# The Mountain-Pass Theorem

## 1 Critical Points of Minimax Type

Roughly speaking, the basic idea behind the so-called *minimax method* is the following:

Find a critical value of a functional  $\varphi \in C^1(X, \mathbb{R})$  as a *minimax* (or *maximin*) value  $c \in \mathbb{R}$  of  $\varphi$  over a suitable class  $\mathcal{A}$  of subsets of X:

$$c = \inf_{A \in \mathcal{A}} \sup_{u \in A} \varphi(u) \; .$$

**Example A.** Perhaps one of the first examples using a minimax technique is due to E. Fischer (1905) through a well-known minimax characterization of the eigenvalues of a real, symmetric  $n \times n$  matrix M (cf. [33], pp. 31 and 47):

$$\lambda_{k} = \inf_{\{X_{k-1}\}} \sup_{x \perp X_{k-1}, |x|=1} (Mx|x) ,$$
  
$$\lambda_{-k} = \sup_{\{X_{k-1}\}} \inf_{x \perp X_{k-1}, |x|=1} (Mx|x) .$$

Here, the eigenvalues are numbered so that  $\lambda_{-1} \leq \cdots \leq \lambda_{-k} \leq \cdots \leq 0 \leq \cdots \leq \lambda_k \leq \cdots \leq \lambda_1$ . Also we are denoting by  $(\cdot|\cdot)$  (resp.  $|\cdot|$ ) the usual inner product (resp. norm) in  $X = \mathbb{R}^n$ , and by  $X_j \subset X$  an arbitrary subspace of dimension j. It should be noted that a characterization which is *dual* to the above characterization also holds true, namely:

$$\lambda_k = \sup_{\{X_k\}} \inf_{x \in X_k, |x|=1} (Mx|x) ,$$
$$\lambda_{-k} = \inf_{\{X_k\}} \sup_{x \in X_k, |x|=1} (Mx|x) .$$

**Example B.** A similar characterization can be obtained for the eigenvalues of a compact, symmetric operator  $T: X \longrightarrow X$  on a Hilbert space X. This is part of the so-called *Hilbert-Schmidt theory*.

**Example C.** A topological analogue of such minimax schemes was developed by L. Lusternik and L. Schnirelman from 1925 to 1947. This is known as the (classical) Lusternik-Schnirelman theory. It was originally based on the topological notion of category Cat(A, X) of a closed subset A of a metric space X. By definition, Cat(A, X) is the smallest number of closed, contractible subsets of X which is needed to cover A (see [53, 54]).

In this context, given a functional  $\varphi \in C^1(X, \mathbb{R})$  over, say, a differentiable Riemannian manifold X, the idea is to show that the following values are critical values of  $\varphi$ :

$$c_k = \inf_{A \in \mathcal{A}_k} \sup_{x \in A} \varphi(x) , \ k = 1, 2, \dots$$

where  $\mathcal{A}_k := \{A \subset X \mid A \text{ is closed, } \operatorname{Cat}(A, X) \geq k \}$ . For example, since  $\operatorname{Cat}(S^n, S^n) = 2$ , one obtains, for a given functional  $\varphi \in C^1(S^n, \mathbb{R})$ , that

$$c_1 \leq c_2 = c_3 = \cdots ,$$

and, in this case,  $c_1 = \inf \varphi$ ,  $c_2 = \sup \varphi$ . Of course this gives us no new information in this case since we know that  $\inf \varphi$  and  $\sup \varphi$  are attained on the compact manifold  $S^n$  and, therefore, are critical values of  $\varphi$ . However, if  $\varphi \in C^1(S^n, \mathbb{R})$  is an *even* functional, one obtains more critical values, as shown by the following classical theorem due to Lusternik (1930):

**Theorem 1.1.** ([53]) Let  $\varphi \in C^1(S^n, \mathbb{R})$  be given. If  $\varphi$  is even, then it has at least (n + 1) distinct pairs<sup>1</sup> of critical points.

