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The Mountain-Pass Theorem

1 Critical Points of Minimax Type

Roughly speaking, the basic idea behind the so-called minimax method is the

following:

Find a critical value of a functional .p E C l (X, IR) as a minimax (or

maximin) value c E IR of rp over a suitable class A of subsets of X:

c == inf sup ip (u) .
AEAuEA

Example A. Perhaps one of the first examples using a minimax technique is

due to E. Fischer (1905) through a well-known minimax characterization of

the eigenvalues of a real, symmetric n x n matrix M (cf. [33], pp. 31 and 47):

Ak == inf sup (Mxlx) ,
{X k - 1 } x-lXk-1,lxl=1

A-k== sup inf (Mxlx).
{Xk-l} x-lXk-l,lx!=l

Here, the eigenvalues are numbered so that A-I ~ ... ~ A-k ~ ... ~ 0 ~

... ~ Ak ~ ... ~ AI. Also we are denoting by (·1·) (resp. I ·1) the usual inner

product (resp. norm) in X == IRn, and by X j C X an arbitrary subspace of

dimension j. It should be noted that a characterization which is dual to the

above characterization also holds true, namely:

A-k == inf sup (Mxlx).
{X k } xEXk,lxl=l
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Example B. A similar characterization can be obtained for the eigenvalues

of a compact, symmetric operator T : X ----+ X on a Hilbert space X. This

is part of the so-called Hilbert-Schmidt theory.

Example C. A topological analogue of such minimax schemes was developed

by L. Lusternik and L. Schnirelman from 1925 to 1947. This is known as

the (classical) Lusternik-Schnirelman theory. It was originally based on the

topological notion of category Cat (A, X) of a closed subset A of a metric space

X. By definition, Cat (A, X) is the smallest number of closed, contractible

subsets of X which is needed to cover A (see [53, 54]).

In this context, given a functional cp E 0 1(X, JR.) over, say, a differentiable

Riemannian manifold X, the idea is to show that the following values are

critical values of ip:

Ck == inf sup cp(x) , k == 1,2, ... ,
AEAkxEA

where Ak :== {A c X I A is closed, Cat (A, X) ~ k}. For example, since

Cat iS" , sn) == 2, one obtains, for a given functional sp E 0 1 (sn , lR), that

and, in this case, C1 == inf ip, C2 == sup ip. Of course this gives us no new

information in this case since we know that inf cp and sup .p are attained on

the compact manifold S" and, therefore, are critical values of cp. However,

if 'P E C1 (sn, IR) is an even functional, one obtains more critical values, as

shown by the following classical theorem due to Lusternik (1930):

Theorem 1.1. ([53]) Let 'P E Cl(sn,IR) be given. If'P is even, then it has

at least (n + 1) distinct poirs: of critical points.

The main idea here is that an even functional on S" can be considered

as a functional on the real projective space lRpn (obtained by identification

of the antipodal points in sn), and the topology of lRpn is much richer than

that of S": In fact, it can be shown that Cat (lRpn, lRpn) == n + 1 (cf. [68]) so

that, in this case, one obtains (n + 1) critical values (possibly repeated):

Another way to interpret Lusternik's multiplicity result is to consider it

as a consequence of the symmetry of the problem (evenness of 'P, in this

1 Clearly, since ip is even, its critical points occur in pairs.
2 Moreover, if Cj == Cj+k for some j, k ~ 1, it can be shown that the category of the

critical set K; is at least k + 1.
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case). This question of multiplicity versus symmetry will be tackled in a

future chapter.

2 The Mountain-Pass Theorem

As already mentioned in the beginning of this chapter, the basic idea behind

the minimax method is to minimaximize (or maximinimize) a given func-

tional <.p over a suitable class of subsets of X. In particular, such a suitable

class can be chosen to be invariant under the deformation TJ( t, .) given in the

deformation theorem 3.2.3.
In this section we will present a first illustration of the minimax method

which has proven to be a powerful tool in the attack of many problems on dif-

ferential equations. It is the celebrated mountain-pass theorem of Ambrosetti

and Rabinowitz [9]:

Theorem 2.1. Let X be a Banach space and .p E C1(X, IR) be a functional

satisfying the Polais-Smale condition (PS) (or, more weakly, (BCN)c).3 If

eE X and 0 < r < Ilell are such that

then

a ==: max{<.p (0), <.p (e)} < inf <.p (u) ==: b ,
Ilull=r

(2.1)

c == inf sup .p([(t))
,Er tE[O,l]

is a critical value of ep with c 2: b. (Here, T is the set of paths joining the

points 0 and e, that is, r == {[ E 0([0,1], X) I [(0) == 0, [(1) == e}.)

