

جامعة محمد بوضياف - المسيلة Université Mohamed Boudiaf - M'sila

Artificial Learning Models

Lecture 3 : Logistic Regression

By : Dr. Lamri SAYAD 2023

Classification and Regression

- Both classification and regression take a set of training instances and learn a mapping to a <u>target value</u>.
- For classification, the target value is a discrete class value
 - Binary: target value is 0 (negative class) or 1 (positive class)
 - · e.g. detecting a fraudulent credit card transaction
 - Multi-class: target value is one of a set of discrete values
 - e.g. labelling the type of fruit from physical attributes

Binary classification vs Multi-class classification

Binary Classification

- Input: $\mathbf{x} \in \mathbb{R}^d$
- Parameters: $\theta = \{a, b\}$ avec $a \in \mathbb{R}^d, b \in \mathbb{R}$
- Output: $y \in \{0,1\}$ ou $y \in \{-1,1\}$

Binary Classification

• Prediction function

$$\hat{\mathbf{y}}(w) = \begin{cases} 1 & \text{if } w \ge 0, \\ 0 & \text{otherwise.} \end{cases}$$

$$\hat{\mathbf{y}}(w) = \begin{cases} 1 & \text{if } w \ge 0, \\ -1 & \text{otherwise.} \end{cases}$$

Binary Linear Classifier : Intuition

Binary Linear Classifier Definition

Binary Classification

Problematic Cases

- Can we always find a hyperplane that separates classes? NO
- Can we characterize formally in which cases we can? YES

How to separate the data ?

Regression or classification ?

- Logistic regression is not a regression task
 - It is a classification task
- used when the dependent variable(target) is categorical.
- example,
 - To predict whether an email is spam (1) or (0)
 - Whether the tumor is malignant (1) or not (0)

Classification Based on Probability

- Takes a probabilistic approach to learning discriminative functions (i.e., a classifier)
- Instead of just predicting the class, give the probability of the instance being that class
 - i.e., learn p(y | x)

Linear Regression : Reminder

Linear models for classification : Logistic Regression

Linear models for classification : Logistic Regression (Example)

Logistic Regression: The model

• Takes a probabilistic approach to learning discriminative functions (i.e., a classifier)

 $h_{\theta}(\boldsymbol{x})$ should give $p(y = 1 \mid \boldsymbol{x}; \boldsymbol{\theta})$

– Want
$$0 \le h_{\boldsymbol{\theta}}(\boldsymbol{x}) \le 1$$

• Logistic regression model: $h_{\theta}(x) = g(\theta^{\mathsf{T}}x)$ $g(z) = \frac{1}{1 + e^{-z}}$

 $h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x}}}$

Logistic / Sigmoid Function

Interpretation of Hypothesis Output

 $h_{\theta}(\boldsymbol{x})$ = estimated $p(y = 1 \mid \boldsymbol{x}; \boldsymbol{\theta})$

Example: Cancer diagnosis from tumor size $\begin{bmatrix} x_0 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$

$$oldsymbol{x} = \begin{bmatrix} x_1 \end{bmatrix} = \begin{bmatrix} \text{tumorSize} \\ h_{oldsymbol{ heta}}(oldsymbol{x}) = 0.7 \end{bmatrix}$$

→ Tell patient that 70% chance of tumor being malignant

Note that:
$$p(y = 0 | \boldsymbol{x}; \boldsymbol{\theta}) + p(y = 1 | \boldsymbol{x}; \boldsymbol{\theta}) = 1$$

Therefore, $p(y = 0 \mid \boldsymbol{x}; \boldsymbol{\theta}) = 1 - p(y = 1 \mid \boldsymbol{x}; \boldsymbol{\theta})$

Logistic Regression

- Assume a threshold and...
 - Predict y = 1 if $h_{m{ heta}}(m{x}) \geq 0.5$
 - Predict y = 0 if $h_{m{ heta}}(m{x}) < 0.5$

sed on slide by Andrew Ng

Logistic Regression: Non-Linear decision boundary

Logistic Regression: Cost (Objective) Function

• Shouldn't use squared loss as in linear regression:

$$J(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^2$$

Logistic regression objective:

$$\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

$$J(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \left[y^{(i)} \log h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) + \left(1 - y^{(i)}\right) \log \left(1 - h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)})\right) \right]$$

$$J(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \left[y^{(i)} \log h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) + \left(1 - y^{(i)}\right) \log \left(1 - h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)})\right) \right]$$

• Cost of a single instance:

$$\cot(h_{\theta}(\boldsymbol{x}), y) = \begin{cases} -\log(h_{\theta}(\boldsymbol{x})) & \text{if } y = 1\\ -\log(1 - h_{\theta}(\boldsymbol{x})) & \text{if } y = 0 \end{cases}$$

• Can re-write objective function as $J(\boldsymbol{\theta}) = \sum_{i=1}^{n} \operatorname{cost} \left(h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}), y^{(i)} \right)$

$$\operatorname{cost} (h_{\boldsymbol{\theta}}(\boldsymbol{x}), y) = \begin{cases} -\log(h_{\boldsymbol{\theta}}(\boldsymbol{x})) & \text{if } y = 1\\ -\log(1 - h_{\boldsymbol{\theta}}(\boldsymbol{x})) & \text{if } y = 0 \end{cases}$$

lf y = 0

• As
$$(1 - h_{\theta}(\boldsymbol{x})) \rightarrow 0, \text{cost} \rightarrow \infty$$

 Captures intuition that larger mistakes should get larger penalties

Logistic Regression: Cost (Objective) Function

$$\operatorname{cost}(h_{\boldsymbol{\theta}}(\boldsymbol{x}), y) = \begin{cases} -\log(h_{\boldsymbol{\theta}}(\boldsymbol{x})) & \text{if } y = 1\\ -\log(1 - h_{\boldsymbol{\theta}}(\boldsymbol{x})) & \text{if } y = 0 \end{cases}$$

lf y = 1

- Cost = 0 if prediction is correct
- As $h_{\boldsymbol{\theta}}(\boldsymbol{x}) o 0, \operatorname{cost} o \infty$
- Captures intuition that larger mistakes should get larger penalties
 - e.g., predict $h_{oldsymbol{ heta}}(oldsymbol{x})=0$, but y = 1

Logistic Regression: Cost (Objective) Function

$$\operatorname{cost}(h_{\boldsymbol{\theta}}(\boldsymbol{x}), y) = \begin{cases} -\log(h_{\boldsymbol{\theta}}(\boldsymbol{x})) & \text{if } y = 1\\ -\log(1 - h_{\boldsymbol{\theta}}(\boldsymbol{x})) & \text{if } y = 0 \end{cases}$$

 Cost = 0 if prediction is correct

 Captures intuition that larger mistakes should get larger penalties

Logistic Regression: Gradient descent (training)

Want $\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$

- Initialize θ
- Repeat until convergence

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

simultaneous update for j = 0 ... d

Logistic Regression: Odds

- The odds are the ratio of the proportions for the two possible outcomes. odds = $\frac{p}{1-p} = \frac{\text{probability of success}}{\text{probability of failure}}$
- log odds or logit
 - Simple Logistic Regression Model The statistical model for simple logistic regression is

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 x$$

where p is a binomial proportion and x is the explanatory variable. The parameters of the logistic model are β_0 and β_1 .