The main idea here is that an *even* functional on  $S^n$  can be considered as a functional on the real projective space  $\mathbb{RP}^n$  (obtained by identification of the antipodal points in  $S^n$ ), and the topology of  $\mathbb{RP}^n$  is much richer than that of  $S^n$ . In fact, it can be shown that  $\operatorname{Cat}(\mathbb{RP}^n, \mathbb{RP}^n) = n + 1$  (cf. [68]) so that, in this case, one obtains (n + 1) critical values (possibly repeated):

$$c_1 \le c_2 \le \dots \le c_{n+1}.^2$$

Another way to interpret Lusternik's multiplicity result is to consider it as a consequence of the symmetry of the problem (evenness of  $\varphi$ , in this

<sup>&</sup>lt;sup>1</sup> Clearly, since  $\varphi$  is even, its critical points occur in pairs.

<sup>&</sup>lt;sup>2</sup> Moreover, if  $c_j = c_{j+k}$  for some  $j, k \ge 1$ , it can be shown that the category of the critical set  $K_c$  is at least k + 1.

case). This question of *multiplicity versus symmetry* will be tackled in a future chapter.

### 2 The Mountain-Pass Theorem

As already mentioned in the beginning of this chapter, the basic idea behind the minimax method is to minimaximize (or maximinimize) a given functional  $\varphi$  over a suitable class of subsets of X. In particular, such a suitable class can be chosen to be invariant under the deformation  $\eta(t, \cdot)$  given in the deformation theorem 3.2.3.

In this section we will present a first illustration of the minimax method which has proven to be a powerful tool in the attack of many problems on differential equations. It is the celebrated *mountain-pass theorem* of Ambrosetti and Rabinowitz [9]:

**Theorem 2.1.** Let X be a Banach space and  $\varphi \in C^1(X, \mathbb{R})$  be a functional satisfying the Palais–Smale condition (PS) (or, more weakly,  $(BCN)_c$ ).<sup>3</sup> If  $e \in X$  and 0 < r < ||e|| are such that

$$a \coloneqq \max\{\varphi(0), \varphi(e)\} < \inf_{||u||=r} \varphi(u) \equiv b , \qquad (2.1)$$

then

$$c = \inf_{\gamma \in \Gamma} \sup_{t \in [0,1]} \varphi(\gamma(t))$$

is a critical value of  $\varphi$  with  $c \ge b$ . (Here,  $\Gamma$  is the set of paths joining the points 0 and e, that is,  $\Gamma = \{\gamma \in C([0,1], X) \mid \gamma(0) = 0, \gamma(1) = e\}.$ )

*Proof*: First note that  $\gamma([0,1]) \cap \partial B_r$  is *nonempty* for any given  $\gamma \in \Gamma$ , since  $\gamma(0) = 0, \gamma(1) = e$  and 0 < r < ||e|| by assumption. Therefore,

$$\max_{t\in[0,1]}\varphi(\gamma(t))\geq b=\inf_{\partial B_r}\varphi\;,$$

so that  $c \geq b$ .

Let us assume, by negation, that c is not a critical value. Then, by the deformation theorem 3.2.2, there exist  $0 < \epsilon < \frac{b-a}{2}$  (recall that a < b by (2.1) and  $\eta \in C([0,1] \times X, X)$ ) such that

$$\eta(t, u) = u \quad if \quad u \notin \varphi^{-1}([c - 2\epsilon, c + 2\epsilon]) \ , \quad t \in [0, 1] \ , \tag{2.2}$$

<sup>&</sup>lt;sup>3</sup> Recall Remark 3.2.1. One could also use  $(Ce)_c$  (cf. [67]).



Fig. 4.1.

$$\eta(1,\varphi^{c+\epsilon}) \subset \varphi^{c-\epsilon} . \tag{2.3}$$

Now, by definition of c as an infimum over  $\Gamma$ , we can choose  $\gamma \in \Gamma$  such that

$$\max_{t \in [0,1]} \varphi(\gamma(t)) \le c + \epsilon \tag{2.4}$$

and define the path  $\widehat{\gamma}(t) = \eta(1, \gamma(t))$ . In view of (2.2) and the fact that  $2\epsilon < b - a$ , it follows that  $\widehat{\gamma} \in \Gamma$  (indeed,  $\widehat{\gamma}(0) = \eta(1, 0) = 0$  and  $\widehat{\gamma}(1) = \eta(1, e) = e$  since  $\varphi(0), \varphi(e) \le a < b - 2\epsilon$ ). But, then, (2.3) and (2.4) above imply that

$$\max_{t\in[0,1]}\varphi(\widehat{\gamma}(t))\leq c-\epsilon \;,$$

which contradicts the definition of c. Therefore, c is a critical value of  $\varphi$ .  $\Box$ 

**Remark 2.1.** In the case u = 0 is a strict local minimum of  $\varphi$  and  $0 \neq e \in X$  is such that  $\varphi(e) \leq \varphi(0)$ , then Condition 2.1 is clearly satisfied. This situation is common in many application as we shall see next (in this sense, the rough Fig. 4.1 is typical).

