On the Noetherian properties of reduction
system of words

1. Introduction

A reduction system of words is a pair <Z, 75) where ¥ is an alphabet and R is a non-

empty finite binary on ¥*, we write xly?a:my whenever z,y € ¥* and (I,m) € R. We

write u%v if there exists a words uq, u1, ..., u, € 3* such that,
Uy = u,ui?uiﬂ,vo <¢<n-—1andu, =v.

Ifn=0, we get u=wv, and if n = 1, we get u?v. Where % is the reflexive transitive
closure of = [7].

The reduction system of words (3, R) is Noetherian if there does not exist an infinite
chain wlin?w;},?... in %,

However, this property is said to be undecidable. It is not possible to find an algorithm
taking as input a reduction system of words and rendering true if and only if this reduction
system of words is Noetherian [8, 10].

2. Preliminaries

We formally define an alphabet as a non-empty finite set. A word over an alphabet 3
is a finite sequence of symbols of ¥. Although one writes a sequence as (01,09, ...,0,),
in the present context, we prefer to write it as o105...0,,. The set of all words on the
alphabet ¥ is denoted by Y*and is equipped with the associative operation defined by
the concatenation of two sequences. The concatenation of two sequences aqas...a, and
B418-.-5,, is the sequence ajs...c, 31 85...0,, [1,4].

The concatenation is an associative operation. The string consisting of zero letters is
called the empty word, written e. Thus, €, a, 5, aafa, aaaSa are words over the alphabet
{a, 5}. Thus the set 3* of words is equipped with the structure of a monoid. The monoid
Y* is called the free monoid on X. The length of a word w, denoted |w|, is the number of
letters in w when each letter is counted as many times as it occurs. Again by definition,
le| = 0. For example |cafSal =4 and |aaafal = 5. Let w be a word over an alphabet X.
For o € ¥, the number of occurrences of ¢ in w shall be denoted by |w| . For example
laaBaly =1 and |eaafal, = 4.

A mapping h : ¥* — A*, where ¥ and A are alphabets, satisfying the condition

h(uv) = h(u)h(v), for all words u and v,

is called a morphism. To define a morphism h, it suffices to list all the words & (o),
where a ranges over all the (finitely many) letters of ¥. If M is a monoid, then any



mapping f : ¥ — M extends to a unique morphism h : ¥* — M. For instance, if M
is the additive monoid N, and f is defined by f (0) = 1 for each ¢ € ¥, then h (u) is the
length |u| of the word w [6, 7).

A binary reation on ¥* is a subset R C ¥* x ¥*. If (z,y) € R, we say that x is related to
y by R, denoted zRy. The relation Is+ = {(z,x),z € ¥*} is called the identity relation.
The relation (X*)? is called the complete relation.

Let R C ¥* x ¥* and § C ¥* x ¥* binary relations. The composition of R and S is a
binary relation S o R C ¥* x ¥* defined by

x(SoR)z <= Jy € ¥* such that Ry and yS=.

A binary relation R on a set ¥* is said to be

o reflexive if xRz for all x in X*.

e transitive if 2Ry and yRz imply zRz.

Let R be a relation on a set X*. The reflexive closure of R is the smallest reflexive
relation R” on X* that contains R, that is,

e RCR"

e if S is a reflexive relation on ¥* and R C S, then R" C S.

The transitive closure of R is the smallest transitive relation R* on X* that contains
R; that is,

e RCRT

e if S is a transitive relation on X* and R C S, then RT™ C S.

The reflexive transitive closure of R is the smallest reflexive transitive relation R* on
>* that contains R; that is,

e R CR*

e if S is a reflexive transitive relation on ¥* and R C S, then R* C S.

Let R be a relation on a set ¥*. Then

k=+o00 k=+o00
RO=RUIL., RY = | R}, R*= [ R*[6]
k=1 =

Where R* = RY o RF7!, RY is the identity relation, and o denote composition of
relations.
Let R C ¥* x ¥*be a finite set. We define the binary relation 75 as follows, where

u,v € X* ¢ uiv if there exist z,y € ¥* and (I,m) € R with u = zly and v = zmy.

The structure (E :>> is a reduction system of words and the relation :> is the reduction
relation. If u € ¥* and there is no v € ¥* suth that u:>v then u is 1rredu(:1ble otherwise,

u is reducible. The set of all irreducible elements of >* with respect to 7; is denoted

IRR ((2, 75)) [2]. Let (Z, 75) be a reduction system of words, we write u%v if there

words uq, U1, ..., U, € 3* such that,

Uy = u,ui?uiﬂ,vo <i<n-—1andu, =v.



Ifn=o0, we get u=v,and if n =1, we get u?v. Where % is the reflexive transitive

closure of =.
R

We say that <E, 75) is Noetherian if there does not exist an infinite sequence of words

w; € ¥* (i € N) with woﬁwlﬁwzﬁ.... For example (N, >) is Noetherian [5].

