# University of M'sila

Faculty of: Technology

## **Second Series of exercises**

#### Exercise 01:

**I**- A mobile travel a distance in 3 phases. The **1st** is done at the speed of **25Km/h** for  $t_1 = 4$  minutes, the **2nd** phase is done at the speed of **50km/h** for  $t_1 = 8$  minutes, and finally the **3rd** phase is done at the speed of 20**km/h** for  $t_3 = 2$  minutes.

- Find the average speed of this course.

- II- A runner crosses, 1.5 times, a circular track with radius R = 20 m for a duration t = 50 s. What are the average speed and the average velocity vector?
- III-A particle moves in rectilinear motion whose equation of is:  $x = 3(t^3 9t^2 + 15t) m$ .
  - **1°/** Describe the phases of motion.
  - $2^{\circ}$  / What is the distance traveled during the ' 6 secondes '
  - **3°/** What is the displacement for this same period

#### Exercise 02: (Additional)

Two motorists separated by 90 m, one starts from point **A** (taken as origin of times and abscissa) at the constant speed of 5 m/s, while the other at the speed of 2 m/s in the same direction.

- 1°/ How long does it take for him to catch up with the other motorist?
- 2°/ At what distance he catches him?
- **3°/** What is, at that instant, the displacement of each of them?

#### <u>Exercise 03</u>:

In the orthonormal basis  $(\vec{i}, \vec{j}, \vec{k})$ , we give the rod-crank (or slider-crank) system where crank **OA** of length **l** which is animated by a uniform circular motion with angular velocity  $\omega$ , drives a connecting rod **AB** of the same length **l**, the latter in turn drives a slide **B**.



L. Laïssaoui

Common Base

1°/ What are the trajectories of the points A, B and M middle of AB.

 $2^{\circ}$  Give expressions of the velocity of points A, B and M as well as their magnitudes.

**3**' Give the expressions of the acceleration of points **A**,**B** and **M** as well as their magnitudes.

4°/ Show that the motions of the points A and M are central motions.

#### Exercise 04:

*In a polar basis the motion of a particle obeys to the following equations:* 

 $\rho(t) = \alpha e^{\beta t}$  and  $\theta(t) = \beta t$   $(\alpha, \beta)$  are constants.

**1**  $\gamma$  Determine the trajectory equation. Represent it for  $\beta > 0$  and  $\beta < 0$ .

2°/ Determine the velocity and acceleration as well as their magnitudes.

 $\mathbf{3}^{\circ}$ / Determine the radius of curvature  $\mathbf{\mathcal{R}}$  .

#### <u>Exercise 05</u>:

A particle moves in straight line by a constant velocity  $\vec{v} = v_0 \vec{i}$ , enters a medium where it will be subjected to deceleration  $\vec{a} = -kv^2\vec{i}$  (k is a positive constant). By taking the moment of penetration into the medium as the origin of times and spaces

 $1^{\circ}$ /Establish the law to which speed obeys  $ec{v}(t)$  .

 $2^{\circ}/Give$  the equation of motion x(t).

**3°**/Show that after a course 'x' the speed is : v = exp(-kx)

#### Exercise 06: (H.W)

A particle moves in the plane (xoy). Starts from the rest at point A(0,0), with a velocity that obeys the following law:

$$\vec{v} = \alpha . \vec{\iota} + \beta x . \vec{j}$$

1° / Find the equation of the trajectory. What is its type. Draw it?

 $2^{\circ}$  / Give the expression of acceleration and deduce the type of motion.

 $\mathbf{3}^{\circ}$  / Determine the radius of curvature  $\mathbf{\mathcal{R}}$ .

*The components of the velocity of a particle, starting from the origin, are:* 

 $\dot{x} = 6 t$  and  $\dot{y} = 8 t$ 

- $1^{\circ}$  / Determine the equation of motion S(t)
- $2^{\circ}$  / Determine the velocity of the particle.
- $\mathbf{3}^{\circ}$  / Determine the tangential and normal accelerations.
- $\mathbf{3}^{\circ}$  / Deduce the radius of curvature

### Exercise 08: (Additional)

The motion of a point on the periphery of a wheel of radius R = 2 m, is governed by the equation  $S(t) = 0.1 t^3$ .

- **1°-/** Determine the normal and tangential acceleration of this point
- **2°-/** What will be its speed after one lap of the course?