Proof: First note that ,([0,1]) n 8Br is nonempty for any given, E r, since

,(0) == 0, ,(I) == eand 0 < r < Ilell by assumption. Therefore,

max ep (,(t )) ~ b == inf ep ,
tE[O,l] BB r

so that c ~ b.

Let us assume, by negation, that c is not a critical value. Then, by the

deformation theorem 3.2.2, there exist 0 < E< b;a (recall that a < b by (2.1)

and TJ E C([O, 1] x X,X)) such that

TJ(t, u) == u if u ~ <.p-1([c - 2E, C + 2EJ), t E [0,1] , (2.2)

3 Recall Remark 3.2.1. One could also use (Ce)c (cf. [67]).
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Now, by definition of c as an infimum over r, we can choose '"'I E T such that

max .p('"'I (t)) :::; c + t:
tE[O,l]

(2.4)

and define the path ::=y(t) == 7](1, '"'I(t)). In view of (2.2) and the fact that 2t: <
b- a, it follows that ::=y E r (indeed, ::=Y(O) == 7](1,0) == 0 and ::=Y(1) == 7](1, e) == e
since <p(0), <p(e) :::; a < b - 2t:). But, then, (2.3) and (2.4) above imply that

max <p(::=Y(t)) :::; c - t: ,
tE[O,l]

which contradicts the definition of c. Therefore, c is a critical value of ip, D

Remark 2.1. In the case u == 0 is a strict local minimum of <p and 0 -=I e E X

is such that <p(e) :::; <p(O), then Condition 2.1 is clearly satisfied. This situation

is common in many application as we shall see next (in this sense, the rough

Fig. 4.1 is typical).

3 Two Basic Applications

Application A. Let us show that the following nonlinear Dirichlet problem

on a bounded domain n c }R3 with smooth boundary possesses a classical

nontrivial solution:

{
-~u == -» in n

u == 0 on an . (3.1)
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i l l
cp(u) == [-I\7uI 2

- _u 4
] dx

n 2 4

is well defined and of class CIon the Sobolev space HJ(0.) by Proposition

2.2.1. The critical points of cp are precisely the weak solutions of (3.1).

To begin with, we observe that since f(x, u) == u3 and 3 < ~~~ == 5, the

functional

Lemma 3.1. (a) U == 0 is a strict local minimum of ip;

(b) Given 0 i= v E HJ there exists Po such that cp(Pov) :S o.

Proof: (a) In view of the Sobolev embedding HJ C £4 we have

1 1 1
<p(u) = "2llul12 - 411ullt4 :;;. "2llul12 - Cllul14

,

hence cp(u) > 0 == cp(O) for all u with 0 < Ilull :S r, for some small r > o.
(b) Letting <5 == In v4dx for a given v E HJ with (say) Ilvll == 1, we have

1 2 1 4
cp(pv) == 2p - 4<5P -+ -(X) as p -+ (X) ,

so that the result follows. D

Theorem 3.2. ([g}) Problem (3.1) possesses a nontrivial classical solution."

Proof: We shall use the mountain-pass theorem. Since we already know that

sp E C1(HJ,lR), we now show that sp satisfies (PS).
Let (un) be such that I<P (un) I :S C, cp' (un) -+ O. Then, for all n sufficiently

large, we have

hence

that is,
1 1
411unl12 < C+ 411unll .

