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The Mountain-Pass Theorem

1 Critical Points of Minimax Type

Roughly speaking, the basic idea behind the so-called minimax method is the
following;:

Find a critical value of a functional ¢ € C'(X,R) as a minimaz (or
mazimin) value ¢ € R of ¢ over a suitable class A of subsets of X:

¢= inf su u) .
AE.Aueg SO( )

Example A. Perhaps one of the first examples using a minimax technique is
due to E. Fischer (1905) through a well-known minimax characterization of
the eigenvalues of a real, symmetric n x n matrix M (cf. [33], pp. 31 and 47):

Ap = inf sup  (Mz|z)
{Xe1lzl X,y |zl=1

A_p = su inf Mzl|z) .
k {Xk_l_jl}zJ_Xk__l,lz(:l( l )

Here, the eigenvalues are numbered so that A_; < -+ < A, <--- <0<
<o € A <o < Ap. Also we are denoting by (¢|-) (resp. |- |) the usual inner
product (resp. norm) in X = R", and by X; C X an arbitrary subspace of
dimension j. It should be noted that a characterization which is dual to the
above characterization also holds true, namely:

A, =sup inf (Mz|z),
{Xk}zEXk,‘ﬂ:l

Ak = inf sup (Mzxlx) .
{Xk}zexk,\z|:1( 2)
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Example B. A similar characterization can be obtained for the eigenvalues
of a compact, symmetric operator T : X — X on a Hilbert space X. This
is part of the so-called Hilbert-Schmidt theory.

Example C. A topological analogue of such minimax schemes was developed
by L. Lusternik and L. Schnirelman from 1925 to 1947. This is known as
the (classical) Lusternik-Schnirelman theory. It was originally based on the
topological notion of category Cat (A, X) of a closed subset A of a metric space
X. By definition, Cat (A, X) is the smallest number of closed, contractible
subsets of X which is needed to cover A (see [53, 54]).

In this context, given a functional p € C*(X,R) over, say, a differentiable
Riemannian manifold X, the idea is to show that the following values are
critical values of ¢:

¢, = inf supp(z), k=1,2,...,
k AE.AkIegSO()

where A := {A C X | Aisclosed, Cat (A, X) >k }. For example, since
Cat (S™, S™) = 2, one obtains, for a given functional ¢ € C1(S™,R), that

cp<cp=cg=",

and, in this case, ¢; = inf ¢, c; = sup . Of course this gives us no new
information in this case since we know that inf ¢ and sup ¢ are attained on
the compact manifold S™ and, therefore, are critical values of ¢. However,
if ¢ € C1(S™,R) is an even functional, one obtains more critical values, as
shown by the following classical theorem due to Lusternik (1930):

Theorem 1.1. ([53]) Let ¢ € C*(S™,R) be given. If ¢ is even, then it has
at least (n + 1) distinct pairs' of critical points.

The main idea here is that an even functional on S™ can be considered
as a functional on the real projective space RP™ (obtained by identification
of the antipodal points in S™), and the topology of RP™ is much richer than
that of S™. In fact, it can be shown that Cat (RP", RP") = n+ 1 (cf. [68]) so
that, in this case, one obtains (n + 1) critical values (possibly repeated):

e1 << <l
Another way to interpret Lusternik’s multiplicity result is to consider it
as a consequence of the symmetry of the problem (evenness of ¢, in this

1 Clearly, since ¢ is even, its critical points occur in pairs.
2 Moreover, if ¢; = c; 1« for some 4,k > 1, it can be shown that the category of the
critical set K. is at least k& + 1.
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case). This question of multiplicity versus symmetry will be tackled in a
future chapter.

2 The Mountain-Pass Theorem

As already mentioned in the beginning of this chapter, the basic idea behind
the minimax method is to minimazimize (or maziminimize) a given func-
tional ¢ over a suitable class of subsets of X. In particular, such a suitable
class can be chosen to be invariant under the deformation (¢, ) given in the
deformation theorem 3.2.3.

