples:
- EBCDIC (Extended Binary Coded Decimal Interchange Code) : 8-bit encoding,
mainly used by IBM.
- ASCI (American Standard Code for Information Interchange): each character on 7
bits = 128 characters
- Extended ASCII: each characteron 8 bits - 256 characters
Unicode : it is the coding of most alphabets: Arabic, Chinese, Hebrew, Cyrillic

It includes several standards: UTF-8, UTF-16, UTF-32,.....

Example: use the Extended ASCII table to code the following characters ‘4” *?’ ‘o’

A > Code (41)16= (01000001),
‘a2 Code (61)16 = (01100001),
2> Code (3F) 15 = (00111111),

Chapter 2: Data Representation

7-bit ASCI| Code Table

Leftmost Three Bits

Rightmost

Four Bits 000 001 010 011 100 101 110 111

0000| NUL DLE SpaceO @ P o]

0001 SOH DC1 ! 1 A Q a q

0010 STX DC2 " 2 B R b r

0011 ETX DC3 # 3 c S c z

0100 EOT DC4 $ 4 D T d t

0101 ENQ NAK % 5 E U = u

0110 ACK SYN & 6 F V f v

0111 BEL. ETB ° 7 G w g W

1000 BS CAN (8 H X h X

1001 HT EM) 9 | Y: i y

1010| LF suB * ; J z j z

1011 VT ESC + : K [k {

1100 FF FS y < L \ | |

1101 CR GS - = M] m }

1110 SO RS > N A " =

111 Sl us / ? O - o DEL
Decimal Hex Char Decimal Hex Char |Decimal Hex Char |Decimal Hex Char
0 0 [NULL] 32 20 [SPACE] | 64 40 @ 96 60 '
1 1 [START OF HEADING] 33 21 ! 65 41 A aq7 61 a
2 2 [START OF TEXT] 34 22 " 66 42 B a8 62 b
3 3 [END OF TEXT] 35 23 # 67 43 C a9 63 c
4 4 [END OF TRANSMISSION] 36 24 $ 68 44 D 100 64 d
5 5 [ENQUIRY] 37 25 % 69 45 E 101 65 e
[6 [ACKNOWLEDGE] 38 26 & 70 46 F 102 66 f
T 7 [BELL] 39 27 ! 71 47 G 103 67 g
8 8 [BACKSPACE] 40 28 72 48 H 104 68 h
9 9 [HORIZONTAL TAB| 41 29) 73 49 1 105 09 i
10 A [LINE FEED] 42 28+ 74 an) 106 6A
11 B [VERTICAL TAB] 43 2B + 75 4B K 107 6B k
12 C [FORM FEED] 44 2, 76 i L 108 6C |
13 D [CARRIAGE RETURN] 45 2D - 77 4D M 109 6D m
14 E [SHIFT OUT] 46 2E . 78 4F N 110 6E n
15 F [SHIFT IN] 47 2F / 79 4F 0 111 6F]
16 10 [DATA LINK ESCAPE] 48 30 1] 80 50 P 112 70 p
17 11 [DEVICE CONTROL 1] 49 31 1 81 51 Q 113 71 q
18 12 [DEVICE CONTROL 2] 50 32 2 82 52 R 114 72 r
19 13 [DEVICE CONTROL 3] 51 33 3 83 53 S 115 73 s
20 14 [DEVICE CONTROL 4] 52 34 4 84 54 T 116 14 t
21 15 [NEGATIVE ACKNOWLEDGE] | 53 3% 5 85 55 U 117 75 u
22 16 [SYNCHRONOQUS IDLE] 54 36 6 86 56 \") 118 76 v
23 17 [ENGOF TRANS. BLOCK] |55 Y 87 57 W 119 77w
24 18 [CANCEL] 56 3 8 88 58 X 120 8 x
25 19 [END OF MEDIUM] 57 39 9 89 50 Y 121 9y
26 1A [SUBSTITUTE] 58 3A H 90 5A Z 122 TA z
27 1B [ESCAPE] 59 3B H 91 5B [123 B {
28 1C [FILE SEPARATOR] 60 3C < 92 5C \ 124 7C \
20 1D [GROUP SEPARATOR] 61 3D = a3 5D 1 125 D }
30 1E [RECORD SEPARATCR] 62 3E > 94 56~ 126 E -~
31 1F [UNIT SEPARATOR] 63 3F 4 95 5F _ 127 TF [DEL]

Chapter 2: Data Representation

4. Integer representation :
4.1 Unsigned Integers
Unsigned integers can represent zero and positive integers. Natural binary is used to

represent these numbers.
The range of unsigned intcgers for n bits register is [0, 2"-1]
Example: write the value 35 as an 8-bits unsigned integer.