## **3 Two Basic Applications**

**Application A.** Let us show that the following nonlinear Dirichlet problem on a bounded domain  $\Omega \subset \mathbb{R}^3$  with smooth boundary possesses a *classical* nontrivial solution:

$$\begin{cases} -\Delta u = u^3 & \text{in } \Omega\\ u = 0 & \text{on } \partial\Omega \end{cases}.$$
(3.1)

To begin with, we observe that since  $f(x, u) = u^3$  and  $3 < \frac{N+2}{N-2} = 5$ , the functional

$$\varphi(u) = \int_{\Omega} \left[\frac{1}{2} |\nabla u|^2 - \frac{1}{4} u^4\right] dx$$

is well defined and of class  $C^1$  on the Sobolev space  $H^1_0(\Omega)$  by Proposition 2.2.1. The critical points of  $\varphi$  are precisely the weak solutions of (3.1).

**Lemma 3.1.** (a) u = 0 is a strict local minimum of  $\varphi$ ; (b) Given  $0 \neq v \in H_0^1$  there exists  $\rho_0$  such that  $\varphi(\rho_0 v) \leq 0$ .

*Proof*: (a) In view of the Sobolev embedding  $H_0^1 \subset L^4$  we have

$$\varphi(u) = \frac{1}{2} ||u||^2 - \frac{1}{4} ||u||_{L^4}^4 \ge \frac{1}{2} ||u||^2 - C ||u||^4$$

hence  $\varphi(u) > 0 = \varphi(0)$  for all u with  $0 < ||u|| \le r$ , for some small r > 0. (b) Letting  $\delta = \int_{\Omega} v^4 dx$  for a given  $v \in H_0^1$  with (say) ||v|| = 1, we have

$$\varphi(\rho v) = \frac{1}{2}\rho^2 - \frac{1}{4}\delta\rho^4 \to -\infty \text{ as } \rho \to \infty$$

so that the result follows.

**Theorem 3.2.** ([9]) Problem (3.1) possesses a nontrivial classical solution.<sup>4</sup>

*Proof*: We shall use the mountain-pass theorem. Since we already know that  $\varphi \in C^1(H^1_0, \mathbb{R})$ , we now show that  $\varphi$  satisfies (PS).

Let  $(u_n)$  be such that  $|\varphi(u_n)| \leq C$ ,  $\varphi'(u_n) \to 0$ . Then, for all n sufficiently large, we have

$$|\varphi'(u_n) \cdot u_n| = |\int_{\Omega} [|\nabla u_n|^2 - u_n^4] dx| \le ||u_n||,$$

hence

$$\varphi(u_n) - \frac{1}{4}\varphi'(u_n) \cdot u_n \ dx \le C + \frac{1}{4}||u_n|| \ .$$

that is,

$$\frac{1}{4}||u_n||^2 \le C + \frac{1}{4}||u_n|| \ .$$

This implies that  $||u_n||$  is bounded, so that we may assume (by passing to a subsequence, if necessary) that  $u_n \to \hat{u}$  weakly in  $H_0^1$ . But then, since  $\nabla \varphi(u) = u - T(u)$  with T a compact operator (cf. Remark 2.2.1), we obtain

<sup>&</sup>lt;sup>4</sup> In fact, because of the *eveness* of the corresponding functional  $\varphi$  and its su*perquadratic* nature, problem (3.1) has infinitely many solutions, as we shall see later on.

$$u_n = \nabla \varphi(u_n) + T(u_n) \to 0 + T(\widehat{u})$$
.

Therefore,  $u_n \to \hat{u}$  strongly in  $H_0^1$  and we have shown that  $\varphi$  satisfies (PS).

Now, Lemma 3.1 allows us to use Theorem 2.1 (with  $e = \rho_0 v$ ) in order to conclude the existence of a critical point  $u_0$  with  $\varphi(u_0) = c \ge b > 0 = \varphi(0)$ . Therefore,  $u_0$  is a nontrivial weak solution of (3.1). Moreover, since both  $\partial\Omega$ and  $f(x, u) = u^3$  are smooth, a *bootstrap* argument shows that  $u_0$  is indeed a classic solution (cf. [2]).

