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1 Sequences

1.1 Definitions

Definition 1.1. A real sequence (or sequence) is a mapping

N −→ R
n 7−→ un

It is denoted by (un)n∈N and un is called general term of the sequence.

Definition 1.2. • A sequence (un)n∈N is bounded below if

∃a ∈ R,∀n ∈ N : un ≥ a

• A sequence (un)n∈N is bounded above if

∃b ∈ R,∀n ∈ N : un ≤ b

• A sequence (un)n∈N is bounded if it is bounded below and bounded above . In
other words if

∃C > 0,∀n ∈ N : |un| ≤ C

Definition 1.3. Let (un)n∈N be a sequence.

1. We say (un)n∈N is increasing (resp. decreasing ) if

∀n ∈ N : un ≤ un+1 (resp. un+1 ≤ un)

2. We say (un)n∈N is constant if ∀n ∈ N : un = un+1

3. We say (un)n∈N is monotone if it increasing or decreasing .

+ Example 1.1. • The sequence (un)n∈N defined by un = (−1)n is not monotone.

• The sequence (un)n∈N defined by un = n+1
2n+1

is not monotone. Indeed, for all n ∈ N :

un+1 − un =
n+ 2

2n+ 3
− n+ 1

2n+ 1
=

(n+ 2)(2n+ 1)− (2n+ 3)(n+ 1)

(2n+ 3)(2n+ 1)

=
−1

(2n+ 3)(2n+ 1)
< 0
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• Consider the geometric sequence (un)n∈N defined by un = an is monotone if and only
if a ≥ 0. Indeed, if a > 0, we have for all n ∈ N :

un+1

un
= an+1

an
= a.

Thus, if a < 1, the sequence is decreasing, if a > 1 it is increasing and if a = 1 or
a = 0, it is constant. Now if a < 0, then un+1 − un = an(a− 1) which is positive if n
is even and negative if n is odd.

1.2 Convergence

Definition 1.4. Let (un)n∈N be a real sequence and ` ∈ R.

1. We say ` is a limit of the sequence (un)n∈N and we write limn→+∞ = ` if

∀ε > 0,∃N ∈ N, ∀n ≥ N : |un − `| ≤ ε

( or ∀ε > 0,∃N ∈ N : n ≥ N =⇒ |un − `| ≤ ε)

Definition 1.5. 1. We say the sequence (un)n∈N has +∞ as a limit and we write
limn→+∞ = +∞, if

∀A > 0, ∃n ∈ N, ∀n ≥ N : un ≥ A.

2. We say the sequence (un)n∈N has −∞ as a limit and we write limn→+∞ = −∞, if

∀B < 0, ∃n ∈ N, ∀n ≥ N : un ≤ B.

Definition 1.6. Let (un)n∈N be a real sequence and ` ∈ R. We say the sequence (un)n∈N is
convergent (or converges to `) if it has a limit ` ∈ R. Otherwise, we say it is divergent .

+ Example 1.2. 1. If un = c, ∀n ∈ N, then (un)n∈N is convergent to the limit c.
Indeed, we have

∀ε > 0,∃N = 0, ∀n ≥ N : |un − c| = |c− c| = 0 < ε.

2. If un = 1
n
∀n ∈ N∗, then (un)n∈N∗ converges to 0. Indeed. Let ε > 0 and n ∈ N∗. We

have

|un − 0| ≤ ε⇐⇒ 1
n
≤ ε⇐⇒ n ≥ 1

ε
.

Hence it suffices to choose N ≥ 1
ε
, that is for example N = [1/ε] + 1. Then

n ≥ N =⇒ |un − 0| ≤ ε.
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3. If un = n+1
2n+1

∀n ∈ N∗, then (un)n∈N∗ converges to 1/2. Indeed. Let ε > 0 and n ∈ N∗.
We have

|un − 1
2
| ≤ ε⇐⇒ 1

4n+2
≤ ε⇐⇒ n ≥ 1

4ε
− 1

2
.