35= (00100011),

4.2 Signed Integers

Signed integers can represent zero, positive and negative integers.

Problem: how to indicate the machine that a number is negative or positive?

Solution: Three (3) representations (3 methods) had been proposed for signed integers:

1. Sign-Magnitude representation (Sign + Absolute value)
2. One's Complement representation (1's Complement)

3. Tow's Complement representation (2's Complement)

In all three (3) representations, leftmost bit (the most-significant bit (msb)) is called

the sign bit. The sign bit is used to represent the sign of the integer, with O for positive

integers and 1 for negative integers.

4.2.1 Signed-Magnitude
- The most significant bit (MSB) is the sign bit, with value of 0 representing positive integer

and 1 negative integer.
- The remaining n-1 bits represent the magnitude (absolute value) of the integer.
The range of numbers that can be represented by n-bit signed-magnitude is
-2™'-1), + @"-1)

In Signed-Magnitude representation (Sign + Absolute value), if we work on n bits, then:
e the leftmost bit (the most-significant bit (msb)) is used to indicate the sign:

= 1 :negative sign

= (0 : positive sign
e The other (n -1) bits represent the absolute value (magnitude) of the integer.

Chapter 2: Data Representation

Example: if we work on 4 bits.

1(001 0|001
/ /o

Sign Magnitude (Absolute value) Sign Magnitude

1001 is the representation of — 1 0001 is the representation of + 1

Example: convert the following values -15 and +20 into 8-bit Signed-Magnitude numbers.

-15=10001111 +20=0/0010100
Sign Magnitude Sign Magnitude

e Conversion Signed-Magnitude 2decimal

Convert the n-1 bits to decimal and introduce (+) if the MSB=0 or (-) otherwise.

Example: the following binary numbers are 8-bit Signed-magnitude numbers. What are the
decimal values?

(00001001), = +9 (10000101); =-5

If using 3 bits, (on 3 bits) we obtain:

Sign-M | Decimal Sign Mag Decimal
000 | +0 0 00 +0
001 | +1 0 01 +1
010 | +2 0 10 +2
011 | +3 0 11 +3
100 |-0 1 00 -0
101 | -1 1 01 -1
110 | -2 1 10 -2
111 | -3 1 11 -3

10

Chapter 2: Data Representation

Decimal numbers are between -3 and +3

-3< N £+3
-(42-1)st+(4£1)

-2 “1)sN<+(2-1)
(3-1 (3-1)
-2 1)sN=+(2 -1)
If we work on n bits, the range (interval) of the decimal numbers that we can represent

in Sign-Magnitude is:
(n-1) (n-1)

(2 -N)sNs+(2 -1

Question: perform in 4-bit Signed-Magnitude representation the following operations and

give the decimal results. 5+2 5-2
342 5-2=5+(-2)
0101 0101
+0010 +1010
0111 1111
Correct result +7 incorrect result -7

o Signed-Magnitude drawbacks
Signed-Magnitude method is very simple, but it has some drawbacks:

e There are two representations of zero (00......... 00) and (10......... 00) which could
lead to inefficiency and confusion. (E.g. to test if a number is 0 or not, the CPU will
need two tests).

e The difficulty of arithmetic operations which are complicated, because of the sign bit
which must be treated separately (designing an appropriate circuit is difficult).

e The sign of both numbers have to be examined before the operation is determined
(addition or subtraction).

e Two separate circuits are required to do the addition and subtraction operations (the

ideal is to use a single adder-subtractor circuit that does both addition and subtraction.)

11

Chapter 2: Data Representation

4.2.2 One’s complement

- Positive numbers are obtained by conversion to natural binary.

- Negative numbers are obtained by inverting each bit of the positive opposite (0 becomes 1
and 1 becomes 0).