This implies that Ilun II is bounded, so that we may assume (by passing to

a subsequence, if necessary) that Un -+ U weakly in HJ. But then, since

\7cp(u) == u - T(u) with T a compact operator (cf. Remark 2.2.1), we obtain

4 In fact, because of the eveness of the corresponding functional <p and its su-
perquadratic nature, problem (3.1) has infinitely many solutions, as we shall see
later on.
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Therefore, Un ---+ 11 strongly in HJ and we have shown that <p satisfies (PS).
Now, Lemma 3.1 allows us to use Theorem 2.1 (with e == Pov) in order to

conclude the existence of a critical point Uo with <p(uo) == c 2: b > 0 == <p(0).

Therefore, Uo is a nontrivial weak solution of (3.1). Moreover, since both an
and f(x, u) == u3 are smooth, a bootstrap argument shows that Uo is indeed a

classic solution (cf. [2]).

Application B. This next application is a generalization of the previous one.

We consider the nonlinear Dirichlet problem (cf. [9])

{
-~u == f(x, u) in n c IRN

u == 0 on an , (3.2)

where n c IRN (N 2: 2) is a bounded smooth domain and, as usual, f :
nx IR~ IR is a Caratheodory function satisfying the growth condition (fl)
before Proposition 2.2.1 in Chapter 2. Moreover, we shall assume the following

conditions:

f(x, s) == o(lsl) as s ---+ 0, uniformly in x.

There exist JL > 2 and r > 0 such that

o< J1F (x, s) < sf (x, s ) for Is I 2: r,

uniformly in x (where we recall that F(x, s) == J; f(x, T)dT).

Condition (f3) is the so-called superquadraticity condition of Ambrosetti and

Rabinowitz.

As we know, the fact that f is a Caratheodory function satisfying (fl)
implies (cf. Proposition 2.2.1) that the functional

cp(u) = r [~IV'uI2 - F(x,u)] dxin 2
(3.3)

is well defined and is of class CIon the Sobolev space HJ(n). Next, we prove

an analogue of Lemma 3.1.

Lemma 3.3. (a)u == 0 is a strict local minimum oj ip;

(b) Given 0 i= v E Hli there exists Po such that <p(Pov) ~ o.

Proof: (a) In view of (f2), given c > 0, there exists 8 == 8(c) > 0 such that

If(x, s)1 ~ clsl for all lsi ~ 8, hence
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Now, since the growth condition (11) implies

(3.5)

we combine (3.4) and (3.5) to get

1
IF(x, s)1 ::; -:t=l sI 2 + A,lslo+1 "Is E JR, "Ix E O. (3.6)

Therefore, using (3.6) we obtain

hence

in view of Poincare's inequality Al11ulli2 ~ IIul1 2 and the Sobolev inequality

IlullLa+l ~ cllull (recall that a + 1 < ~~2). Therefore, since we can take

E < Al and assume that a > 1 in (II), the above inequality (3.7) gives

<p(u) > 0 == <p(0) for all u with 0 < Ilull ~ r, for some suitably small r > o.

(b) It is easy to see that condition (13), together with (II), implies that F
is superquadratic in the sense that there exist constants c, d > 0 such that

Therefore,

F(x, s) 2: clslJ.L - d Vs E JR., Vx E Q. (3.8)

so that, given v E Hfj with /lvll == 1 and writing 6 == cllvllifL > 0, we obtain

In particular, there exists Po > 0 such that <p(Pov) :S O. D

Remark 3.1. As we have just seen in part (b) of Lemma 3.3, condition (13)
implies (3.8) with JL > 2 (F is superquadratic) and, hence, <p(pv) ---+ -00 as

p ---+ 00 for any given 0 =F v E HJ. Therefore, the functional <p is not bounded
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from below. On the other hand, since <p(u) == ~ IIul1 2
- 'ljJ(u) where 'ljJ is a

weakly continuous functional (recall Example C in Section 2.1 of Chapter

2), then if we let (en) denote an orthonormal basis for HJ, it follows that

limn~oo 'ljJ(Ren ) == 0 for any given R > 0, so that limn~oo<p(Ren ) == ~R2.

Since R > 0 is arbitrary, we see that .p is also not bounded from above.

Theorem 3.4. ([9]) If f : 0 x IR ----t IR is a Caratheodory function satisfying

conditions (fl) - (f3), then problem (3.2) possesses a nontrivial weak solution

u E HJ.

