
Chapter 2
Minimization Techniques: Compact Problems

Throughout this chapter we show how techniques based on minimization arguments
can be used to establish existence results for various types of problems.

Our aim is not to describe the most general results, but to give a series of ex-
amples, and to show how simple techniques can be refined to treat more complex
cases.

2.1 Coercive Problems

We begin with the following problem, that will provide our guideline through the
whole chapter. We want to find a (weak) solution to

{−�u + q(x)u = f (u) + h(x) in �,

u = 0 on ∂�.
(2.1)

In this section, the general framework is specified by the assumptions

(h1) � ⊂ R
N is bounded and open, q ∈ L∞(�) and q(x) ≥ 0 a.e. in �.

(h2) h ∈ L2(�).

We equip H 1
0 (�) with the scalar product

(u|v) =
∫

�

∇u · ∇v dx +
∫

�

q(x)uv dx, (2.2)

and we denote by ‖ · ‖ the induced norm, equivalent to the standard one.

Remark 2.1.1 In assumption (h1), the requirement q(x) ≥ 0 a.e. is used only to
obtain λ1(−� + q(x)) > 0, which guarantees that (2.2) is indeed a scalar product
and that the induced norm is equivalent to the standard norm of H 1

0 (�), see Re-
mark 1.7.5 and Exercise 9 in Chap. 1. Therefore in all the results of this chapter, and
similarly in all the subsequent chapters, the assumption q ≥ 0 could be replaced be
the “abstract” condition

λ1(−� + q(x)) > 0, (2.3)
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and everything would work perfectly well with no changes in the proofs. The point
is, precisely, that (2.3) is abstract, and nobody knows for which general q’s it is sat-
isfied. We prefer, in this book, to assume an explicit sign condition on q , rather than
an indirect one on λ1. The reader should however keep in mind this clarification.

We begin by assuming the following hypothesis on the nonlinearity f .

(h3) f : R → R is continuous and bounded.

Setting F(t) = ∫ t

0 f (s) ds, the computations carried out in Example 1.3.20 show
that the functional I : H 1

0 (�) → R defined by

I (u) = 1

2

∫

�

|∇u|2 dx + 1

2

∫

�

q(x)u2 dx −
∫

�

F(u)dx −
∫

�

hudx

= 1

2
‖u‖2 −

∫

�

F(u)dx −
∫

�

hudx

is differentiable on H 1
0 (�). Its critical points are the weak solutions of (2.1).

Note that unless F is concave, which we do not assume, the functional I needs
not be convex.

Theorem 2.1.2 Under the assumptions (h1)–(h3), Problem (2.1) admits at least
one solution.

Remark 2.1.3 The leading idea of the proof is that since f is bounded, the term∫
�
F(u)dx should grow at most linearly with respect to ‖u‖, as well as the last

term. If this is true, the functional I can be seen as an “at most linear” perturbation
of the quadratic term ‖u‖2. This suggests the existence of a global minimum. Let us
see how all this really works.

Proof We break it into two steps. We make repeated use of Hölder and Sobolev
inequalities.

Step 1. The functional I is coercive. Note first that since f is bounded, then

|F(t)| ≤ M|t |
for some M > 0 and all t ∈ R. Hence∣∣∣∣

∫

�

F(u)dx

∣∣∣∣ ≤ M

∫

�

|u|dx ≤ C‖u‖,

where the last inequality comes from the continuity of the embedding of H 1
0 (�)

into L1(�). This confirms the idea of the linear growth as in the preceding remark.
Thus

I (u) = 1

2
‖u‖2 −

∫

�

F(u)dx −
∫

�

hudx ≥ 1

2
‖u‖2 − C‖u‖ − |h|2|u|2

≥ 1

2
‖u‖2 − C‖u‖,

which shows that I is coercive.
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Step 2. The infimum of I is attained. Set

m = inf
u∈H 1

0 (�)

I (u).