In this section we will present a first illustration of the minimax method
which has proven to be a powerful tool in the attack of many problems on dif-
ferential equations. It is the celebrated mountain-pass theorem of Ambrosetti
and Rabinowitz [9]:

Theorem 2.1. Let X be a Banach space and p € C1(X,R) be a functional
satisfying the Palais-Smale condition (PS) (or, more weakly, (BCN).).? If
e€ X and 0 < r < |le]| are such that

a =: max{p(0),p(e)} < inf @(u)=:b, (2.1)

l[ull=r

then

c=inf sup @(y(t
7€ tefo,1] (v(t)

is a critical value of ¢ with ¢ > b. (Here, ' is the set of paths joining the
points 0 and e, that is, I = {v € C([0,1], X) | v(0) =0, v(1) =e}.)

Proof: First note that v([0,1]) N 9B, is nonempty for any given v € I, since
~+(0) =0, 4(1) = e and 0 < r < ||e|| by assumption. Therefore,
: t)) >b=inf ¢,
e p(y(t) 2 b= Inf ¢

so that ¢ > b.

Let us assume, by negation, that ¢ is not a critical value. Then, by the
deformation theorem 3.2.2, there exist 0 < € < 9;—“ (recall that a < b by (2.1)
and n € C([0,1] x X, X)) such that

n(t,u) =u if ud o c-2,c+2]), te[0,1], (2.2)

% Recall Remark 3.2.1. One could also use (Ce). (cf. [67)).
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Now, by definition of ¢ as an infimum over I', we can choose v € I" such that

1) < 24

tlg[gg]so(v( ) Scte (2.4)

and define the path 7(¢) = n(1,v(¢)). In view of (2.2) and the fact that 2¢ <

b — a, it follows that ¥ € T (indeed, ¥(0) = n(1,0) =0 and F(1) = n(l,e) = ¢
since ¢(0), p(e) < a < b— 2¢). But, then, (2.3) and (2.4) above imply that

SN < e —
tgl[gg]w(v( ))<c—e,

which contradicts the definition of ¢. Therefore, ¢ is a critical value of . [0

Remark 2.1. In the case u = 0 is a strict local minimum of p and 0 # e € X
is such that (e} < ¢(0), then Condition 2.1 is clearly satisfied. This situation
is common in many application as we shall see next (in this sense, the rough
Fig. 4.1 is typical).

3 Two Basic Applications

Application A. Let us show that the following nonlinear Dirichlet problem
on a bounded domain @ C R?® with smooth boundary possesses a classical
nontrivial solution:

{ ~Au =u® inQ

u=0 ondQ. (3.1)
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- ; RN N+2
To begin with, we observe that since f(z,u) = v* and 3 < =5 = 5, the

functional
1,

o) = [ 519 = Ju

is well defined and of class C! on the Sobolev space H}(f) by Proposition

| dz

2.2.1. The critical points of ¢ are precisely the weak solutions of (3.1).

Lemma 3.1. (a)u = 0 is a strict local minimum of ;
(b) Given 0 # v € H} there exists py such that p(pov) < 0.

Proof: (a) In view of the Sobolev embedding H} < L* we have

1, 5 1 1
p(w) = 5llul* = lhullzs = 51l * = Cllul?

hence p(u) > 0 = ¢(0) for all u with 0 < jJu|| <, for some small r > 0.
(b) Letting 6 = [,, v*dz for a given v € Hy with (say) |[v|| = 1, we have
Ly 104
plpv) = 5p" = 70p" — —00 as p— 00,
so that the result follows. O

Theorem 3.2. (/9]) Problem (3.1) possesses a nontrivial classical solution.*

Proof: We shall use the mountain-pass theorem. Since we already know that
¢ € C1(H},R), we now show that ¢ satisfies (PS).

Let (u,) be such that |¢o(un)| < C, ¢'(u,) — 0. Then, for all n sufficiently
large, we have

1 () ] = | /Q (Ven]? = 2] dt] < Jfun] -

hence ) )
@(Un) — Z‘Pl(un) “Up dr < C + ZHUnH )
that is,
1 9 1
ZH“HH SC“"ZHUTLH .

This implies that ||u,|| is bounded, so that we may assume (by passing to
a subsequence, if necessary) that u, — 4 weakly in Hi. But then, since
Vo(u) = u— T(u) with T a compact operator (cf. Remark 2.2.1), we obtain
4 In fact, because of the eveness of the corresponding functional ¢ and its su-

perquadratic nature, problem (3.1) has infinitely many solutions, as we shall see
later on.
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Un, = Vo(uy) + T(u,) — 04+ T(u) .

Therefore, u, — % strongly in H} and we have shown that ¢ satisfies (PS).

