\qquad

University of M'sila

Faculty of: Technology
Common Base

Second Series of exercises

Exercise 01:

I- A mobile travel a distance in 3 phases. The $\mathbf{1} \boldsymbol{s} \boldsymbol{t}$ is done at the speed of $\mathbf{2 5 K m} / \mathbf{h}$ for $\boldsymbol{t}_{\mathbf{1}}=$ $\mathbf{4}$ minutes, the $\mathbf{2} \boldsymbol{n d}$ phase is done at the speed of $\mathbf{5 0 k m} / \boldsymbol{h}$ for $\boldsymbol{t}_{\mathbf{1}}=\mathbf{8}$ minutes, and finally the $\mathbf{3 r d}$ phase is done at the speed of $20 \mathbf{k m} / \mathbf{h}$ for $\boldsymbol{t}_{\mathbf{3}}=\mathbf{2}$ minutes.

- Find the average speed of this course.

II- A runner crosses, $\mathbf{1 . 5}$ times, a circular track with radius $\boldsymbol{R}=\mathbf{2 0} \mathbf{m}$ for a duration $\boldsymbol{t}=$
50 s. What are the average speed and the average velocity vector?
III- A particle moves in rectilinear motion whose equation of is: $\boldsymbol{x}=\mathbf{3}\left(\mathbf{t}^{\mathbf{3}}-\mathbf{9 t}^{\mathbf{2}}+\mathbf{1 5 t}\right) \boldsymbol{m}$.
$\mathbf{1}^{\circ} /$ Describe the phases of motion.
$\mathbf{2}^{\circ} /$ What is the distance traveled during the' $\mathbf{6}$ secondes'
$\mathbf{3}^{\circ} /$ What is the displacement for this same period

Exercise 02: (Additional)

Two motorists separated by $\mathbf{9 0} \mathrm{m}$, one starts from point \boldsymbol{A} (taken as origin of times and abscissa) at the constant speed of $\mathbf{5} \mathbf{~ m} / \mathbf{s}$, while the other at the speed of $\mathbf{2} \mathbf{m} / \mathbf{s}$ in the same direction.
$\mathbf{1}^{\circ}$ / How long does it take for him to catch up with the other motorist?
$\mathbf{2}^{\circ}$ / At what distance he catches him?
$\mathbf{3}^{\circ} /$ What is, at that instant, the displacement of each of them?

Exercise 03:

In the orthonormal basis $(\overrightarrow{\boldsymbol{\imath}}, \overrightarrow{\boldsymbol{\jmath}}, \overrightarrow{\boldsymbol{k}})$, we give the rod-crank (or slider-crank) system where crank $\boldsymbol{O A}$ of length \boldsymbol{l} which is animated by a uniform circular motion with angular velocity $\boldsymbol{\omega}$, drives a connecting rod $\boldsymbol{A B}$ of the same length \boldsymbol{l}, the latter in turn drives a slide \boldsymbol{B}.

fig. 1
$\mathbf{1 \%}$ What are the trajectories of the points $\boldsymbol{A}, \boldsymbol{B}$ and \boldsymbol{M} middle of $\boldsymbol{A B}$.
$\mathbf{2 \%}$ Give expressions of the velocity of points $\boldsymbol{A}, \boldsymbol{B}$ and \boldsymbol{M} as well as their magnitudes.
$\mathbf{3} \%$ Give the expressions of the acceleration of points $\boldsymbol{A}, \boldsymbol{B}$ and \boldsymbol{M} as well as their magnitudes.
4% Show that the motions of the points \boldsymbol{A} and \boldsymbol{M} are central motions.

Exercise 04:

In a polar basis the motion of a particle obeys to the following equations:

$$
\boldsymbol{\rho}(\boldsymbol{t})=\boldsymbol{\alpha} \boldsymbol{e}^{\boldsymbol{\beta t}} \quad \text { and } \boldsymbol{\theta}(\boldsymbol{t})=\boldsymbol{\beta} \boldsymbol{t} \quad(\boldsymbol{\alpha}, \boldsymbol{\beta}) \text { are constants. }
$$

$\mathbf{1} \%$ Determine the trajectory equation. Represent it for $\boldsymbol{\beta}>\mathbf{0}$ and $\boldsymbol{\beta}<\mathbf{0}$.
2% Determine the velocity and acceleration as well as their magnitudes.
3% Determine the radius of curvature $\boldsymbol{\mathcal { R }}$.

Exercise 05:

A particle moves in straight line by a constant velocity $\overrightarrow{\boldsymbol{v}}=\boldsymbol{v}_{0} \overrightarrow{\boldsymbol{\imath}}$, enters a medium where it will be subjected to deceleration $\overrightarrow{\boldsymbol{a}}=-\boldsymbol{k} \boldsymbol{v}^{2} \overrightarrow{\boldsymbol{\imath}}$ (\boldsymbol{k} is a positive constant). By taking the moment of penetration into the medium as the origin of times and spaces
$\mathbf{1}^{\circ}$ / Establish the law to which speed obeys $\overrightarrow{\boldsymbol{v}}(\boldsymbol{t})$.
$\mathbf{2}^{\circ}$ / Give the equation of motion $\boldsymbol{x}(\boldsymbol{t})$.
$\mathbf{3}^{\circ} /$ Show that after a course' \boldsymbol{x}^{\prime} the speed is : $\boldsymbol{v}=\boldsymbol{e x p}(-\boldsymbol{k} \boldsymbol{x})$

Exercise 06: (H.W)

A particle moves in the plane ($\boldsymbol{x} \boldsymbol{x} \boldsymbol{y}$). Starts from the rest at point $\boldsymbol{A}(\mathbf{0 , 0})$, with a velocity that obeys the following law:

$$
\vec{v}=\alpha \cdot \vec{\imath}+\beta x \cdot \vec{\jmath}
$$

$\mathbf{1}^{\circ}$ / Find the equation of the trajectory. What is its type. Draw it?
$\mathbf{2}^{\circ}$ / Give the expression of acceleration and deduce the type of motion.
$3^{\circ} /$ Determine the radius of curvature \mathcal{R}.

Exercise 07: (Additional)

The components of the velocity of a particle, starting from the origin, are:

$$
\dot{\boldsymbol{x}}=\mathbf{6} \boldsymbol{t} \text { and } \dot{\boldsymbol{y}}=\mathbf{8} \boldsymbol{t}
$$

$\mathbf{1}^{\circ}$ / Determine the equation of motion $\boldsymbol{S}(\boldsymbol{t})$
$\mathbf{2}^{\circ}$ / Determine the velocity of the particle.
3° / Determine the tangential and normal accelerations.
3° / Deduce the radius of curvature

Exercise 08: (Additional)

The motion of a point on the periphery of a wheel of radius $\boldsymbol{R}=\mathbf{2} \boldsymbol{m}$, is governed by the equation $\boldsymbol{S}(\boldsymbol{t})=\mathbf{0 . 1} \boldsymbol{t}^{\mathbf{3}}$.
$1^{\circ}-/$ Determine the normal and tangential acceleration of this point $2^{\circ}-/$ What will be its speed after one lap of the course?

