On the Noetherian properties of reduction system of words

1. Introduction

A reduction system of words is a pair $(\Sigma, \stackrel{\Rightarrow}{\mathcal{R}})$ where Σ is an alphabet and \mathcal{R} is a nonempty finite binary on Σ^* , we write $xly \stackrel{\Rightarrow}{\Rightarrow} xmy$ whenever $x, y \in \Sigma^*$ and $(l, m) \in \mathcal{R}$. We write $u \stackrel{*}{\Rightarrow} v$ if there exists a words $u_0, u_1, ..., u_n \in \Sigma^*$ such that,

$$u_0 = u, u_i \underset{\mathcal{P}}{\Rightarrow} u_{i+1}, \forall 0 \le i \le n-1 \text{ and } u_n = v$$

If n = 0, we get u = v, and if n = 1, we get $u \stackrel{*}{\Rightarrow} v$. Where $\stackrel{*}{\stackrel{*}{\Rightarrow}}$ is the reflexive transitive closure of $\stackrel{*}{\Rightarrow}$ [7].

The reduction system of words (Σ, \mathcal{R}) is Noetherian if there does not exist an infinite chain $w_1 \stackrel{\Rightarrow}{\xrightarrow{}} w_2 \stackrel{\Rightarrow}{\xrightarrow{}} w_3 \stackrel{\Rightarrow}{\xrightarrow{}} \dots$ in Σ^* .

However, this property is said to be undecidable. It is not possible to find an algorithm taking as input a reduction system of words and rendering true if and only if this reduction system of words is Noetherian [8, 10].

2. Preliminaries

We formally define an alphabet as a non-empty finite set. A word over an alphabet Σ is a finite sequence of symbols of Σ . Although one writes a sequence as $(\sigma_1, \sigma_2, ..., \sigma_n)$, in the present context, we prefer to write it as $\sigma_1 \sigma_2 ... \sigma_n$. The set of all words on the alphabet Σ is denoted by Σ^* and is equipped with the associative operation defined by the concatenation of two sequences. The concatenation of two sequences $\alpha_1 \alpha_2 ... \alpha_n$ and $\beta_1 \beta_2 ... \beta_m$ is the sequence $\alpha_1 \alpha_2 ... \alpha_n \beta_1 \beta_2 ... \beta_m$ [1, 4].

The concatenation is an associative operation. The string consisting of zero letters is called the empty word, written ϵ . Thus, $\epsilon, \alpha, \beta, \alpha\alpha\beta\alpha, \alpha\alpha\alpha\beta\alpha$ are words over the alphabet $\{\alpha, \beta\}$. Thus the set Σ^* of words is equipped with the structure of a monoid. The monoid Σ^* is called the free monoid on Σ . The length of a word w, denoted |w|, is the number of letters in w when each letter is counted as many times as it occurs. Again by definition, $|\epsilon| = 0$. For example $|\alpha\alpha\beta\alpha| = 4$ and $|\alpha\alpha\alpha\beta\alpha| = 5$. Let w be a word over an alphabet Σ . For $\sigma \in \Sigma$, the number of occurrences of σ in w shall be denoted by $|w|_{\sigma}$. For example $|\alpha\alpha\beta\alpha|_{\beta} = 1$ and $|\alpha\alpha\alpha\beta\alpha|_{\alpha} = 4$.

A mapping $h: \Sigma^* \longrightarrow \Delta^*$, where Σ and Δ are alphabets, satisfying the condition

$$h(uv) = h(u)h(v)$$
, for all words u and v ,

is called a morphism. To define a morphism h, it suffices to list all the words $h(\sigma)$, where a ranges over all the (finitely many) letters of Σ . If M is a monoid, then any mapping $f: \Sigma \longrightarrow M$ extends to a unique morphism $h: \Sigma^* \longrightarrow M$. For instance, if M is the additive monoid \mathbb{N} , and f is defined by $f(\sigma) = 1$ for each $\sigma \in \Sigma$, then h(u) is the length |u| of the word u [6,7].

A binary reation on Σ^* is a subset $\mathcal{R} \subseteq \Sigma^* \times \Sigma^*$. If $(x, y) \in \mathcal{R}$, we say that x is related to y by \mathcal{R} , denoted $x\mathcal{R}y$. The relation $I_{\Sigma^*} = \{(x, x), x \in \Sigma^*\}$ is called the identity relation. The relation $(\Sigma^*)^2$ is called the complete relation.

