Contents

1	Sequences			
	1.1	Definitions	2	
	1.2	Convergence	3	

1 Sequences

1.1 Definitions

Definition 1.1. A real sequence (or sequence) is a mapping

\mathbb{N}	\longrightarrow	$\mathbb R$
n	\longmapsto	u_n

It is denoted by $(u_n)_{n\in\mathbb{N}}$ and u_n is called general term of the sequence.

Definition 1.2. • A sequence $(u_n)_{n \in \mathbb{N}}$ is bounded below if $\exists a \in \mathbb{R}, \forall n \in \mathbb{N} : u_n \geq a$ • A sequence $(u_n)_{n \in \mathbb{N}}$ is bounded above if $\exists b \in \mathbb{R}, \forall n \in \mathbb{N} : u_n \leq b$ • A sequence $(u_n)_{n \in \mathbb{N}}$ is bounded if it is bounded below and bounded above. In other words if

 $\exists C > 0, \forall n \in \mathbb{N} : |u_n| \le C$

Definition 1.3. Let $(u_n)_{n \in \mathbb{N}}$ be a sequence.

1. We say $(u_n)_{n \in \mathbb{N}}$ is increasing (resp. decreasing) if

 $\forall n \in \mathbb{N} : u_n \leq u_{n+1} \text{ (resp. } u_{n+1} \leq u_n \text{)}$

2. We say $(u_n)_{n \in \mathbb{N}}$ is **constant** if $\forall n \in \mathbb{N} : u_n = u_{n+1}$

3. We say $(u_n)_{n \in \mathbb{N}}$ is **monotone** if it increasing or decreasing

Example 1.1. • The sequence $(u_n)_{n \in \mathbb{N}}$ defined by $u_n = (-1)^n$ is not monotone.

• The sequence $(u_n)_{n\in\mathbb{N}}$ defined by $u_n = \frac{n+1}{2n+1}$ is not monotone. Indeed, for all $n\in\mathbb{N}$:

$$u_{n+1} - u_n = \frac{n+2}{2n+3} - \frac{n+1}{2n+1} = \frac{(n+2)(2n+1) - (2n+3)(n+1)}{(2n+3)(2n+1)}$$
$$= \frac{-1}{(2n+3)(2n+1)} < 0$$

• Consider the geometric sequence $(u_n)_{n \in \mathbb{N}}$ defined by $u_n = a^n$ is monotone if and only if $a \ge 0$. Indeed, if a > 0, we have for all $n \in \mathbb{N}$:

Thus, if a < 1, the sequence is decreasing, if a > 1 it is increasing and if a = 1 or a = 0, it is constant. Now if a < 0, then $u_{n+1} - u_n = a^n(a-1)$ which is positive if n is even and negative if n is odd.

1.2 Convergence

Definition 1.4. Let $(u_n)_{n \in \mathbb{N}}$ be a real sequence and $\ell \in \mathbb{R}$.

1. We say ℓ is a limit of the sequence $(u_n)_{n\in\mathbb{N}}$ and we write $\lim_{n\to+\infty} = \ell$ if

```
(or \forall \varepsilon > 0, \exists N \in \mathbb{N} : n \ge N \Longrightarrow |u_n - \ell| \le \varepsilon)
```

 $\forall \varepsilon > 0, \exists N \in \mathbb{N}, \ \forall n \ge N : |u_n - \ell| \le \varepsilon$

Definition 1.5. 1. We say the sequence $(u_n)_{n \in \mathbb{N}}$ has $+\infty$ as a limit and we write $\lim_{n \to +\infty} = +\infty$, if

 $\forall A > 0, \ \exists n \in \mathbb{N}, \ \forall n \ge N : u_n \ge A.$

2. We say the sequence $(u_n)_{n\in\mathbb{N}}$ has $-\infty$ as a limit and we write $\lim_{n\to+\infty} = -\infty$, if

 $\forall B < 0, \ \exists n \in \mathbb{N}, \ \forall n \ge N : u_n \le B.$

Definition 1.6. Let $(u_n)_{n \in \mathbb{N}}$ be a real sequence and $\ell \in \mathbb{R}$. We say the sequence $(u_n)_{n \in \mathbb{N}}$ is convergent (or converges to ℓ) if it has a limit $\ell \in \mathbb{R}$. Otherwise, we say it is divergent.