Example: convert the following values to 8-bit 1’s complement +12 and -23

o +12=(00001100)2
. Positive value of -23 is +23 =(00010111),, 1’s complement =2 (11101000),

Question: find the same values into 16-bit 1’s complement
Answer:
o +12=(0000000000001100),
. Positive value of -23 is +23 =(0000000000010111), ,
I’s complement =» (1111111111101000),
The range of numbers that can be represented by n-bit 1's complement is
"1, + @)
o Conversion 1’s complement = decimal
- Determine whether the number is positive or negative (look at the MSB)
- If the number is positive, convert to decimal
- If the number is negative, complement the number, convert to decimal and introduce

the sign (-)
Example:
What is the decimal value represented by the value 101010 in 1's complement of 6 bits?

- The MSB = 1 indicates that this is a negative number. (Sign bitis 1 = negative)
- Value = - (010101)2: - (21)10

Example: convert the following 8-bit 1’s complement numbers to decimal

(00001111), (11110011);,
(00001111),=+15 (11110011), =-12
Example: convert the following 16-bit 1’s complement numbers to decimal
(IT11111111100110), (ITTITI1I11111111),
(1111111111100110), =-25 (1TT1111111111111), =-0

12

Chapter 2: Data Representation

If we work on 3 bits:

1'sC Binary Decimal
000 000 +0
001 001 +1
010 010 +2
011 011 +3
100 -011 -3
101 -010 -2
110 -001 -1
111 -000 -0

Decimal numbers are between -3 and +3

-3< N <43
-(Azf-l)st+(4;1)

-2 -“1)SN<+(2-1)
(3-1) G-
-2 -1)SN<+(2 1)
If we work on n bits, the range (interval) of the decimal numbers that we can represent

in 1's complement is:
(n-1) (n-1)

-2 -N)sNs+(2 -1

o [’s complement addition/ subtraction
Addition in 1’s complement is done as follows:
0 Add the two numbers.
o Ifan end carry occurs, add the carry to the result.
Subtraction in 1’s complement is done as follows:
0 Transform the subtraction to the addition of the 1’s complement.

0 Use 1’s complement addition rules.

13

Chapter 2: Data Representation

Example: calculate the following operations using 1's complement form (4-bit)

5+2 -5-2 5-2 542
5+2 (-3)+(-2) 3+(-2) (-5)+2
X g;{ié 11010 0101 1010
+ 1101 + 1101 +0010
) [E“ 0111 0010 1100
N + 1 + 1 =3
1000 0011
= —7 :+3
Note :

The disadvantage of 1’s complement method is the double representation of zero +0 and - 0.

Question: perform the following operations using 1's complement form (4-bit)

5+4 -5 -7
Answer:
5+4 (-5)+-7)
1

'0101 + 1238
+0w00

1001 + 001f
=
incorrect result 0011

= +3 incorrect

The results are incorrect because +9 and -12 are outside the range [-7, +7]

. Overflow problem
- The overflow occurs because the width of registers is finite.
- The overflow occurs when two numbers of n bits each are
added and the resultoccupies n+1 digits.
- An overflow can be detected when the sign of the result is
different from the sign ofthe two numbers.
- The overflow cannot occur when the two numbers have different signs.

14

Chapter 2: Data Representation

Note:
In unsigned integer addition, overflow occurs if there is end carry.

4.2.3 Two's complement
- Positive number is obtained by conversion to natural binary.
- The 2's complement of negative number equals its 1's complement + 1
Example: convert the following values to 8-bit 2’s complement +12 and -35
e +12=(00001100)
. Positive value of -35 is +35 =(00100011) 2, 1’s complement of-35 =
(11011100)2
The 2's complement of -35=(11011100)2 +1 = (11011101)2
Question: find the same values into 16-bit 2°s complement
Answer:
e +12=(0000000000001100).
. Positive value of -35 is +35 =(0000000000100011)2,

I’'s complementof -35 =» (1111111111011100),
The 2's complementof -35= (1111111111011100); +1 =(1111111111011101)2

Note:
The easiest way to obtain the 2's complement of a negative number is by
starting from LSB (rightmost bit) of the positive value, leaving all the Os and the

first 1 unchanged and complements all the remaining bits.

Example: convert the following values to 8-bit 2°s complement -24 and -19

+24= (00011000) +19=(00010011),
-24= (11101000, -19= (11101101),

The range of numbers that can be represented by n-bit 2's complement is:
[_2n-1, + (2n-1_1)]

o Conversion 2’s complement Ddecimal
- Determine whether the number is positive or negative (look at the MSB).