Let $\mathcal{R} \subseteq \Sigma^* \times \Sigma^*$ and $S \subseteq \Sigma^* \times \Sigma^*$ binary relations. The composition of \mathcal{R} and S is a binary relation $S \circ \mathcal{R} \subseteq \Sigma^* \times \Sigma^*$ defined by

$$x (\mathcal{S} \circ \mathcal{R}) z \iff \exists y \in \Sigma^* \text{ such that } x \mathcal{R}y \text{ and } y \mathcal{S}z.$$

A binary relation \mathcal{R} on a set Σ^* is said to be

• reflexive if $x\mathcal{R}x$ for all x in Σ^* .

• transitive if $x\mathcal{R}y$ and $y\mathcal{R}z$ imply $x\mathcal{R}z$.

Let \mathcal{R} be a relation on a set Σ^* . The reflexive closure of \mathcal{R} is the smallest reflexive relation \mathcal{R}^r on Σ^* that contains \mathcal{R} , that is,

• $\mathcal{R} \subseteq \mathcal{R}^r$

• if S is a reflexive relation on Σ^* and $\mathcal{R} \subseteq \mathcal{S}$, then $\mathcal{R}^r \subseteq S$.

The transitive closure of \mathcal{R} is the smallest transitive relation \mathcal{R}^+ on Σ^* that contains \mathcal{R} ; that is,

 $ullet \mathcal{R} \subseteq \mathcal{R}^+$

• if S is a transitive relation on Σ^* and $\mathcal{R} \subseteq S$, then $\mathcal{R}^+ \subseteq S$.

The reflexive transitive closure of \mathcal{R} is the smallest reflexive transitive relation \mathcal{R}^* on Σ^* that contains \mathcal{R} ; that is,

• $\mathcal{R} \subseteq \mathcal{R}^*$

• if S is a reflexive transitive relation on Σ^* and $\mathcal{R} \subseteq S$, then $\mathcal{R}^* \subseteq S$.

Let \mathcal{R} be a relation on a set Σ^* . Then

$$\mathcal{R}^0 = \mathcal{R} \cup I_{\Sigma^*}, \ \mathcal{R}^+ = \bigcup_{k=1}^{k=+\infty} \mathcal{R}^k, \ \mathcal{R}^* = \bigcup_{k=0}^{k=+\infty} \mathcal{R}^k \ [6].$$

Where $\mathcal{R}^k = \mathcal{R}^0 \circ \mathcal{R}^{k-1}$, \mathcal{R}^0 is the identity relation, and \circ denote composition of relations.

Let $\mathcal{R} \subseteq \Sigma^* \times \Sigma^*$ be a finite set. We define the binary relation $\Rightarrow_{\mathcal{R}}$ as follows, where $u, v \in \Sigma^* : u \Rightarrow_{\mathcal{R}} v$ if there exist $x, y \in \Sigma^*$ and $(l, m) \in \mathcal{R}$ with u = xly and v = xmy. The structure $\left(\Sigma, \Rightarrow_{\mathcal{R}}\right)$ is a reduction system of words and the relation $\Rightarrow_{\mathcal{R}}$ is the reduction relation. If $u \in \Sigma^*$ and there is no $v \in \Sigma^*$ such that $u \Rightarrow v$, then u is irreducible; otherwise, u is reducible. The set of all irreducible elements of Σ^* with respect to $\Rightarrow_{\mathcal{R}}$ is denoted $IRR\left(\left(\Sigma, \Rightarrow_{\mathcal{R}}\right)\right)$ [2]. Let $\left(\Sigma, \Rightarrow_{\mathcal{R}}\right)$ be a reduction system of words, we write $u \Rightarrow_{\mathcal{R}} v$ if there words $u_0, u_1, ..., u_n \in \Sigma^*$ such that,

$$u_0 = u, u_i \underset{\mathcal{R}}{\Rightarrow} u_{i+1}, \forall 0 \le i \le n-1 \text{ and } u_n = v.$$

If n = o, we get u = v, and if n = 1, we get $u \stackrel{*}{\Rightarrow} v$. Where $\stackrel{*}{\stackrel{*}{\Rightarrow}}$ is the reflexive transitive closure of $\stackrel{\Rightarrow}{\xrightarrow{}}$.