Example 1.2. 1. If $u_n = c$, $\forall n \in \mathbb{N}$, then $(u_n)_{n \in \mathbb{N}}$ is convergent to the limit c. Indeed, we have

 $\forall \varepsilon > 0, \exists N=0, \; \forall n \geq N: |u_n-c| = |c-c| = 0 < \varepsilon.$

2. If $u_n = \frac{1}{n} \forall n \in \mathbb{N}^*$, then $(u_n)_{n \in \mathbb{N}^*}$ converges to 0. Indeed. Let $\varepsilon > 0$ and $n \in \mathbb{N}^*$. We have

$$|u_n - 0| \le \varepsilon \Longleftrightarrow \frac{1}{n} \le \varepsilon \Longleftrightarrow n \ge \frac{1}{\varepsilon}.$$

Hence it suffices to choose $N \geq \frac{1}{\varepsilon}$, that is for example $N = [1/\varepsilon] + 1$. Then $n \geq N \Longrightarrow |u_n - 0| \leq \varepsilon$.

3. If $u_n = \frac{n+1}{2n+1} \forall n \in \mathbb{N}^*$, then $(u_n)_{n \in \mathbb{N}^*}$ converges to 1/2. Indeed. Let $\varepsilon > 0$ and $n \in \mathbb{N}^*$. We have

 $|u_n - \frac{1}{2}| \le \varepsilon \Longleftrightarrow \frac{1}{4n+2} \le \varepsilon \Longleftrightarrow n \ge \frac{1}{4\varepsilon} - \frac{1}{2}.$

Hence it suffices to choose $N \ge \frac{1}{4\varepsilon} - \frac{1}{2}$, that is for example $N = [1/4\varepsilon] + 1$. Then $n \ge N \Longrightarrow |u_n - 1/2| \le \varepsilon$.

4. $u_n = (-1)^n$. Then the sequence $(u_n)_{n \in \mathbb{N}}$ is not convergent. Indeed, if not there exists $\ell \in \mathbb{R}$ such that $\lim_{n \to \infty} u_n = \ell$. Hence taking $\varepsilon = 1/2$. according to the the definition of the limit,

$$\exists N \in \mathbb{N}, \ \forall n \ge N : |u_n - \ell| \le \frac{1}{2}.$$

but we have for n = 2N

$$2 = |u_{n+1} - u_n| \le |u_{n+1} - \ell| + |u_n - \ell| \le 1/2 + 1/2 = 1$$

which is a contradiction.

5. If $u_n = n^2$, then $\lim_{n \to +\infty} u_n = +\infty$. Indeed, given any A > 0. Then

$$u_n \ge A \iff n \ge \sqrt{A}.$$

Therefore, $\forall n \ge [\sqrt{A}] + 1$, we have $n \ge A$ which implies that $u_n = n^2 \ge A$.

Example 1.3. Calculate the limit of the sequence $(u_n)_{n \in \mathbb{N}}$ in the following cases

- 1. $u_n = a^n, a \in \mathbb{R}_+$
- 2. $u_n = n(e^{1/n} 1).$
- 3. $u_n = \sum_{k=0}^n \frac{1}{2^k}$. 4. $u_n =$
- 1. For $u_n = a^n$, where $a \in \mathbb{R}_+$:

$$\lim_{n \to \infty} u_n = \lim_{n \to \infty} a^n = \begin{cases} +\infty, & \text{if } a > 1\\ 0, & \text{if } 0 < a < 1\\ 1, & \text{if } a = 1 \end{cases}$$

2. For $u_n = n(e^{1/n} - 1)$:

$$\lim_{n\to\infty} u_n = \lim_{n\to\infty} n(e^{1/n} - 1) = 0$$

3. For $u_n = \sum_{k=0}^n \frac{1}{2^k}$:

$$\lim_{n \to \infty} u_n = \lim_{n \to \infty} \sum_{k=0}^n \frac{1}{2^k} = 2$$

Proposition 1.1 (Uniqueness). A convergent sequence has a unique limit.