**Application B.** This next application is a generalization of the previous one. We consider the nonlinear Dirichlet problem (cf. [9])

$$\begin{cases} -\Delta u = f(x, u) & \text{in } \Omega \subset \mathbb{R}^{\mathbb{N}} \\ u = 0 & \text{on } \partial\Omega \end{cases},$$
(3.2)

where  $\Omega \subset \mathbb{R}^{\mathbb{N}}$   $(N \geq 2)$  is a bounded smooth domain and, as usual,  $f : \overline{\Omega} \times \mathbb{R} \longrightarrow \mathbb{R}$  is a Carathéodory function satisfying the growth condition  $(f_1)$  before Proposition 2.2.1 in Chapter 2. Moreover, we shall assume the following conditions:

$$f(x,s) = o(|s|)$$
 as  $s \to 0$ , uniformly in x.  $(f_2)$ 

There exist  $\mu > 2$  and r > 0 such that

$$0 < \mu F(x,s) \le sf(x,s) \quad \text{for } |s| \ge r, \tag{f_3}$$

uniformly in x (where we recall that  $F(x,s) = \int_0^s f(x,\tau)d\tau$ ).

Condition  $(f_3)$  is the so-called superquadraticity condition of Ambrosetti and Rabinowitz.

As we know, the fact that f is a Carathéodory function satisfying  $(f_1)$  implies (cf. Proposition 2.2.1) that the functional

$$\varphi(u) = \int_{\Omega} \left[\frac{1}{2} |\nabla u|^2 - F(x, u)\right] dx \tag{3.3}$$

is well defined and is of class  $C^1$  on the Sobolev space  $H^1_0(\Omega)$ . Next, we prove an analogue of Lemma 3.1.

**Lemma 3.3.** (a) u = 0 is a strict local minimum of  $\varphi$ ; (b) Given  $0 \neq v \in H_0^1$  there exists  $\rho_0$  such that  $\varphi(\rho_0 v) \leq 0$ .

*Proof*: (a) In view of  $(f_2)$ , given  $\epsilon > 0$ , there exists  $\delta = \delta(\epsilon) > 0$  such that  $|f(x,s)| \le \epsilon |s|$  for all  $|s| \le \delta$ , hence

$$|F(x,s)| \le \frac{1}{2}\epsilon |s|^2 \quad \text{if } |s| \le \delta.$$
(3.4)

Now, since the growth condition  $(f_1)$  implies

$$|F(x,s)| \le A_{\epsilon}|s|^{\sigma+1} \quad \text{if } |s| \ge \delta = \delta(\epsilon) , \qquad (3.5)$$

we combine (3.4) and (3.5) to get

$$|F(x,s)| \le \frac{1}{2}\epsilon|s|^2 + A_{\epsilon}|s|^{\sigma+1} \quad \forall s \in \mathbb{R}, \, \forall x \in \Omega.$$
(3.6)

Therefore, using (3.6) we obtain

$$\varphi(u) = \frac{1}{2} ||u||^2 - \int_{\Omega} F(x, u) \ dx \ge \frac{1}{2} ||u||^2 - \frac{\epsilon}{2} ||u||^2_{L^2} - A_{\epsilon} ||u||^{\sigma+1}_{L^{\sigma+1}} \ ,$$

hence

$$\varphi(u) \ge \frac{1}{2} ||u||^2 - \frac{\epsilon}{2\lambda_1} ||u||^2 - cA_{\epsilon} ||u||^{\sigma+1} = \frac{1}{2} (1 - \frac{\epsilon}{\lambda_1}) ||u||^2 - C_{\epsilon} ||u||^{\sigma+1}$$
(3.7)

in view of Poincaré's inequality  $\lambda_1 ||u||_{L^2}^2 \leq ||u||^2$  and the Sobolev inequality  $||u||_{L^{\sigma+1}} \leq c||u||$  (recall that  $\sigma + 1 < \frac{2N}{N-2}$ ). Therefore, since we can take  $\epsilon < \lambda_1$  and assume that  $\sigma > 1$  in  $(f_1)$ , the above inequality (3.7) gives  $\varphi(u) > 0 = \varphi(0)$  for all u with  $0 < ||u|| \leq r$ , for some suitably small r > 0.