We say that $\left(\Sigma, \stackrel{\rightarrow}{\mathcal{R}}\right)$ is Noetherian if there does not exist an infinite sequence of words $w_i \in \Sigma^* \ (i \in \mathbb{N})$ with $w_0 \stackrel{\rightarrow}{\mathcal{R}} w_1 \stackrel{\rightarrow}{\mathcal{R}} w_2 \stackrel{\rightarrow}{\mathcal{R}} \dots$ For example $(\mathbb{N}, >)$ is Noetherian [5].

Theorem 1 Let $\left(\Sigma_1, \underset{\mathcal{R}_1}{\Rightarrow}\right)$ be a reduction system of words. Then the following two statements are equivalent :

1.
$$\left(\Sigma_1, \underset{\mathcal{R}_1}{\Rightarrow}\right)$$
 is Noetherian;

2. There exists another reduction system of words $\left(\Sigma_2, \underset{\mathcal{R}_2}{\Rightarrow}\right)$ that is Noetherian and the morphism $\psi: \Sigma_1^* \longrightarrow \Sigma_2^*$ such that $\psi(\underset{\mathcal{R}_1}{\Rightarrow}) \subseteq \underset{\mathcal{R}_2}{\stackrel{+}{\Rightarrow}}$. $\overset{+}{\underset{\mathcal{R}_2}{\Rightarrow}}$ is the transitive closure of $\underset{\mathcal{R}_2}{\Rightarrow}$.

Proposition 2 Let $(\Sigma, \stackrel{\rightarrow}{\mathcal{R}})$ be a reduction system of words and $\varphi : \Sigma^* \longrightarrow \mathbb{N}$ the morphism of monoids. Consider the mapping $P : \Sigma^* \longrightarrow \mathbb{N}$ defined by : $P(w) = \sum_{i=1}^{i=|w|} n^i \times \varphi(w(i)), n \in \mathbb{N} - \{0\}$ where w(i) is the i-th letter of w.

If for all
$$(l,m) \in \mathcal{R}$$
,
$$\begin{cases} |l| = |m| \qquad (C_1) \\ n \text{ and } \\ P(l) > P(m) \qquad (C_2) \end{cases}$$
, then (Σ, \Rightarrow) is Noetherian.
Proof. First, we show that, we have : $\forall x, y \in \Sigma^* : P(xy) = P(x) + n^{|x|} \times P(y)$. We have $P(xy) = \sum_{i=1}^{i=|xy|} n^i \times \varphi((xy)(i)) = \sum_{i=1}^{i=|x|} n^i \times \varphi((xy)(i)) + \sum_{i=|x|+1}^{i=|x|+|y|} n^i \times \varphi((xy)(i)) = \sum_{i=1}^{i=|x|} n^i \times \varphi((xy)(i)) + \sum_{i=1}^{i=|y|} n^{|x|+i} \times \varphi((xy)(|x|+i)) = \sum_{i=1}^{i=|x|} n^i \times \varphi((x)(i)) + \sum_{i=1}^{i=|y|} n^{|x|+i} \times \varphi((xy)(|x|+i)) = \sum_{i=1}^{i=|x|} n^i \times \varphi((x)(i)) + \sum_{i=1}^{i=|y|} n^{|x|+i} \times \varphi((y)(i)) = P(x) + n^{|x|} \times P(y).$
Let $(l,m) \in \mathcal{R}$ and $x, y \in \Sigma^*$, we show that $P(xly) > P(xmy)$.
We have $P(xly) = P(x(ly)) = P(x) + n^{|x|} \times P(ly) = P(x) + n^{|x|} (P(l) + n^{|l|} \times P(y)) = P(x) + n^{|x|} \times P(l) + n^{|x|+|l|} \times P(y)$. A similar argument, we have $P(xmy) = P(x(my)) = P(x) + n^{|x|} \times P(m) + n^{|x|+|m|} \times P(y)$. According to the conditions $(C_1), (C_2)$ described above, we have $P(xly) > P(xmy)$. Consequently (Σ, \Rightarrow) is Noetherian.

