
Chapter 3:
Conditional statements

Algorithms and data structure

Presented by : Dr. Benazi Makhlouf
Academic year : 2023/2024

Contents of chapter 02:

1. Introduction
2. Simple conditional structure
3. Compound conditional structure
4. Conditional multiple choice structure
5. branching

1. Introduction

The program is a set of instructions. Most of these instructions are executed in the order they appear.

Control structures are instructions that modify the sequential flow of the program, such as conditional

structures, loops, function calls, and unconditional jump instructions.

Conditional structures:

We often encounter cases where we need to decide whether an instruction should be executed or not,

depending on whether the condition is true or false.

There are three types of conditional structures:

• simple (if-then)

• compound (if-then-else)

• multiple-choice structure (switch).

2. The simple conditional structure "if-then"
It consists of two parts:

• Condition: a boolean expression whose value is either true or false.

• Block of instructions: executed if the condition is true, or ignored if the condition is false.

Syntax Algorithm

Comments :

• If specifies what to do if the condition is true, but not what to do if it's false.

• condition is always between the words if and then

• To construct the condition, we use comparison operations (>, <, = (==), ≠ (!=), ...) and logical operations

(and (&&), or(||), not(!), ...).

If Condition Then
Block of instructions
EndIf
The rest of the instructions

Algorigram

Cond
? Bloc Inst

Rest inst

oui

Non

C language
Syntaxe

Comments :

• The condition is always enclosed in parentheses ().

• Instructions belonging to if in C are surrounded by two curly braces {}.

• curly braces {} can be omitted if they contain only one instruction.

• In C, the Boolean type is expressed as an int. Where false is expressed as 0 and true is any number other

than 0. (≠ 0)

• There is no "; "after }.

if (Condition)
{

Block of instructions
}
The rest of the instructions

Example
Write a program that reads an integer, then displays a warning if it's negative, then shows us its square.

Algorithm C
algorithm root
var x :integer
Begin
write ("enter a nbr")
read (x)
If x<0 then
write ("nbr is negative")
End If
write ("the square is " , x*x)
End

#include <stdio.h>
int main()
{
int x ;
printf("enter a nbr \n") ;
scanf("%d", &x) ;
if (x<0)
{// can be exempted
printf("nbr is negative \n") ;

}
printf("the square is %d" , x*x) ;
}

The compound conditional structure "if then else"
• The “if.. then... else...” structure is an extension of if simple. The compound conditional instruction “if

else” has three parts:
• Condition : a Boolean expression whose value is true or false.
• First block of instructions : It is executed if the condition is true, or ignored if the condition is false.
• Second block of instructions : It is executed if the condition is false, or ignored if the condition is true

condition true.
Syntax

Algorithm C
If Condition then
instruction block 1

else
instruction block 2

End If
The rest of the instructions

if (Condition)
{
instruction block 1

}
else
{
instruction block 2

}
The rest of the instructions

Algorigram

Con
d? Bloc Inst !

Rest inst

oui
non

Bloc Inst2

Example
Write a program that calculates the absolute value of an integer, then displays it on the screen.

Algorithm C
algorithm absolute
var x, y :entier
begin
write("enter a nbr")
read(x)
If x>=0 then
y←x
else
y←-x
End If
write("|" , x ,"|=",y)
end

#include <stdio.h>
int main(){
int x, y ;
printf("enter a nbr \n") ;
scanf("%d", &x) ;
if (x>=0)
{ // can be deleted
y=x ;

}
else
{ // can be deleted
y=-x ;

}
printf(("|%d|=%d", x, y)) ;

}

if (x>=0)
y=x ;

else
y=-x ;

Conditional assignment in C
If we have a variable v takes one of the values v1 or v2 depending on condition b, i.e. :
if (b)
v=v1 ;

else
v=v2 ;

In this case, the “ … ? … : … ” can be used and its syntax is as follows:
condition ? expression_if_true : expression_if_false

• condition est une condition de type booléen
• expression_if_true Value returned if the condition is true.
• expression_if_false Value returned if the condition is false
Example
• v=b ? v1 : v2 ;
• result= average >=10 ? "Admitted" : "Failed" ;

If-else extension
If-else can be used to test multiple conditions and select the appropriate treatment for each case. For example,
to determine if a student is admitted or not, there are several cases. Either the student is admitted without
compensation, or admitted with compensation, or admitted with debts, or failed. To determine this, we need
to look at the averages of the first and second semesters (s1 and s2), the annual average (MA), and the total
credits earned (Crd).

If s1>=10 and s2>=10 then
write("admitted without compensation")
else
If MA>=10 then
write("admitted with compensation ")
else
If Crd>=45 then
write("admitted with debts ")
else
write("adjourned ")
End If
End If
End If

if (s1>=10 && s2>=10)
printf("admitted without compensation");

else if (MA>=10)
printf("admitted with compensation ") ;

else if (Crd>=45)
printf("admitted with debts ") ;

else
printf("adjourned ") ;

The multiple choice conditional structure "switch"
The switch statement: is a specific case of nested if-else statements. It allows determining the block of code

to be executed based on the value of a single expression. It is used when testing the same expression multiple

times.

The switch statement consists of:

• The expression to be tested: usually of integer or character type, and it is typically a variable. For

example: age.

• The values to be tested with their corresponding block of instructions for each value.

• An optional default block of instructions that will be executed if the current value does not match any

of the values mentioned previously.