Proof. Suppose that $(u_n)_{n \in \mathbb{N}}$ has two limits ℓ_1 , ℓ_2 such that $\ell_1 \neq \ell_2$. Take $\varepsilon = |\ell_1 - \ell_2| > 0$. From the definition of the limit, there are N_1 , $N_2 \in \mathbb{N}$ such that

$$\forall n \ge N_1 : |u_n - \ell_1| < \varepsilon/2, \quad \forall n \ge N_2 : |u_n - \ell_2| < \varepsilon/2.$$

Hence for $n \ge \max\{N_1, N_2\}$, we have

$$\varepsilon = |\ell_1 - \ell_2| \le |u_n - \ell_1| + |u_n - \ell_2| < \varepsilon/2 + \varepsilon/2 = \varepsilon$$

contradiction.

Proposition 1.2. A convergent sequence is bounded.

Proof. Let $(u_n)_{n \in \mathbb{N}}$ be a convergent sequence to the limit ℓ . Hence taking $\varepsilon = 1$. According to the the definition of the limit,

$$\exists N \in \mathbb{N}, \ \forall n \ge N : |u_n - \ell| \le 1.$$

Then

$$\forall n \ge N : |u_n| \le |u_n - \ell| + |\ell| \le 1 + \ell := M_0 \tag{1.1}$$

and we have

$$\forall n \le N : |u_n| \le M_1 := \max\{|u_0|, |u_1|, ..., |u_N|\}$$
(1.2)

From (1.1) and (1.2), we deduce that $\forall n \in \mathbb{N} : |u_n| \leq M := \max\{M_0, M_1\}$. Hence the sequence $(u_n)_{n \in \mathbb{N}}$ is bounded.

Proposition 1.3. Let $(u_n)_{n \in \mathbb{N}}$ and $(v_n)_{n \in \mathbb{N}}$ be two sequences converging respectively to u and v. Then

- 1. $\lim_{n \to +\infty} (\lambda u_n) = \lambda u, \, \forall \lambda \in \mathbb{R}$
- 2. $\lim_{n \to +\infty} (u_n + v_n) = u + v$

3.
$$\lim_{n \to +\infty} (u_n v_n) = uv$$

4. $\lim_{n \to +\infty} \frac{1}{u_n} = \frac{1}{u}$, if $u \neq 0$ and $u_n \neq 0, \forall n \in \mathbb{N}$.

Proof. 1. If $\lambda = 0$, then $\lambda u_n = 0 \to 0$, as $n \to +\infty$. If not, let $\varepsilon > 0$. According to the the definition of the limit, $\exists N \in \mathbb{N}$:

$$\forall n \ge N : |u_n - u| \le \frac{\varepsilon}{|\lambda|}.$$

Hence

$$\forall n \ge N : |\lambda u_n - \lambda u| = |\lambda||u_n - u| \le \varepsilon.$$

2. Let $\varepsilon > 0$. According to the the definition of the limit, there are $N_1, N_2 \in \mathbb{N}$:

$$\forall n \ge N_1 : |u_n - u| \le \frac{\varepsilon}{2}, \quad \forall n \ge N_2 : |v_n - v| \le \frac{\varepsilon}{2}$$

Hence, taking $N := \max\{N_1, N_2\}$

$$\forall n \ge N : |(u_n + v_n) - (u + v)| \le |u_n - u| + |v_n - v| \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \le \varepsilon.$$

3. Let $\varepsilon > 0$.

$$|u_n v_n - uv| = |u_n (v_n - v) + v(u_n - u)| \le |u_n| |v_n - v| + |v| |u_n - u|$$

Since $(u_n)_{n \in \mathbb{N}}$ converges, it is bounded (see Proposition 1.2). Therefore, there is M > 0 such that

$$\forall n \in \mathbb{N} : |u_n| \le M.$$

$$|u_n v_n - uv| \le M |v_n - v| + v |u_n - u| \le M'(|v_n - v| + |u_n - u|), \ M' = \max\{M, v\}.$$

Otherwise, according to the the definition of the limit, there are $N_1, N_2 \in \mathbb{N}$:

$$\forall n \ge N_1 : |u_n - u| \le \frac{\varepsilon}{2M'}, \quad \forall n \ge N_2 : |v_n - v| \le \frac{\varepsilon}{2M'}.$$

Hence, $\forall n \geq N := \max\{N_1, N_2\}$, we have

$$|u_n v_n - uv| \le M'(\frac{\varepsilon}{2M'} + \frac{\varepsilon}{2M'}) = \varepsilon$$
.

4. The proof is left as an exercise.

Proposition 1.4. Let $(u_n)_{n \in \mathbb{N}}$ be a real sequence.