Example 3 Consider the reduction system of words $(\Sigma, \stackrel{\rightarrow}{\underset{\mathcal{R}}{\Rightarrow}})$ with $\Sigma = \{\alpha, \beta, \gamma\}$ and $\mathcal{R} = \{(\beta\alpha, \alpha\beta); (\gamma\beta, \beta\gamma)\}$. Let the morphism $\varphi : \Sigma^* \longrightarrow \mathbb{N}$, defined by $\varphi(\alpha) = 3$,

$$\begin{split} \varphi\left(\beta\right) &= 2, \varphi\left(\gamma\right) = 1 \text{ and the mapping } P: \Sigma^* \longrightarrow \mathbb{N}, \text{ where } P\left(w\right) = \sum_{i=1}^{i=|w|} 2^i \times \varphi(w(i)). \\ \text{For the condition } (C_1), we have |\beta\alpha| &= |\alpha\beta| = 2 \text{ and } |\gamma\beta| = |\beta\gamma| = 2. \\ \text{For the condition } (C_2), we show that $P(\beta\alpha) > P(\alpha\beta) \text{ and } P(\gamma\beta) > P(\beta\gamma). \\ \text{We have } P(\beta\alpha) &= \sum_{i=1}^{i=2} 2^i \times \varphi(\beta\alpha(i)) = 2 \times \varphi\left(\beta\right) + 2^2 \times \varphi\left(\alpha\right) = 16. \\ \text{Similarly, } P(\alpha\beta) &= \sum_{i=1}^{i=2} 2^i \times \varphi(\alpha\beta(i)) = 2 \times \varphi\left(\alpha\right) + 2^2 \times \varphi\left(\beta\right) = 14, \text{ then } P(\beta\alpha) > P(\alpha\beta). \\ \text{We have } P(\gamma\beta) &= \sum_{i=1}^{i=2} 2^i \times \varphi(\gamma\beta(i)) = 2 \times \varphi\left(\gamma\right) + 2^2 \times \varphi\left(\beta\right) = 10. \\ \text{Similarly, } P(\beta\gamma) &= \sum_{i=1}^{i=2} 2^i \times \varphi(\beta\gamma(i)) = 2 \times \varphi\left(\beta\right) + 2^2 \times \varphi\left(\gamma\right) = 8, \text{ then } P(\gamma\beta) > P(\beta\gamma). \\ \text{Consequently } \left(\Sigma, \underset{\mathcal{R}}{\Rightarrow}\right) \text{ is Noetherian.} \end{split}$$$

Proposition 4 Let $(\Sigma, \Rightarrow_{\mathcal{R}})$ be a reduction system of words and $\varphi : (\Sigma^*, \cdot) \longrightarrow (\mathbb{N}, +)$ with a morphism of monoids, the mapping $P : \Sigma^* \longrightarrow \mathbb{N}$ defined by $: P(w) = \sum_{i=1}^{i=|w|} i \times \varphi(w(i)),$ where w(i) is the i - th letter of w.

$$\begin{array}{l} \text{If for all } (l,m) \in \mathcal{R}, \begin{cases} |l| = |m| & (C_1) \\ \text{and} \\ P(l) > P(m) & (C_2) \\ \text{and} \\ \varphi(l) > \varphi(m) & (C_3) \\ \end{array} \\ \textbf{Proof. First, we show that, we have : } \forall x, y \in \Sigma^* : P(xy) = P(x) + P(y) + |x| \times \varphi(y). \\ \text{We have } P(xy) = \sum_{i=1}^{i=|xy|} i \times \varphi(xy(i)) = \sum_{i=1}^{i=|x|} i \times \varphi(xy(i)) + \sum_{i=|x|+|y|}^{i=|x|+|y|} i \times \varphi(xy(i)) \\ = \sum_{i=1}^{i=|x|} i \times \varphi(x(i)) + \sum_{i=1}^{i=|y|} (|x|+i) \times \varphi((xy) (|x|+i)) \\ = \sum_{i=1}^{i=|x|} i \times \varphi(x(i)) + \sum_{i=1}^{i=|y|} (|x|+i) \times \varphi((y) (i)) \\ = P(x) + P(y) + |x| \times \varphi(y). \\ \text{Let } (l,m) \in \mathcal{R} \text{ and } x, y \in \Sigma^*, \text{ we show that } P(xly) > P(xmy). \\ \text{We have, } P(xly) = P(x(ly)) = P(x) + P(ly) + |x| \times \varphi(ly) \\ = P(x) + P(l) + P(y) + |l| \times \varphi(y) + |x| \times (\varphi(l) + \varphi(y)) \\ = P(x) + P(l) + P(y) + |l| \times \varphi(y) + |x| \times (\varphi(l) + \varphi(y)) \\ = [P(x) + P(y) + |x| \times \varphi(y)] + [P(l) + |l| \times \varphi(y) + |x| \times \varphi(l)]. \\ \text{On the other hand, } P(xmy) = [P(x) + P(y) + |x| \times \varphi(y)] + [P(m) + |m| \times \varphi(y) + |x| \times \varphi(m)]. \\ \text{Finally } \left(\Sigma, \overrightarrow{\pi}\right) \text{ is Noetherian.} \end{array}$$

