REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

Université de M'sila	${ }^{185}$	جامعة المسيلة
Faculté des Mathématiques et de l'Informatique		كلية الرياضيات والإلمّالام الآلي
Département d'informatique		قسم الإعلام الآلي

Level: 1st year of computer science
Course: ADS1
series TD/TP N ${ }^{\circ} \mathbf{0 5}$

Academic year:2023/2024
Chapter 4 : Loops

Exercise 1: TD/TP

Write an algorithm with its C program that calculates the factorial of a number.
N.B. : $0!=1$ et $\mathrm{n}!=1 \times 2 \times \ldots \times \mathrm{n}$

Exercise 2: TP

Write a program to display all the divisors of a number.

Exercise 3: TD

Write an algorithm to display all the common divisors of two numbers.

Exercise 4: TP

Write a program that displays the mirror image of an integer (displays it in reverse).

Exercise 5: TD/TP

Write an algorithm with its C program that determines if a number is prime or not.

- Using the for loop.
- Using the while loop.
- Generalize this algorithm to display all prime numbers less than or equal to $\mathrm{N}(\leq \mathrm{N})$.

Exercise 6: TD/TP

Write an algorithm with its C program that calculates the GCD (Greatest Common Divisor).
Given that:

$$
\operatorname{PGCD}(a, b)= \begin{cases}\operatorname{PGCD}(b,(a \% b)), & b \neq 0 \\ a, & b=0\end{cases}
$$

Exercise 7: TD

Write an algorithm to calculate the nth term of the Fibonacci sequence defined by:

$$
\mathrm{u}(\mathrm{n})=\left\{\begin{array}{cc}
0 & \text { si } n=0 \\
1 & \text { si } n=1 \\
u(n-2)+u(n-1), & \sin n>1
\end{array}\right.
$$

Exercise 8: TP

If you knew that

$$
\pi=4 \sum_{\mathrm{k}=0}^{\mathrm{n}} \frac{(-1)^{\mathrm{k}}}{2 \mathrm{k}+1}=\frac{4}{1}-\frac{4}{3}+\frac{4}{5}-\frac{4}{7}+\frac{4}{9}-\frac{4}{11}
$$

Write a program that calculates the approximate value of π.
N.B. : make sure that n is strictly positive.

Exercise 9: TD

If you knew that

$$
\exp (\mathrm{x}):=\sum_{k=0}^{n} \frac{x^{k}}{k!}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+
$$

Write a program that calculates $\exp (\mathrm{x})(\mathrm{x}$ is a real number and n is an integer).
N.B. : make sure that n is strictly positive.

Exercise 10: (at home)

Write the program to calculate $\boldsymbol{x}^{\boldsymbol{n}}$. (x is a real number and n is an integer that can be positive, negative or zero).

Exercise 11: (at home)

Write a program that calculates the Least Common Multiple (LCM) of two numbers.

Exercise 12: (at home)

If you know that the square root of a number "a" is calculated by the following recursive relationship :

$$
\begin{gathered}
x_{n+1}=\frac{x_{n}+\frac{a}{x_{n}}}{2} \\
x_{0}=1
\end{gathered}
$$

Write an algorithm with its C program that calculates the square root of a number « $a »$ with approximation error $\varepsilon=10^{-6}$. In other words $\left(x_{n}\right)^{2}-\mathrm{a} \leq \varepsilon$