- If the number is positive, convert to decimal.

- If the number is negative, flip all the bits and add 1 then convert to decimal (introduce

the sign -)

15

Chapter 2: Data Representation

Note:
Another method to obtain the decimal value of 2's complement negative number is to leave
(from the LSB) all the Os and the first 1 unchanged, flip all the remaining bits then convert to

decimal (introduce the sign -)

Example: convert the following 8-bit 2’s complement numbers to decimal
(00001110), (10001000), (11101110),
. (00001110),=+14
. (10001000); =-(01111000), =- 120
e (11101110), =-(00010010), = -18
Example: convert the following 16-bit 2’s complement numbers to decimal

(1111111111101111), (1111111111111000),
e (1111111111101111), =-(0000000000010001), = -17
e (1111111111111000), = - (0000000000001000), =- 8

If we work on 3 bits:

2'sC Binary Decimal
000 000 +0
001 001 +1
010 010 + 2
011 011 +3
100 - 100 -4
101 -011 -3
110 - 010 -2
111 - 001 -1

Decimal numbers are between -4 and +3

-4< N £+43
-(42)5Ns+(42-1)

“(2)sNs+(2-1)
(3-1) (3-1)
~(2 H)sSNs+(2 -1

16

Chapter 2: Data Representation

If we work on n bits, the range (interval) of the decimal numbers that we can represent

in 2's complement is:
(n-1) (n-1)

o 2’s complement addition/ subtraction
Addition / subtraction in 2’s complement is similar to 1’s complement with the following
difference:
o Ifan end carry occurs it’ll be dropped rather than added to the result

Example: Calculate the following operations using 2's complement form (4-bit)

5+2 -5-2 5-2 542
5+2 -5+(-2) 5+(-2) 542
0101 1011 0101 1011
+0010 +1110 +1110 +0010
0111 1001 0011 1101
=+7 =-7 =+3 =-3

Question: perform the following operations using 2's complement form (4-bit)

5+4 -5-7
Answer:
St4 (-5)+(-7)
1
+ gigcll 10'11
............ + 1001
- _1;) o 0100

] =+4 incorrect result
incorrect result

Overflow problem!!!

The results are incorrect because +9 and -12 are outside the range [-8,+7]

17

Chapter 2: Data Representation

* Advantages of 2's complement
- The most used representation for negative numbers in computers
- One representation of zero
- One additional number - 2™
Note :
In 1's complement or 2's complement, arithmetic operations are advantageous. The
subtraction of a number is reduced to the addition of its complement. This allows the machine

to use a single adder-subtractor circuit that does both addition and subtraction.

5. Real number representation:
A real (fractional) number has two parts: integer part and fractional

(decimal) part these parts are separated by a dot (.) called the decimal
point. The problem in real (fractional) number representation is how to
indicate to the machine the position of the decimal point? There are two

ways to represent real numbers:

5.1 Fixed-Point Representation
In this representation, the most significant bit represents the sign (+/-),

the integer part is represented on a fixed n bits and the fractional part on

a fixed p bits.
Sign Integer part Fractional part
1bit n bits p bits

Example: assume a 6-bit real number with 3 bits for integer part and 2 bits for the

fractional part.
o Find the representation of the following values ~ +5.75 -0.25-4.125

e (Calculate the range of the possible values

Answer:
o +5.75 =(010111),
20.25 =(100001),
-4.125 impossible
) The range 1s [-7.75,+7.75]
[-7.75,-7.50,-7.25, . cccoeiiiiiiiiiiiea FO.00. . e +7.25, +7.50, +7.75]

Chapter 2: Data Representation

e Fixed-Pointadvantages

e Fixed point representation is easy to implement.

e Arithmetic operations are simple and can be performed faster (like integers).
¢ Fixed-Pointdrawbacks

e In fixed point representation, range of representable numbers is limited.

e Loss of precision.

e There is no standard for fixed point representation.

5.2 Floating-Point Representation
Floating point representation is similar to scientific notation. The proper format for
normalized scientific notation of a number N is + a x 10? where 1< « < 10 and b is the

power of 10. In binary N=+ a x 22 where 1< a <2 andb is the power of 2.