Hence it suffices to choose N ≥ 1
4ε
− 1

2
, that is for example N = [1/4ε] + 1. Then

n ≥ N =⇒ |un − 1/2| ≤ ε.

4. un = (−1)n. Then the sequence (un)n∈N is not convergent. Indeed, if not there
exists ` ∈ R such that limn→∞ un = `. Hence taking ε = 1/2. according to the the
definition of the limit,

∃N ∈ N, ∀n ≥ N : |un − `| ≤ 1
2
.

but we have for n = 2N

2 = |un+1 − un| ≤ |un+1 − `|+ |un − `| ≤ 1/2 + 1/2 = 1

which is a contradiction.

5. If un = n2, then lim→+∞ un = +∞. Indeed, given any A > 0. Then

un ≥ A⇐⇒ n ≥
√
A.

Therefore, ∀n ≥ [
√
A] + 1, we have n ≥ A which implies that un = n2 ≥ A.

+ Example 1.3. Calculate the limit of the sequence (un)n∈N in the following cases

1. un = an, a ∈ R+

2. un = n(e
1/n − 1).

3. un =
n∑
k=0

1
2k
.

4. un =

1. For un = an, where a ∈ R+:

lim
n→∞

un = lim
n→∞

an =


+∞, if a > 1

0, if 0 < a < 1

1, if a = 1
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2. For un = n(e1/n − 1):

lim
n→∞

un = lim
n→∞

n(e1/n − 1) = 0

3. For un =
n∑
k=0

1
2k
:

lim
n→∞

un = lim
n→∞

n∑
k=0

1

2k
= 2

Proposition 1.1 (Uniqueness). A convergent sequence has a unique limit.

Proof. Suppose that (un)n∈N has two limits `1, `2 such that `1 6= `2. Take ε = |`1− `2| > 0.
From the definition of the limit, there are N1, N2 ∈ N such that

∀n ≥ N1 : |un − `1| < ε/2, ∀n ≥ N2 : |un − `2| < ε/2.

Hence for n ≥ max{N1, N2}, we have

ε = |`1 − `2| ≤ |un − `1|+ |un − `2| < ε/2 + ε/2 = ε

contradiction.

Proposition 1.2. A convergent sequence is bounded.

Proof. Let (un)n∈N be a convergent sequence to the limit `. Hence taking ε = 1. According
to the the definition of the limit,

∃N ∈ N, ∀n ≥ N : |un − `| ≤ 1.

Then
∀n ≥ N : |un| ≤ |un − `|+ |`| ≤ 1 + ` :=M0 (1.1)

and we have
∀n ≤ N : |un| ≤M1 := max{|u0|, |u1|, ..., |uN |} (1.2)

From (1.1) and (1.2), we deduce that ∀n ∈ N : |un| ≤ M := max{M0,M1}. Hence the
sequence (un)n∈N is bounded.

Proposition 1.3. Let (un)n∈N and (vn)n∈N be two sequences converging respectively to
u and v. Then

1. lim
n→+∞

(λun) = λu, ∀λ ∈ R .

2. limn→+∞(un + vn) = u+ v .

3. limn→+∞(unvn) = uv .

4. limn→+∞
1
un

= 1
u
, if u 6= 0 and un 6= 0, ∀n ∈ N.
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Proof. 1. If λ = 0, then λun = 0→ 0, as n→ +∞. If not, let ε > 0. According to the
the definition of the limit, ∃N ∈ N :

∀n ≥ N : |un − u| ≤ ε
|λ| .

Hence

∀n ≥ N : |λun − λu| = |λ||un − u| ≤ ε.

2. Let ε > 0. According to the the definition of the limit, there are N1, N2 ∈ N :

∀n ≥ N1 : |un − u| ≤ ε
2
, ∀n ≥ N2 : |vn − v| ≤ ε

2

Hence, taking N := max{N1, N2}

∀n ≥ N : |(un + vn)− (u+ v)| ≤ |un − u|+ |vn − v| ≤
ε

2
+
ε

2
≤ ε.