1. If $(u_n)_{n \in \mathbb{N}}$ is increasing and bounded above, it is convergent.

2. If $(u_n)_{n \in \mathbb{N}}$ is decreasing and bounded below, it is convergent.

Proof. 1. Let $(u_n)_{n \in \mathbb{N}}$ be an increasing sequence that is bounded above. Consider the set

$$A = \{u_n : n \in \mathbb{N}\}.$$

Since A is a set of real numbers and is bounded above, it has a least upper bound (supremum) denoted by α . We claim that $\lim_{n\to\infty} u_n = \alpha$.

Given $\varepsilon > 0$, since $\alpha = \sup A$, there exists an element u_N in A such that

$$\alpha - \varepsilon < u_N.$$

Since (u_n) is increasing,

$$\forall n \ge N : \alpha - \varepsilon < a_N \le u_n.$$

This implies

$$\forall n \ge N : |u_n - \alpha| = \alpha - u_n \le \varepsilon.$$

which satisfies the definition of the limit. This proves that the sequence $(u_n)_{n \in \mathbb{N}}$ converges to α .

2. The proof is left as an exercise.

Proposition 1.5. Let $(u_n)_{n \in \mathbb{N}}$, $(v_n)_{n \in \mathbb{N}}$, $(w_n)_{n \in \mathbb{N}}$ be three sequences such that

 $\forall n \in \mathbb{N} : u_n \le v_n \le w_n.$

Then

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} w_n = \ell \Longrightarrow \lim_{n \to +\infty} v_n = \ell.$$

Proof. Assume that $\lim_{n\to+\infty} u_n = \lim_{n\to+\infty} w_n = \ell$. We want to show that $\lim_{n\to+\infty} v_n = \ell$.

Given any $\varepsilon > 0$, since $\lim_{n \to +\infty} u_n = \ell$, there exists $N_1 \in \mathbb{N}$ such that for all $n \ge N_1$, we have $|u_n - \ell| < \varepsilon$.

Similarly, since $\lim_{n\to+\infty} w_n = \ell$, there exists $N_2 \in \mathbb{N}$ such that for all $n \geq N_2$, we have $|w_n - \ell| < \varepsilon$.

Let $N = \max\{N_1, N_2\}$. For all $n \ge N$, we have $u_n \le v_n \le w_n$, which implies

$$\ell - \varepsilon < u_n \le v_n \le w_n < \ell + \varepsilon.$$

Therefore, for all $n \ge N$, we have $|v_n - \ell| < \varepsilon$. This shows that $\lim_{n \to +\infty} v_n = \ell$, as desired.

Hence, we have proved the proposition.

Proposition 1.6. Let $(u_n)_{n \in \mathbb{N}}$, $(v_n)_{n \in \mathbb{N}}$ be two sequences such that

 $\forall n \in \mathbb{N} : u_n \le v_n$

Then

1. $\lim_{n \to +\infty} u_n = +\infty \Longrightarrow \lim_{n \to +\infty} v_n = +\infty.$

- 2. $\lim_{n \to +\infty} v_n = -\infty \Longrightarrow \lim_{n \to +\infty} u_n = -\infty.$
- *Proof.* 1. Assume that $\lim_{n\to+\infty} u_n = +\infty$. We want to show that $\lim_{n\to+\infty} v_n = +\infty$. Given any M > 0, since $\lim_{n\to+\infty} u_n = +\infty$, there exists $N_1 \in \mathbb{N}$ such that for all $n \ge N_1$, we have $u_n > M$.

Since $u_n \leq v_n$ for all $n \in \mathbb{N}$, it follows that $v_n \geq u_n > M$ for all $n \geq N_1$. This implies that $\lim_{n \to +\infty} v_n = +\infty$.

2. Assume that $\lim_{n\to+\infty} v_n = -\infty$. We want to show that $\lim_{n\to+\infty} u_n = -\infty$.

Given any M < 0, since $\lim_{n \to +\infty} v_n = -\infty$, there exists $N_2 \in \mathbb{N}$ such that for all $n \ge N_2$, we have $v_n < M$.

Since $u_n \leq v_n$ for all $n \in \mathbb{N}$, it follows that $u_n \leq v_n < M$ for all $n \geq N_2$. This implies that $\lim_{n \to +\infty} u_n = -\infty$.

Hence, both parts of the proposition have been proved.