Question: express the following numbers in normalized scientific notation
637.8 -0.0475 89 -(10101), (1101.011),
(0.01101); (33.476)s (279.DE3)1s

Answer:

637.8= +6.378 x1072 -0.0475=-4.75 x10? 89=+8.9 x10™!
-(10101),=-(1.0101),x 2** (1101.011),=+(1.101011),x 2"

(0.01101),=+ (1.101),x 22 (33.476)5=(3.3476)3x 87!

(279.DE3)16=(2.79DE3)16 x 1672

In the early days of computing, each computer constructor (brand) had its own floating
point format. This had the unfortunate effect that a code that worked perfectly well on one

machine could crash on another one (portability limited).
e |EEE 754 Floating Point representation standard

IEEE 754 is a technical standard for floating-point representation which was established in
1985 by the Institute of Electrical and Electronics Engineers (IEEE).

IEEE 754 has 3 basic components:

1. The Sign
2. The Biased Exponent
3. The Mantissa

19

Chapter 2: Data Representation

The IEEE754 Standard defines three (3) formats for representing floating point numbers:
e Single precision on 32 bits
e Double precision on 64 bits

e Extended precision on 80 bits

O IEEE 754 single precision
= Normalized Form:

The number is expressed as follows:

* | bit for sign

+ 8 bits for the biased (shifted) exponent. Biased exponent = Real exponent +127. The
exponent is shifted by 281-1=127. This shift is useful because the exponent can be positive
or negative.

« 23 bits for the mantissa

The following steps provide the method to convert a real number to floating point format:
1. Convert the number to Binary
2. Normalize the number under the form N= (+/-)(1.m),.2%% (m: mantissa)
3. Calculate the Biased exponent, BE=RE+ bias= RE+127
4. Store the sign, BE and the mantissa (m) in 32 bits

- 32 Bits >

Signe Biased exponent Mantissa

«—] Bt—> <«——28Bils > < 23 Bts — ™

Note:
Since the first bit of a normalized binary floating point number is always 1 (always

exists), we don't need to store it explicitly in the memory. This bit is called **hidden bit™.

Examples: convert the following numbers to IEEE 754 single-precision.

-3.625 +65.75 -0.125
e N=-3625
1. Convert to binary N =-(11.101),
2. Normalize N =-(1.1101),x 2" (Mantissa (M) = 1101)

3. Calculate the Biased exponent , BE= RE+127= 1+127 = 128 = 10000000,
4. Store S, BE and M in 32 bits

| 1]10000000 | 11010000000000000000000 |
20

Chapter 2: Data Representation

e N=+65.75

1. Convert to binary N =+ (1000001.11)-

2. Normalize N =+ (1.00000111)>x2"°
3. Calculate the Biased exponent, BE=RE+127=6+127 = 133

4. Store S, BE and M in 32 bits

‘0 10000101 0000011 1000000000000000‘
e N=-0.125

1. Convert to binary N =-(0.001)>

2. Normalize N=+(1.0)x2"
3. Calculate the Biased exponent, BE=RE+127=-3+127= 124
4. Store S, BE and M in 32 bits

‘l 0111100 00000000000000000000000‘

O IEEE 754 single precision 2 decimal

To converta number written in [IEEE754 single precision to decimal:
1. Calculate the Real exponent, RE=BE-127
2. Calculate value = sign x(1, mantissa), x 2®E, with sign = =1

3. Convert the value to decimal (polynomial form)
Examples: convert to decimal the following IEEE 754 single-precision numbers.

(C0980000)16 (42484000)46

e N=(C0980000);¢
Convert to binary N = (1 10000001 00110000000000000000000),
1. Calculate the Real exponent, RE= BE-127 =129-127=+2
2. N =-(1.0011), x 2*
3. Convert the value to decimal N = - (1.0011), x 2**= - (100.11), = - 4.75
» (42484000);6 = +50.0625

= Denormalized Form

Normalized form has a serious problem, with an implicit leading 1 for the fraction; it
cannot represent the number zero! And the numbers close to zero.

Denormalized form was devised to represent zero and other numbers.

21

Chapter 2: Data Representation

For BE=0, the numbers are in the Denormalized form. An implicit leading 0 (instead of 1) is used
for the Mantissa (fraction); and the actual exponent is always -126. Hence, the number zero can be
represented with E=0 and M=0 (because 0.0x2%=0).