3. Let ε > 0.

|unvn − uv| = |un(vn − v) + v(un − u)| ≤ |un||vn − v|+ |v||un − u|

Since (un)n∈N converges, it is bounded (see Proposition 1.2). Therefore, there is
M > 0 such that

∀n ∈ N : |un| ≤M.

|unvn − uv| ≤M |vn − v|+ v|un − u| ≤M ′(|vn − v|+ |un − u|), M ′ = max{M, v}.

Otherwise, according to the the definition of the limit, there are N1, N2 ∈ N :

∀n ≥ N1 : |un − u| ≤ ε
2M ′

, ∀n ≥ N2 : |vn − v| ≤ ε
2M ′

.

Hence, ∀n ≥ N := max{N1, N2}, we have

|unvn − uv| ≤M ′(
ε

2M ′ +
ε

2M ′ ) = ε .

4. The proof is left as an exercise.
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Proposition 1.4. Let (un)n∈N be a real sequence.

1. If (un)n∈N is increasing and bounded above, it is convergent.

2. If (un)n∈N is decreasing and bounded below, it is convergent.

Proof. 1. Let (un)n∈N be an increasing sequence that is bounded above. Consider the
set

A = {un : n ∈ N}.
Since A is a set of real numbers and is bounded above, it has a least upper bound
(supremum) denoted by α. We claim that limn→∞ un = α.

Given ε > 0, since α = supA, there exists an element uN in A such that

α− ε < uN .

Since (un) is increasing,

∀n ≥ N : α− ε < aN ≤ un.

This implies
∀n ≥ N : |un − α| = α− un ≤ ε.

which satisfies the definition of the limit. This proves that the sequence (un)n∈N
converges to α.

2. The proof is left as an exercise.

Proposition 1.5. Let (un)n∈N, (vn)n∈N, (wn)n∈N be three sequences such that

∀n ∈ N : un ≤ vn ≤ wn.

Then

limn→+∞ un = limn→+∞wn = ` =⇒ lim
n→+∞

vn = `.

Proof. Assume that limn→+∞ un = limn→+∞wn = `. We want to show that limn→+∞ vn =
`.

Given any ε > 0, since limn→+∞ un = `, there exists N1 ∈ N such that for all n ≥ N1,
we have |un − `| < ε.

Similarly, since limn→+∞wn = `, there exists N2 ∈ N such that for all n ≥ N2, we have
|wn − `| < ε.

Let N = max{N1, N2}. For all n ≥ N , we have un ≤ vn ≤ wn, which implies

`− ε < un ≤ vn ≤ wn < `+ ε.

Therefore, for all n ≥ N , we have |vn − `| < ε. This shows that limn→+∞ vn = `, as
desired.

Hence, we have proved the proposition.
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Proposition 1.6. Let (un)n∈N, (vn)n∈N be two sequences such that

∀n ∈ N : un ≤ vn

Then

1. limn→+∞ un = +∞ =⇒ limn→+∞ vn = +∞.

2. limn→+∞ vn = −∞ =⇒ limn→+∞ un = −∞.

Proof. 1. Assume that limn→+∞ un = +∞. We want to show that limn→+∞ vn = +∞.

Given any M > 0, since limn→+∞ un = +∞, there exists N1 ∈ N such that for all
n ≥ N1, we have un > M .

Since un ≤ vn for all n ∈ N, it follows that vn ≥ un > M for all n ≥ N1. This implies
that limn→+∞ vn = +∞.

2. Assume that limn→+∞ vn = −∞. We want to show that limn→+∞ un = −∞.

Given any M < 0, since limn→+∞ vn = −∞, there exists N2 ∈ N such that for all
n ≥ N2, we have vn < M .

Since un ≤ vn for all n ∈ N, it follows that un ≤ vn < M for all n ≥ N2. This implies
that limn→+∞ un = −∞.

Hence, both parts of the proposition have been proved.
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