Step 1 shows that m > −∞, although one does not really need this: it will follow
automatically from the fact that it is attained.

Let {uk}k ⊂ H 1
0 (�) be a minimizing sequence for I ; from Step 1 we immediately

see that {uk}k is bounded in H 1
0 (�), and therefore we can assume that there is a

subsequence, still denoted uk , such that

• uk ⇀ u in H 1
0 (�);

• uk → u in L2(�);
• uk(x) → u(x) a.e. in �;
• there exists w ∈ L2(�) such that |uk(x)| ≤ w(x) a.e. in � and for all k.

Notice now that since F is continuous we have F(uk(x)) → F(u(x)) a.e. in �,
and due to the growth properties of F , we also have

|F(uk(x))| ≤ M |uk(x)| ≤ M w(x)

a.e. in � and for all k. Since � is bounded, w ∈ L1(�), and by dominated conver-
gence we obtain F(uk) → F(u) in L1(�); in particular,

∫

�

F(uk) dx →
∫

�

F(u)dx.

We also have, of course,
∫

�

huk dx →
∫

�

hudx and ‖u‖2 ≤ lim inf
k

‖uk‖,
by weak lower semicontinuity of the norm. Thus

I (u) = 1

2
‖u‖2 −

∫

�

F(u)dx −
∫

�

hudx

≤ lim inf
k

1

2
‖uk‖2 − lim

k

∫

�

F(uk) dx − lim
k

∫

�

huk dx

= lim inf
k

(
1

2
‖uk‖2 −

∫

�

F(uk) dx −
∫

�

huk dx

)
= lim inf

k
I (uk) = m.

But u ∈ H 1
0 (�), so that I (u) ≥ m, which shows that I (u) = m. Therefore u is a

global minimum for I , and hence it is a critical point, namely a solution to (2.1). �

Remark 2.1.4 Analyzing the preceding proof one sees that what we actually did is
to show that I is coercive and weakly lower semicontinuous on H 1

0 (�). These are
exactly the assumptions that one needs in the (generalized) Weierstrass Theorem to
deduce the existence of a global minimum, see Remark 1.5.7.

The boundedness of f in the previous result has been used to show that the
nonlinear term

∫
�
F(u)dx does not destroy the growth properties of I inherited by
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the term ‖u‖2. This occurred because, as we have seen, the nonlinear term grows at
most linearly. Now this is not really necessary: it is enough that this term grows less
than quadratically. Let us see what kind of assumptions we can use in this sense in
the next two results.

We begin by replacing the boundedness condition (h3) by the growth assump-
tion

(h4) f : R → R is continuous and there exist σ ∈ (0,1) and a, b > 0 such that

|f (t)| ≤ a + b|t |σ ∀t ∈ R.

Thus f is no longer bounded, but is allowed to grow sublinearly (σ < 1). It follows
that F grows at most subquadratically, in the sense that for some a1, b1 > 0,

|F(t)| ≤ a1 + b1|t |σ+1 ∀t ∈ R, (2.4)

with σ + 1 < 2.

Theorem 2.1.5 Under the assumptions (h1), (h2) and (h4), Problem (2.1) admits
at least one solution.

Proof Working as in the preceding proof we first show that I is coercive. Using the
fact that σ + 1 < 2 we have

∣
∣∣∣

∫

�

F(u)dx

∣
∣∣∣ ≤ a1|�| + b1

∫

�

|u|σ+1 dx ≤ C1 + C2‖u‖1+σ ,

thanks to the continuity of the embedding H 1
0 (�) ↪→ Lσ+1(�). Then

I (u) = 1

2
‖u‖2 −

∫

�

F(u)dx −
∫

�

hudx ≥ 1

2
‖u‖2 − C1 − C2‖u‖σ+1 − |h|2|u|2

≥ 1

2
‖u‖2 − C2‖u‖σ+1 − C3‖u‖ − C1,

and coercivity follows.
Let now {uk}k ⊂ H 1

0 (�) be a minimizing sequence for I . As in the proof of The-
orem 2.1.2 above, {uk}k is bounded and therefore, up to subsequences, it converges
weakly to some u ∈ H 1