Theorem 1 Let (Zl,?) be a reduction system of words. Then the following two

statements are equivalent :

1. (Zl,:>) is Noetherian;
R1

2. There exists another reduction system of words <22, :) that is Noetherian and the

morphism v : ¥} — 33 such that ¢(R ) C :> 7:€> is the transitive closure of =

Reo 2
Proposition 2 Let (Z‘, 75) be a reduction system of words and ¢ : ¥* — N the mor-
phism of monoids. Consider the mapping P : ¥* — N defined by :

=|w]

Zn X p(w(i)), n € N— {0} where w (i) is the i — th letter of w.
1] = [m] (C1)
If for all (I,m) € R, and , then <E, :>> is Noetherian.
P(l) > P(m) (Cy) "
Proof. First, we show that, we have Vo, y € 3% P(a:y) = P(x)+nl*l x P(y). We have
i=|zy] i=|x| i=|z|+y|
angp xy) angp (zy) Z n' x o((zy) (1))
i=|z|+1
i=|z| i=ly|

= > (@) (@) + Y nkH x o((ay) (o] + 1)
r|alc\ Z:\ll/|

—Zn x (( Zn‘x'“w ) (i) = P(a) +nl"h x P(y).

Let (l m) € R and z,y € E* we show that P(zly) > P(xmy).

We have P(zly) = P(z(ly)) = P(z) + nl*l x P(ly) = P(z) + nl*l (P(1) + nl'l x P(y))

= P(z) + nl*l x P(I) + nl*#1 x P(y). A similar argument, we have P(zmy) = P(z(my))
= P(z) + nl*l x P(my) = P(z) + nl*l (P(m) + nl™ x P(y))

= P(x) + nl*l x P(m) + nl*+Iml x P(y). According to the conditions (C}), (Cs) described
above, we have P(xly) > P(xmy). Consequently (Z, 75) is Noetherian. =

Example 3 Consider the reduction system of words (2,75) with ¥ = {a, 5,7} and
R =A{(Ba,apB);(v8,07)}. Let the morphism ¢ : ¥* — N, defined by ¢ (a) = 3,



i=[w]

©(B) =2,¢0(y) =1 and the mapping P : ¥* — N, where P (w Z 2" x p(w

For the condition (C}), we have |fa| = |af| = 2 and |v8| = |v] = 2. For the condition
(Cy), we show that P(Ba) > P(af) and P(y5) > P(B7).

We have P(fa) = Z?lxgoﬁa ) =2x ¢ (8)+2%x ¢(a)=16.
Similarly, P ZQ’ X p(afB(i)) =2xp(a)+22x ¢ (B) = 14, then P(Ba) > P(af).
We have P(vf) = Z,lew'yﬂ ) =2x¢(y)+2%xp(B)=10.

smmMmfwﬁw=§:wa@ww>:2xww»+?xwvw=8JManﬂw>wa-
Consequently (E, ?;) 18 Noetherian.

Proposition 4 Let (E, 75) be a reduction system of words and ¢ : (X*,-) — (N, +) with
i=|w|
a morphism of monoids, the mapping P : ¥* — N defined by : P(w) = Z i X p(w(i)),

i=1
where w (i) is the i — th letter of w.

1] = |ml| (C1)
and
If for all (I,m) € R, P(l) > P(m) (Cy) , then <Z, :>> is Noetherian.
and &
o (1) > (m) ()
Proof. First, we show that, we have : Vr,y € £*: P(xy) = P(z) + P(y) + |z| X ¢ ().
i=|zy| i=|z| i=lz|+|yl
We have P(zy) = szgoxy szwxy Z i X p(zy(i))

i=|z|+1
i=|z] i=ly|
= Z i % (i) + Z (Jz] + 1) x e((zy) (|| + 1))
Z_\ﬂlfl Z.:2‘1=|y\

—szgp ) +Z (Jzl + 1) x @((y) (2))

= P(z)+ Ply) + 2] x 0 ()
Let (I,m) € R and z,y € ¥*, we show that P(zly) > P(xmy).
We have, P(zly) = P(x(ly)) =P(z)+ P(ly)+ || x ¢ (I'y)
= P(a) + P() + P(y) + 1l % ¢ (y) + 2l % (¢ () + 9 (¥))
= [P(z) + P(y) + [z x @ (y)] + [P() + [I] x ¢ () + |2] x @ (1)].
On the other hand, P(zmy) = [P(x) + P(y) + [z] x ¢ (y)|+[P(m) + [m| x ¢ (y) + || x ¢ (m)].
According to the conditions (C), (C2), (C4) described above,we have P(xly) > P(xmy).

Finally (Z,?) is Noetherian. m



Example 5 Let ¥ = {a, 3,7} and R = {(Ba, B7); (afB,ay)}. We define the morphism
of monoids ¢ : ¥ — N, by p(a) = 2,9 (8) = 1,0 (y) = 0. We consider the mapping
i=|w|
P :¥* — N, where P (w) = Z i X p(w(i)).
For the condition (C}), we have |Bal = |8y =2 and |af| = |ay| =
For the condition (C5), we show that P(Ba) > P(Bv) and P(af) > P((w)
=2

We have P(fa) = Zz X o(Ba(i) =1xp(B)+2x p(a)=>.

A similar argument, we have P((v) = Z@ X p(By(@)=1xp(B)+2xp(y) =1,
=1
7,:2
then P(Ba) > P(B7). And P(af3) = Z@ X p(af(i)) =1x¢(a)+2x p(B) =4.
i=1
i=2
Similarly, P(ay) = Z@ X play(i)) =1 x p(a)+2 x ¢ (y) = 2., then P(af) > P(a).

=1
For the condition (C3), we show that p(Ba)) > p(57y) and p(af) > p(ay).
We have o(Ba) = 3, p(B7y) = 1, p(af) = 3, p(ay) = 2.
Consequently <Z,72>> 1s Noetherian.
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