Tutorial (TD): Series of Exercises n ${ }^{\circ}$ 3

Exercise 1

1. Find the hexadecimal representation in ASCII of the word: Ms 1
2. Find the word represented in ASCII hexadecimal: 426974
3. Find the word represented in binary ASCII: 100001011000011100011

Reminders: The Code of Character ' 0 ' is $(48)_{10}$, The Code of the 'Space' character is $(32)_{10}$ The Code of Character ' A ' is $(65)_{10}$, The Code of Character ' a ' is $(97)_{10}$

Exercise 2

1. Code on 4 bits the integers $+\mathbf{7}, \mathbf{2}, \mathbf{0},-\mathbf{2},-\mathbf{7}$ and $-\mathbf{8},+\mathbf{8}$ with the following representations:
\checkmark Signed-Magnitude (Sign + Absolute value).
\checkmark One's Complement (1's C).
\checkmark Tow's Complement (2's C).
2. Indicate the value coded by $\mathbf{1 1 0 1 1 0 0 1 0 1 1 1 0 1 0 1}$ which represents an integer signed in Tow's

Complement (2 's C) on 16 bits.
\checkmark Same question with 0001000011101101.
3. Give the decimal value corresponding to the Octal content on 8 bits, this content is represented in $\mathbf{1} \mathbf{s C}$: (273) $\mathbf{8}_{\mathbf{;}}$ same question with the hexadecimal content in 2's \mathbf{C} on 8 bits: (D3) $\mathbf{1 6}_{\mathbf{1 6}}$
3. Perform (on 6 bits) in 1's \mathbf{C} then in 2 's \mathbf{C} the following operations:

$$
+19+5 ;+20+15 ;-13-12 ;-21-17 ;+19-3 ;+2-11 ;-18-14 .
$$

Exercise 3

A 32 -bit machine whose octal content is equal to $37724000000_{(8)}$
What is the decimal equivalent of this content if we consider that it represents:

1. An integer value in 2 's C.
2. A real value in notation of the simple precision floating point (standard IEEE 754).

Exercise 4

Give in hexadecimal, the representation in SP floating point (IEEE 754) following numbers:

$$
\begin{aligned}
& +64.5_{(10)} \quad+8.375_{(10)} \\
& -2.625_{(10)} \times 2^{-129} \quad+5 \times 2^{-128}
\end{aligned}
$$

Exercise 5

Taking the notation of the simple precision floating point (32 bits) of the IEEE 754 standard
1- Give the largest and smallest positive number in normalized form ($N p_{\min }, N p_{\max }$) representable in the form $\pm \mathrm{a} \times 2^{\mathrm{b}}$ (a and b are decimal)

2- Put in the form $\pm \mathrm{a} \times 2^{\mathrm{b}}$ The two following hexadecimal contents:
$\mathrm{X}=\mathrm{AE} 800000, \mathrm{Y}=\mathrm{AF} 600000$ (a is binary and b decimal)
3- Calculate $Z=X-Y$
4- Deduce the representation of Z