Proof: As in Theorem 3.2, we start by showing that the functional <p given

in (3.3) satisfies the (PS) condition.

Let (un) be such that I<p (Un) I < C, <p' (Un) -t o. Then, for all n sufficiently

large, we have

hence

that is,

(-2
1

- -!.) IIu-, 11 2 < C + -!.IIUn II ,
JL JL

where (~ - ~) > 0, which implies that Ilun II is bounded. The rest of the

proof that <p satisfies (PS) is done as in Theorem 3.2. Similarly, Lemma 3.3

and Theorem 2.1 imply the existence of a nontrivial weak solution Uo E HJ

of (3.2). D

Remark 3.2. If f : "0 x IR ----t IR is assumed to be locally Lipschitzian, then

by a bootstrap argument, the weak solution Uo is a classical solution (see [9]).

Remark 3.3. We point out that the Palais-Smale condition is a compactness

condition involving both the functional and the space X in a combined man-

ner. The fact that X is infinite dimensional plays no role in requiring that

(PS) (or some other compactness condition) be satisfied in the mountain-pass

theorem. Indeed, even in a finite-dimensional space, the geometric conditions

alone are not sufficient to guarantee that the level c is a critical level (see

Exercise 2 that follows).
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4 Exercises

1. Let A < O. Show that the ODE problem

{
u" + AU + u3 == 0, 0 < t < 1r

U' (0) == u' (7r) == 0

has a solution u E C2[0, 7r] which is a mountain-pass critical point of the

corresponding functional.

2. Find a polynomial function p : IR x IR ~ IR that satisfies the geometric

conditions (2.1) of the mountain-pass theorem (so that the minimax value

c 2: b > 0 does exist), but c is not a critical level of p. (Try to find such

a polynomial p(x, y) having (0,0) as a strict local minimum and no other

critical point; if giving up, see [20].)
3. Consider the following nonlinear Neumann problem

{

-~u == f(u) + p(x) in 0
auan == 0 on ao ,

where 0 c IRN (N 2: 1) is a bounded smooth domain and the continuous

functions f : IR ~ IR (given as p-periodic) and p : n~ IR satisfy the

conditions lP f(s) ds = 0, l p(x) dx = 0 .

Recall that, as an application of (the minimum principle) theorem 3.3.1

in Chapter 3 with the Palais-Smale condition replaced by the weaker

Brezis-Coron-Nirenberg condition (BCN)c, we proved that (N) had a

solution Uo E u: (0) minimizing the corresponding p-periodic functional

ip, Clearly, by the periodicity of ip, any translated function Uk == iu, + kp,

k E Z, is also a minimizer of ip, Find another solution for (N) which is

different from the Uk'S.5

4. This is simply a calculus exercise to introduce a function which is super-

linear at infinity in the sense that

lim f(s) = +00,
Isl-+oo s

but grows slower than any power greater than 1, namely,

lim f(s) == 0
Isl-+oo IslES

5 The mountain-pass theorem also holds if b == a in (2.1) (cf. [63]).
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Indeed, just take f(s) :== F'(s), where F(s) == s2ln(1 + s2). You should

also check that

lim [sf(s) - 2F(s)] == +00 ,
Isl-+oo

which is a condition that is relevant to the next exercise.

5. Consider the Dirichlet problem

{
-~u == f(x, u) in n

u == 0 on an , (D)

where n c jRN is a bounded smooth domain and f : n x jR ----+ jR is

continuous, with f(O) == 0, f(x, s) == o(lsl) as s~ 0 (uniformly for x En),
f satisfying the growth condition (fl) in Chapter 2 and

1· . f f(x, s) \ c 1 c nim m -- > /\1, uniform y lor x E ~G,
Isl-+oo S

()

Moreover, assume that

lim [sf(x, s) - 2F(x, s)] == +00, uniformly for x En, 6
Isl-+oo

where, as usual, F(x, s) == Jos f(x, t) dt. Show that (D) has a nonzero so-

lution. [Hint: Use the Fatou lemma to verify that, in view of the above
condition, the pertinent functional satisfies the Cerami condition intro-

duced in Exercise 2 of Chapter 3.]

6 This is a nonquadraticity condition introduced in [31].
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