(b) It is easy to see that condition  $(f_3)$ , together with  $(f_1)$ , implies that F is *superquadratic* in the sense that there exist constants c, d > 0 such that

$$F(x,s) \ge c|s|^{\mu} - d \quad \forall s \in \mathbb{R}, \, \forall x \in \Omega.$$
(3.8)

Therefore,

$$\varphi(u) = \frac{1}{2} ||u||^2 - \int_{\Omega} F(x, u) \, dx \leq \frac{1}{2} ||u||^2 - c||u||_{L^{\mu}}^{\mu} + d|\Omega| \, \, ,$$

so that, given  $v \in H_0^1$  with ||v|| = 1 and writing  $\delta = c||v||_{L^{\mu}}^{\mu} > 0$ , we obtain

$$\varphi(\rho v) \leq \frac{1}{2}\rho^2 - \delta\rho^{\mu} + d|\Omega| \longrightarrow -\infty \text{ as } \rho \to \infty.$$

In particular, there exists  $\rho_0 > 0$  such that  $\varphi(\rho_0 v) \leq 0$ .

**Remark 3.1.** As we have just seen in part (b) of Lemma 3.3, condition  $(f_3)$  implies (3.8) with  $\mu > 2$  (F is superquadratic) and, hence,  $\varphi(\rho v) \to -\infty$  as  $\rho \to \infty$  for any given  $0 \neq v \in H_0^1$ . Therefore, the functional  $\varphi$  is not bounded

35

from below. On the other hand, since  $\varphi(u) = \frac{1}{2}||u||^2 - \psi(u)$  where  $\psi$  is a weakly continuous functional (recall Example C in Section 2.1 of Chapter 2), then if we let  $(e_n)$  denote an orthonormal basis for  $H_0^1$ , it follows that  $\lim_{n\to\infty} \psi(Re_n) = 0$  for any given R > 0, so that  $\lim_{n\to\infty} \varphi(Re_n) = \frac{1}{2}R^2$ . Since R > 0 is arbitrary, we see that  $\varphi$  is also not bounded from above.

**Theorem 3.4.** ([9]) If  $f : \Omega \times \mathbb{R} \longrightarrow \mathbb{R}$  is a Carathéodory function satisfying conditions  $(f_1) - (f_3)$ , then problem (3.2) possesses a nontrivial weak solution  $u \in H_0^1$ .

*Proof*: As in Theorem 3.2, we start by showing that the functional  $\varphi$  given in (3.3) satisfies the (PS) condition.

Let  $(u_n)$  be such that  $|\varphi(u_n)| \leq C$ ,  $\varphi'(u_n) \to 0$ . Then, for all *n* sufficiently large, we have

$$|\varphi'(u_n) \cdot u_n| = |\int_{\Omega} [|\nabla u_n|^2 - f(x, u_n)u_n] \, dx| \le ||u_n|| \, ,$$

hence

$$\varphi(u_n) - \frac{1}{\mu} \varphi'(u_n) \cdot u_n \ dx \le C + \frac{1}{\mu} ||u_n|| ,$$

that is,

$$(\frac{1}{2} - \frac{1}{\mu})||u_n||^2 \le C + \frac{1}{\mu}||u_n||$$
,

where  $(\frac{1}{2} - \frac{1}{\mu}) > 0$ , which implies that  $||u_n||$  is bounded. The rest of the proof that  $\varphi$  satisfies (PS) is done as in Theorem 3.2. Similarly, Lemma 3.3 and Theorem 2.1 imply the existence of a nontrivial weak solution  $u_0 \in H_0^1$  of (3.2).

**Remark 3.2.** If  $f : \overline{\Omega} \times \mathbb{R} \longrightarrow \mathbb{R}$  is assumed to be locally Lipschitzian, then by a *bootstrap* argument, the weak solution  $u_0$  is a classical solution (see [9]).

**Remark 3.3.** We point out that the Palais–Smale condition is a compactness condition involving both the functional and the space X in a combined manner. The fact that X is infinite dimensional plays no role in requiring that (PS) (or some other compactness condition) be satisfied in the mountain-pass theorem. Indeed, even in a finite-dimensional space, the geometric conditions alone are not sufficient to guarantee that the level c is a critical level (see Exercise 2 that follows).