0 (�) and satisfies the same properties as in the preceding
case. Then, reasoning as we did above, we obtain again

∫

�

F(uk) dx →
∫

�

F(u)dx,

so that

I (u) ≤ lim inf
k

(
1

2
‖uk‖2 −

∫

�

F(uk) dx −
∫

�

huk dx

)
= lim inf

k
I (uk) = inf

H 1
0 (�)

I.

The function u is a global minimum, hence a critical point of I , and we have found
a solution of (2.1). �

In our quest for more general assumptions we now try to go one step further: pre-
cisely, can we allow a linear growth for f , and then a quadratic growth for F ? The
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answer is in the affirmative, provided we supply a quantitative control of the linear
growth. This control is formulated in terms of the first eigenvalue λ1 = λ1(−�+ q)

in the following assumption.

(h5) f : R → R is continuous and there exist a > 0 and b ∈ (0, λ1) such that

|f (t)| ≤ a + b|t | ∀t ∈ R.

Integrating, it follows immediately that

|F(t)| ≤ a|t | + b

2
|t |2 ∀t ∈ R.

Notice the difference with respect to (1.9): this is because we now want to keep the
coefficient in front of |t |2 as small as possible.

Theorem 2.1.6 Under the assumptions (h1), (h2) and (h5), Problem (2.1) admits
at least one solution.

Proof To control the term
∫
�
F(u)dx we use the characterization of the first eigen-

value, Theorem 1.7.6. We have
∣∣∣∣

∫

�

F(u)dx

∣∣∣∣ ≤ a

∫

�

|u|dx + b

2

∫

�

|u|2 dx ≤ C‖u‖ + b

2λ1
‖u‖2,

so that

I (u) = 1

2
‖u‖2 −

∫

�

F(u)dx −
∫

�

hudx ≥ 1

2
‖u‖2 − C‖u‖ − 1

2

b

λ1
‖u‖2 − |h|2|u|2

≥ 1

2

(
1 − b

λ1

)
‖u‖2 − C1‖u‖.

Since b < λ1, the functional is coercive.
The remaining part of the proof works exactly as in the preceding theorems. �

Remark 2.1.7 In the literature, the growth conditions contained in assumptions (h4)

and (h5) are often written

lim sup
t→±∞

|f (t)|
|t |σ < +∞ and lim sup

t→±∞
|f (t)|

|t | < λ1

respectively.

Remark 2.1.8 It is interesting to inspect what happens if we allow b ≥ λ1 in (h5). In
this case the functional I is no longer coercive and may be unbounded from below.
In some cases, as for example if we take f (t) = λkt (k ≥ 1), Problem (2.1) has
no solution for some h (see Theorem 1.7.8). Later we will see how to deal with
nonlinearities that grow more than quadratically.

We now examine a variant of Problem (2.1), with the aim of showing how the
variational information can be of help in establishing existence results. Consider

{−�u + q(x)u = f (u) in �,

u = 0 on ∂�.
(2.5)
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If f (0) = 0, a frequent case in the applications, then the problem admits u ≡ 0 as a
solution (called the trivial solution).

Without further assumptions, it may very well be that the trivial solution is the
only solution. For example, if f (t)t ≤ 0 for all t , then any weak solution satisfies

‖u‖2 =
∫

�

f (u)udx ≤ 0,

and hence u ≡ 0.
In the next result we show a condition that prevents this fact.

Theorem 2.1.9 Let (h1) hold. Assume moreover that f : R → R is continuous and
satisfies

f (0) = 0 and lim sup
t→±∞

|f (t)|
|t | < λ1.