We can also represent very small positive and negative numbers in de-normalized form with E=0.
For example, if S=1, BE=0, and M=011 0000 0000 0000 0000 0000. The actual Mantissa
(fraction) is: 0.011=1x22+1x23=0.375. Since S=1, it is a negative number. With BE=0, the actual
exponent is -126. Hence the number is -0.375x2%° which is an extremely small negative number
(close to zero).

O Special Values

*7ero:

|SIGNE =0/1 EXPONENT = (000.....0 MANTISSA =000.....0|

*Infinity (+infinity, -infinity): result of overflow or division by 0

[SIGNE =0/1 ExpPONENT = I11.....1 maNTIssa —000.....0)
*NAN (Not A Number): undefined values such as:
(+0) / (+0) (Z00)/ (£0) (0)x(=0) 0%(+o0)
o0 -0 -0+ square root of a negative number
ISIGNE = 0/1 ExpPoNENT = I 11.....1 MANTISSA # 000...... 0]

In summary, the value (v) is calculated as follows:

e FOr1 < BE < 254, N = (-1)° x 1.M x 27 These numbers are in the so-called
Normalized form. The sign-bit represents the sign of the number. Fractional part (1.M) is
normalized with an implicit leading 1. The exponent is bias (or in excess) of 127, so as to
represent both positive and negative exponent. The range of exponent is -126 to +127.

eFor E = 0, N = (-1)° x 0.M x 2% These numbers are in the so-called
Denormalized form. The exponent of 27'*° evaluates to a very small number.
Denormalized form is needed to represent zero (with M=0 and BE=0). It can also represent
very small positive and negative number close to zero.

e For E = 255, it represents special values, such as +TINF (positive and negative infinity) and
NaN (not a number).

Summary of the different possible representations on the IEEE 754 standard (Simple Precision)

Sign BE M Value
1 111111111 =255 _0 —oo
0 o
v | 11111111 = 255 20 NaNS
1 | 00000000=0 —0 —0
0 10
1 | 0<BE<255 v M N = 1M x 256127
0 Normalized N = +1.M x 2BE-127
1 N=—-0.M x 2-126
00000000 = 0
0 Denormalized #0 N = 4+0.M x 2-126

22

Chapter 2: Data Representation

Question: What is the largest and smallest positive number in normalized form?

Answer: We have in normalized form:
1<BE<254 wp-126<RE<+127
1.00...02)<1.M<1.11...12) = 1o <RE<(2-2-23)(y9
Smallest normalized positive number = 1,0 x 2-126 = 2-126

Largest normalized positive number = (2-2-23) x 2+127

Note:
There is a compromise between the size of the mantissa (23 bits) representing
the accuracy and the size of the exponent (8 bits) representing the range.
e More digits assigned for the mantissa = higher precision and lower range

e More digits assigned for the exponent=? higher range and lower precision

Note:
The IEEE754 Standard defines three (3) formats for representing floating point numbers:
e Single precision on 32 bits (1bit 8bits 23 bits Bias= 127)
e Double precision on 64 bits (1 bit 11bits 52 bits Bias= 1023)
e Extended precision on 80 bits (1 bit 15 bits 64 bit Bias= 16383)

O IEEE 754 Addition/Subtraction operations

Floating point arithmetic is more complicated than the fixed point. To calculate A+B
(or A-B) we have to follow these steps:
1- Write the two numbers in normalized form
2- Align the exponents (smaller exponent aligned to the larger)
3- Add/subtract the mantissas

4- Renormalize if necessary

Example:

Assume A and B two IEEE 754 single precision numbers. Calculate A+B , A-B and B-A

A =010000010 10101000000000000000000
B =010000001 00100000000000000000000

23

Chapter 2: Data Representation

Note :

A+B

A+B=+(1,10101); x2° +(1,001); x2°
=+ ((L,10101), +(0,1001),)x2* =(10,00111), x2°=(1,000111), x2*
A+B=0 10000011 00011100000000000000000

A-B

A-B=+(1,10101), x2° -(1,001), x2°

=+ ((1,10101); - (0,1001);)x2° =(1,00011), x2’
A-B=010000010 00011000000000000000000)

B-A

B-A=(1,001), x2*-(1,10101), x2°
= ((0,1001); - (1,10101);)x2* =- ((1.10101) - (0,1001);)x2° =-(1,00011); x2°
B-A=1 10000010 00011000000000000000000

B-A can be obtained directly by flipping the sign of the operation A-B.

24