Now, Lemma 3.1 allows us to use Theorem 2.1 (with e = pgv) in order to
conclude the existence of a critical point ug with ¢(ug) = ¢ > b > 0 = »(0).
Therefore, ug is a nontrivial weak solution of (3.1). Moreover, since both 9
and f(z,u) = u® are smooth, a bootstrap argument shows that ug is indeed a
classic solution (cf. [2]).

Application B. This next application is a generalization of the previous one.
We consider the nonlinear Dirichlet problem (cf. [9])

{ ~Ou = f(z,u) nQCRY (3.2)

u=~0 ondQ,

where @ C RN (N > 2) is a bounded smooth domain and, as usual, f :
2 x R — R is a Carathéodory function satisfying the growth condition (f;)
before Proposition 2.2.1 in Chapter 2. Moreover, we shall assume the following
conditions:

flz,s) =o(|s) as s — 0, uniformly in z. (f2)
There exist 1 > 2 and r > 0 such that
0 < puF(xz,s) <sf(xz,s) forls|>r, (f3)

uniformly in 2 {(where we recall that F(x, s) fo x, 7)dT).

Condition (f3) is the so-called superquadraticity condition of Ambrosetti and
Rabinowitz.

As we know, the fact that f is a Carathéodory function satisfying (f1)
implies (cf. Proposition 2.2.1) that the functional

o) = /Q [%WUF ~ F(o,u)] do (3.3)

is well defined and is of class C! on the Sobolev space H}((2). Next, we prove
an analogue of Lemma 3.1.

Lemma 3.3. (a)u =0 is a strict local minimum of ¢;
(b) Given 0 # v € H} there ezists py such that ¢(pov) < 0.

Proof: (a) In view of (f2), given € > 0, there exists § = §(e) > 0 such that
|f(z,s)| <e¢ls| for all |s| <4, hence
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IF(z, )| < %6|3|2 if 18] < 6. (3.4)
Now, since the growth condition (f;) implies
|[F(z,5)] < Acls|”™"if [s| 2 6 = é(e) (3.5)
we combine (3.4) and (3.5) to get
Pz, 5)| < %6|s|2 + Adslot! VseR,VzeQ. (3.6)

Therefore, using (3.6) we obtain

1 1 € -
p(w) =l = [ Floww do 2 5llul® - Slulffs - Adul 2L
Q
hence

1 € - 1 € ot
o(w) 2 5l = - llull® = eAdlull™™ = 501 = ) llull® = Cel il
(3.7)

in view of Poincaré’s inequality A1|{u||?, < |Ju||* and the Sobolev inequality
[ullpe+r < cf|uf| (recall that o +1 < £

€ < A; and assume that ¢ > 1 in (f1), the above inequality (3.7) gives

Therefore, since we can take

@(u) > 0 = ¢(0) for all u with 0 < [|u|| < r, for some suitably small r > 0.

(b) Tt is easy to see that condition (f3), together with (f;), implies that F
is superquadratic in the sense that there exist constants ¢,d > 0 such that

F(z,s) > c|s|* —=d VseR,Vzr el (3.8)

Therefore,

o) = 3lull = [ Plavu) de < 5l = cliull +di9)

so that, given v € H} with ||v|| = 1 and writing § = c||v||f, > 0, we obtain
L
plpv) < 5p° = 0p" +dlYf — —o0 as p— o0,

In particular, there exists pg > 0 such that ¢(pov) < 0. O

Remark 3.1. As we have just seen in part (b) of Lemma 3.3, condition (f3)
implies (3.8) with u > 2 (F is superquadratic) and, hence, ¢(pv) — —o0 as
p — oo for any given 0 # v € H}. Therefore, the functional ¢ is not bounded



36 4 The Mountain-Pass Theorem

from below. On the other hand, since p(u) = %|jul|? = ¥(u) where ¢ is a
weakly continuous functional (recall Example C in Section 2.1 of Chapter
2), then if we let (e,) denote an orthonormal basis for HJ, it follows that
lim,, 00 ¥(Re,) = 0 for any given R > 0, so that lim,_.. ¢(Re,) = SR2

Since R > 0 is arbitrary, we see that ¢ is also not bounded from above.

Theorem 3.4. (/9]) If f : Q@ x R — R is a Carathéodory function satisfying
conditions (f1) — (f3), then problem (3.2) possesses a nontrivial weak solution
u € Hi.