Then Problem (2.5) admits at least one solution (which may be trivial).
If in addition f also satisfies

lim inf
t→0+

f (t)

t
> λ1, (2.6)

then Problem (2.5) admits at least one nontrivial solution.

Proof The first part is a special case of Theorem 2.1.6. We now show that under
condition (2.6) the solution found in the first part is not identically zero. We use a
level argument, as follows.

First notice that by (2.6), there exists β > λ1 and δ > 0 such that

f (t) ≥ βt ∀t ∈ [0, δ],
which implies that

F(t) ≥ 1

2
βt2 ∀t ∈ [0, δ].

Let ϕ1 > 0 be the first eigenfunction of −� + q(x), and take ε > 0 so small that
εϕ1(x) < δ for almost every x; this is possible because ϕ1 ∈ L∞(�), see Theo-
rem 1.7.3.

Then

F(εϕ1(x)) ≥ 1

2
βε2ϕ2

1(x)

a.e. in �. This implies that

I (εϕ1) = 1

2
‖εϕ1‖2 −

∫

�

F(εϕ1) dx ≤ 1

2
ε2‖ϕ1‖2 − 1

2
βε2

∫

�

ϕ2
1 dx

= 1

2
ε2λ1

∫

�

ϕ2
1 dx − 1

2
βε2

∫

�

ϕ2
1 dx = ε2

2
(λ1 − β)

∫

�

ϕ2
1 dx < 0,
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since β > λ1. Let u be the solution that minimizes I . Then

I (u) = min
v∈H 1

0 (�)

I (v) ≤ I (εϕ1) < 0.

As I (0) = 0, u cannot be the trivial solution. �

Remark 2.1.10 It is possible to show that the preceding problem admits a nonnega-
tive solution. Indeed it is enough to proceed as in Example 1.7.10.

Since (h3) implies (h4) that implies (h5), it is clear Theorem 2.1.6 implies Theo-
rem 2.1.5 that in turn implies Theorem 2.1.2. As a further example we examine now
another case in which we can apply the scheme of the previous results and that leads
to a theorem that is independent of the preceding ones. Consider the assumption

(h6) f : R → R is continuous and there exist a, b > 0 such that

|f (t)| ≤ a + b|t |2∗−1 ∀t ∈ R.

Moreover

f (t)t ≤ 0 ∀t ∈ R.

By integration one easily sees that there exist a1, b1 > 0 such that

|F(t)| ≤ a1 + b1|t |2∗ ∀t ∈ R

and that

F(t) ≤ 0 ∀t ∈ R

Notice that −F is allowed to have critical growth, but F is not. Moreover the sign
condition f (t)t ≤ 0 prevents, as we have seen, the existence of nontrivial solutions
when h ≡ 0. In spite of this, Problem (2.1) is solvable.

Theorem 2.1.11 Under the assumptions (h1), (h2) and (h6), Problem (2.1) admits
at least one solution.

Proof By Example 1.3.20, the usual functional I is differentiable on H 1
0 (�). Coer-

civity is simple consequence of the sign of F :

I (u) = 1

2
‖u‖2 −

∫

�

F(u)dx −
∫

�

hudx ≥ 1

2
‖u‖2 − |h|2|u|2 ≥ 1

2
‖u‖2 − C‖u‖.

The proof then proceeds exactly as in the previous theorems. �

Remark 2.1.12 This last existence result is similar to the one obtained in Theo-
rem 1.6.6. However here we do not assume the monotonicity of f , so that the func-
tional needs not be convex. This implies that we have to prove the weakly lower
semicontinuity, as in the other theorems of this section, and we do not have a unique-
ness result.

Remark 2.1.13 If |F | grows more than critically, the functional I is no longer well
defined on H 1

0 (�), because a function in H 1
0 (�) need not be in Lp(�) if p > 2∗.

This means that the integral of F(u) may be divergent for some u.
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