Example 5 Let $\Sigma = \{\alpha, \beta, \gamma\}$ and $\mathcal{R} = \{(\beta\alpha, \beta\gamma); (\alpha\beta, \alpha\gamma)\}$. We define the morphism of monoids $\varphi : \Sigma^* \longrightarrow \mathbb{N}$, by $\varphi(\alpha) = 2, \varphi(\beta) = 1, \varphi(\gamma) = 0$. We consider the mapping $P : \Sigma^* \longrightarrow \mathbb{N}$, where $P(w) = \sum_{i=1}^{i=|w|} i \times \varphi(w(i))$. For the condition (C_1) , we have $|\beta\alpha| = |\beta\gamma| = 2$ and $|\alpha\beta| = |\alpha\gamma| = 2$. For the condition (C_2) , we show that $P(\beta\alpha) > P(\beta\gamma)$ and $P(\alpha\beta) > P(\alpha\gamma)$. We have $P(\beta\alpha) = \sum_{i=1}^{i=2} i \times \varphi(\beta\alpha(i)) = 1 \times \varphi(\beta) + 2 \times \varphi(\alpha) = 5$. A similar argument, we have $P(\beta\gamma) = \sum_{i=1}^{i=2} i \times \varphi(\beta\gamma(i)) = 1 \times \varphi(\beta) + 2 \times \varphi(\gamma) = 1$, then $P(\beta\alpha) > P(\beta\gamma)$. And $P(\alpha\beta) = \sum_{i=1}^{i=2} i \times \varphi(\alpha\beta(i)) = 1 \times \varphi(\alpha) + 2 \times \varphi(\beta) = 4$. Similarly, $P(\alpha\gamma) = \sum_{i=1}^{i=2} i \times \varphi(\alpha\gamma(i)) = 1 \times \varphi(\alpha) + 2 \times \varphi(\gamma) = 2$., then $P(\alpha\beta) > P(\alpha\gamma)$. For the condition (C_3) , we show that $\varphi(\beta\alpha) > \varphi(\beta\gamma)$ and $\varphi(\alpha\beta) > \varphi(\alpha\gamma)$. We have $\varphi(\beta\alpha) = 3, \varphi(\beta\gamma) = 1, \varphi(\alpha\beta) = 3, \varphi(\alpha\gamma) = 2$. Consequently $(\Sigma, \frac{1}{\beta})$ is Noetherian.

REFERENCES

- 1. J. Berstel & D. Perrin, *Theory of codes*, Academic Press (1984).
- 2. R. V. Book, F. Otto, *String-Rewriting Systems*, Springer-Verlag, (1993).
- 3. N. Dershowitz, *Termination of Rewriting*, Jornal of Symbolic Computation, vol. 3, 69 116, (1987).
- 4. D. Goswami and K. V. Krishna, Formal Languages and Automata Theory, (2010).
- 5. Y. Guiraud, *Présentations d'opérades et systèmes de réécriture*, Thèse de doctorat, Institut de Mathématiques et de Modélisation de Montpellier, (2004).
- 6. J. M. Howie, Fundamentals of Semigroup Theory, Oxford Science Publications, (1995).
- Y. Lafont, A new finiteness condition for monoids presented by complete rewriting systems (after Craig C. Squier), Journal of Pur and Applied Algebra, vol. 98, 229–244, (1995).
- 8. M. Lohrey, The Compressed Word Problem for Groups, Springer (2014).
- D. Kapur and P. Narendran, A Finite Thue System With Decidable Word Problem And Without Equivalent Finite Canonical System, Theoretical Computer Science, vol. 35, 337 - 344, (1985).
- 10. H. Zantema, *Termination of String Rewriting Proved Automatically*, TU Eindhoven, (2004).