Proof: As in Theorem 3.2, we start by showing that the functional ¢ given
in (3.3) satisfies the (PS) condition.

Let (u,) be such that |p(u,)|] < C, ¢'(un) — 0. Then, for all n sufficiently
large, we have

¢ () - un] = | /Q (Vtnl? — Flaswn)ien] diz] < ]|

hence

1, 1
©(un) = = (Up) - up de < C + —||usl| ,
(un) = 2 (un) el

that is,

(- %>||uni|2 <C+ i—nunu ,

[\

where (5 ~ i) > 0, which implies that ||uy|| is bounded. The rest of the
proof that o satisfies (PS) is done as in Theorem 3.2. Similarly, Lemma 3.3
and Theorem 2.1 imply the existence of a nontrivial weak solution ug € Hy

of (3.2). O

Remark 3.2. If f : O x R — R is assumed to be locally Lipschitzian, then
by a bootstrap argument, the weak solution ug is a classical solution (see [9]).

Remark 3.3. We point out that the Palais-Smale condition is a compactness
condition involving both the functional and the space X in a combined man-
ner. The fact that X is infinite dimensional plays no role in requiring that
(PS) (or some other compactness condition) be satisfied in the mountain-pass
theorem. Indeed, even in a finite-dimensional space, the geometric conditions
alone are not sufficient to guarantee that the level ¢ is a critical level (see
Exercise 2 that follows).
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4 Exercises

1. Let A < 0. Show that the ODE problem

v+t ut=0, 0<t<nmw
u'(0) =u(m)=0

has a solution u € C?[0, ] which is a mountain-pass critical point of the
corresponding functional.

2. Find a polynomial function p : R x R — R that satisfies the geometric
conditions (2.1) of the mountain-pass theorem (so that the minimax value
¢ > b > 0 does exist), but ¢ is not a critical level of p. (Try to find such
a polynomial p(x,y) having (0,0) as a strict local minimum and no other
critical point; if giving up, see [20].)

3. Consider the following nonlinear Neumann problem

{ —~Au = f(u)+ p{z) inQ

%:0 on 0F) ,

(N)

where @ C RN (N > 1) is a bounded smooth domain and the continuous
functions f : R — R (given as p-periodic) and p : ) — R satisfy the

/Opf(s)ds:o, /Qp(m)d:r:O.

Recall that, as an application of (the minimum principle) theorem 3.3.1

conditions

in Chapter 3 with the Palais-Smale condition replaced by the weaker
Brézis-Coron-Nirenberg condition (BCN),., we proved that (N) had a
solution uy € H'(f)) minimizing the corresponding p-periodic functional
. Clearly, by the periodicity of ¢, any translated function ug = ug + kp,
k € Z, is also a minimizer of . Find another solution for (N) which is
different from the ug’s.’

4. This is simply a calculus exercise to introduce a function which is super-
linear at infinity in the sense that

f(s)

lim —= = 400,
|sj—o0 8

but grows slower than any power greater than 1, namely,

lim 1s)

|s]—o00 |S|ES

=0 Ve>0.

® The mountain-pass theorem also holds if b = a in (2.1) (cf. [63]).
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Indeed, just take f(s) := F’(s), where F(s) = s%In(1 + s?). You should
also check that
lim [sf(s) = 2F(s)] = +o0,

|s|—o0

which is a condition that is relevant to the next exercise.
Consider the Dirichlet problem

{—Au = f(z,u) inQ

D
u=0 onodQ, (D)

where Q C RN is a bounded smooth domain and f : @ x R — R is
continuous, with f(0) =0, f(z,s) = o(|s|) as s — 0 (uniformly for z € ),
f satisfying the growth condition (f;) in Chapter 2 and

f(a,s)
S

o
o

lim inf > A1, uniformly for z € Q,

|s|—c0
Moreover, assume that

| lilm [sf(z,s) ~ 2F(x,s)] = 400, uniformly for z € ,°

—00

where, as usual, F(z,s) fo z,t)dt. Show that (D) has a nonzero so-
lution. [Hint: Use the Fatou lemma to verify that, in view of the above
condition, the pertinent functional satisfies the Cerami condition intro-
duced in Exercise 2 of Chapter 3.]

® This is a nonquadraticity condition introduced in [31].
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