#### 4 Exercises

**1.** Let  $\lambda < 0$ . Show that the ODE problem

$$\begin{cases} u'' + \lambda u + u^3 = 0 \ , \ \ 0 < t < \pi \\ u'(0) = u'(\pi) = 0 \end{cases}$$

has a solution  $u \in C^2[0, \pi]$  which is a mountain-pass critical point of the corresponding functional.

- 2. Find a polynomial function p : ℝ × ℝ → ℝ that satisfies the geometric conditions (2.1) of the mountain-pass theorem (so that the minimax value c ≥ b > 0 does exist), but c is not a critical level of p. (Try to find such a polynomial p(x, y) having (0,0) as a strict local minimum and no other critical point; if giving up, see [20].)
- 3. Consider the following nonlinear Neumann problem

$$\begin{cases} -\Delta u = f(u) + \rho(x) & \text{in } \Omega\\ \frac{\partial u}{\partial n} = 0 & \text{on } \partial\Omega \end{cases},$$
(N)

where  $\Omega \subset \mathbb{R}^{\mathbb{N}}$   $(N \geq 1)$  is a bounded smooth domain and the continuous functions  $f : \mathbb{R} \longrightarrow \mathbb{R}$  (given as *p*-periodic) and  $\rho : \overline{\Omega} \longrightarrow \mathbb{R}$  satisfy the conditions

$$\int_{0}^{p} f(s) \, ds = 0 \, , \quad \int_{\Omega} \rho(x) \, dx = 0$$

Recall that, as an application of (the minimum principle) theorem 3.3.1 in Chapter 3 with the Palais–Smale condition replaced by the weaker Brézis–Coron–Nirenberg condition  $(BCN)_c$ , we proved that (N) had a solution  $u_0 \in H^1(\Omega)$  minimizing the corresponding *p*-periodic functional  $\varphi$ . Clearly, by the periodicity of  $\varphi$ , any translated function  $u_k = u_0 + kp$ ,  $k \in \mathbb{Z}$ , is also a minimizer of  $\varphi$ . Find another solution for (N) which is different from the  $u_k$ 's.<sup>5</sup>

4. This is simply a calculus exercise to introduce a function which is *super-linear at infinity* in the sense that

$$\lim_{|s|\to\infty}\frac{f(s)}{s}=+\infty\,,$$

but grows slower than any power greater than 1, namely,

$$\lim_{|s| \to \infty} \frac{f(s)}{|s|^{\epsilon} s} = 0 \qquad \forall \epsilon > 0 \,.$$

<sup>&</sup>lt;sup>5</sup> The mountain-pass theorem also holds if b = a in (2.1) (cf. [63]).

Indeed, just take f(s) := F'(s), where  $F(s) = s^2 ln(1 + s^2)$ . You should also check that

$$\lim_{|s|\to\infty} [sf(s) - 2F(s)] = +\infty ,$$

which is a condition that is relevant to the next exercise.

5. Consider the Dirichlet problem

$$\begin{cases} -\Delta u = f(x, u) & \text{in } \Omega \\ u = 0 & \text{on } \partial\Omega \end{cases}, \tag{D}$$

where  $\Omega \subset \mathbb{R}^{\mathbb{N}}$  is a bounded smooth domain and  $f : \overline{\Omega} \times \mathbb{R} \longrightarrow \mathbb{R}$  is continuous, with f(0) = 0, f(x, s) = o(|s|) as  $s \to 0$  (uniformly for  $x \in \Omega$ ), f satisfying the growth condition  $(f_1)$  in Chapter 2 and

$$\liminf_{|s|\to\infty} \frac{f(x,s)}{s} > \lambda_1 , \quad \text{uniformly for } x \in \Omega ,$$

Moreover, assume that

$$\lim_{|s|\to\infty} [sf(x,s) - 2F(x,s)] = +\infty , \quad \text{uniformly for } x \in \Omega, ^6$$

where, as usual,  $F(x,s) = \int_0^s f(x,t) dt$ . Show that (D) has a nonzero solution. [*Hint:* Use the Fatou lemma to verify that, in view of the above condition, the pertinent functional satisfies the Cerami condition introduced in Exercise 2 of Chapter 3.]

<sup>&</sup>lt;sup>6</sup> This is a nonquadraticity condition introduced in [31].