Syntax
Algorithm C

case expression of
val_1 : instruction block 1
val_2 : instruction block 2
…
val_n : instruction block n
else
another instruction block

end case
The rest

switch (expression) {
case val_1 :
instruction block 1
break ;

…
case val_n :
instruction block n;
break ;

default:
another instruction block

}
The rest

−expression : calculated to obtain an integer or character value. Usually a variable.

−val_1, ..., val_n : a value or constant of the same type as the expression.

−Instruction block : one or more instructions that are executed if the value of the expression matches val_i.

Algorigram

Rest insts

exp=
val2 Bloc d'inst 2

oui

no

exp=
val1 Bloc d'inst 1

oui

no

exp=
val n Bloc d'inst n

oui

no Autre bloc d'inst

The rules concerning the "switch" statement in C
The execution of the "switch" statement in C differs slightly from the “case" statement in algorithms. In C, after
the block of "case val_i" has been executed, and if the execution does not encounter the "break;" statement, it
will continue to execute the following block until it encounters the "break;" statement. The execution then
proceeds to the rest of the instructions outside the "switch" block.
To make the "switch" statement in C equivalent to the “case" statement in algorithms, it is necessary to add the
"break;" statement at the end of each block.
1. The curly braces {} and the parentheses () are required in C and cannot be removed.
2. The expression inside the "switch" must be of integer or character type.
3. Each "case" label inside the "switch" must be a constant expression.
4. Each val_i value must be different from the other. For example, it is illegal to write case 1 twice.
5. The case val_i can be placed in any order. However, it is recommended to arrange them in ascending order.

This improves the readability of the program.
6. A block of statements can contain any number and type of instructions.
7. The break; statement is optional. It is used to exit a switch immediately, moving the program flow out of the

switch.
8. The default block is optional. If none of the case val_i matches, the execution context will be moved to the

default block. It should be the last case.

If two or more values have the same block of instructions, the algorithm can use a comma. In C, however, we

use the first value without any instructions or break; before the next value with the shared block of

instructions.

Example The algorithm C

7 ,9 : instruction block case 7 :
case 9 :
instruction block
break ;

Example
Write a program that reads an integer less than 10, then displays the number in letters on the screen in English.

Algorithme C
algorithm conversion
var nb :integer
begin
write("enter a nbr")
read(nb)
if nb=0 than
écrire("zero")
else if nb=1 than
write ("one")

else if nb=2 than
write("two")
…
else
write ("not treated")

End if
…

End if

#include <stdio.h>
int main(){

int nb ;
printf("enter a nbr \n") ;
scanf("%d", &nb) ;
if (nb==0)
printf("zero") ;
else if (nb==1)
printf("one") ;

…
else if (nb==9)
printf("nine") ;
else
printf("not treated") ;
return 0 ;

}

Example
Write a program that reads an integer less than 10, then displays the number in letters on the screen in English.

Algorithm C
algorithm conversion
var nb :integer
begin
write("enter a nbr")
read(nb)
case nb of

0 : write ("zero")
1 : write ("one")
2 : write ("two")
…
9 : write ("nine")
else
write ("not treated")

end case
End

#include <stdio.h>
int main(){

int nb ;
printf("enter a nbr \n") ;
scanf("%d", &nb) ;
switch (nb) {
case 0 : printf("zero") ;

break ;
case 1 : printf("one") ;

break ;
…
case 9 : printf("nine") ;

break ;
default:

printf("not treated") ;
}
return 0 ;

}

Branching statement
This is the process of jumping between program instructions executed by the processor, where it performs a

"jump" to a specific address instead of continuing to execute instructions sequentially.

There are four instructions in C that can unconditionally change the flow of execution of a program:

break, goto, continue, and return.

break; statement
• The "break;" statement is used to exit the "switch" statement, moving the flow of execution to the first

instruction after the "switch". In the case of a nested "switch" statement, it will only exit the innermost

"switch" it is directly associated with.

• It is also used to exit loops. In this case, "break;" is usually inside an "if" statement.

Example
switch (grade){
case ‘A’ :
case ‘a’ : printf(" excellent \n") ;

break ;
case ‘b’ : printf("good\n") ;
case ‘c’ : printf("you can do better\n") ;

break ;
default : printf("try again\n") ;

}

goto statement
The execution of the program can be redirected to a named instruction. Any instruction can be named with a

valid ID ("label") followed by a colon ":" before it.

label : instruction;

To access this instruction from anywhere, we use the following syntax:

goto label ;

Example:

here: printf("zero");

To access the instruction "here" from anywhere, we use:

goto here;

continue; statement
It is used with loops and allows the flow to be moved to the end of the loop and to directly proceed to the

next iteration without completing the loop.

return statement

It is used to exit functions (semester 2) and return the result.

Syntax

return expression ;

Example

return 0 ;

End Chapter 03

	Chapter 3:�Conditional statements
	Contents of chapter 02:
	1. Introduction
	2.	 The simple conditional structure "if-then"
	Algorigram
	C language
	Example
	The compound conditional structure "if then else"
	Algorigram
	Example
	Conditional assignment in C
	If-else extension
	The multiple choice conditional structure "switch"
	Syntax
	Algorigram
	The rules concerning the "switch" statement in C
	Slide Number 17
	Example
	Example
	Branching statement
	break; statement
	goto statement
	continue; statement
	Slide Number 24

