## Contents

1 Sequences ..... 2
1.1 Definitions ..... 2
1.2 Convergence ..... 3

## 1 Sequences

### 1.1 Definitions

Definition 1.1. A real sequence (or sequence) is a mapping

$$
\begin{array}{rll}
\mathbb{N} & \longrightarrow & \mathbb{R} \\
n & \longmapsto & u_{n}
\end{array}
$$

It is denoted by $\left(u_{n}\right)_{n \in \mathbb{N}}$ and $u_{n}$ is called general term of the sequence.
Definition 1.2. - A sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ is bounded below if

$$
\exists a \in \mathbb{R}, \forall n \in \mathbb{N}: u_{n} \geq a
$$

- A sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ is bounded above if

$$
\exists b \in \mathbb{R}, \forall n \in \mathbb{N}: u_{n} \leq b
$$

- A sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ is bounded if it is bounded below and bounded above. In other words if

$$
\exists C>0, \forall n \in \mathbb{N}:\left|u_{n}\right| \leq C
$$

Definition 1.3. Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a sequence.

1. We say $\left(u_{n}\right)_{n \in \mathbb{N}}$ is increasing (resp. decreasing ) if

$$
\forall n \in \mathbb{N}: u_{n} \leq u_{n+1}\left(\text { resp. } u_{n+1} \leq u_{n}\right)
$$

2. We say $\left(u_{n}\right)_{n \in \mathbb{N}}$ is constant if $\forall n \in \mathbb{N}: u_{n}=u_{n+1}$
3. We say $\left(u_{n}\right)_{n \in \mathbb{N}}$ is monotone if it increasing or decreasing.

■q尹 Example 1.1. - The sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ defined by $u_{n}=(-1)^{n}$ is not monotone.

- The sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ defined by $u_{n}=\frac{n+1}{2 n+1}$ is not monotone. Indeed, for all $n \in \mathbb{N}$ :

$$
\begin{aligned}
u_{n+1}-u_{n}=\frac{n+2}{2 n+3}-\frac{n+1}{2 n+1} & =\frac{(n+2)(2 n+1)-(2 n+3)(n+1)}{(2 n+3)(2 n+1)} \\
& =\frac{-1}{(2 n+3)(2 n+1)}<0
\end{aligned}
$$

- Consider the geometric sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ defined by $u_{n}=a^{n}$ is monotone if and only if $a \geq 0$. Indeed, if $a>0$, we have for all $n \in \mathbb{N}$ :

$$
\frac{u_{n+1}}{u_{n}}=\frac{a^{n+1}}{a^{n}}=a
$$

Thus, if $a<1$, the sequence is decreasing, if $a>1$ it is increasing and if $a=1$ or $a=0$, it is constant. Now if $a<0$, then $u_{n+1}-u_{n}=a^{n}(a-1)$ which is positive if $n$ is even and negative if $n$ is odd.

### 1.2 Convergence

Definition 1.4. Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a real sequence and $\ell \in \mathbb{R}$.

1. We say $\ell$ is a limit of the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ and we write $\lim _{n \rightarrow+\infty}=\ell$ if

$$
\forall \varepsilon>0, \exists N \in \mathbb{N}, \quad \forall n \geq N:\left|u_{n}-\ell\right| \leq \varepsilon
$$

$$
\text { ( or } \forall \varepsilon>0, \exists N \in \mathbb{N}: n \geq N \Longrightarrow\left|u_{n}-\ell\right| \leq \varepsilon \text { ) }
$$

Definition 1.5. 1. We say the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ has $+\infty$ as a limit and we write $\lim _{n \rightarrow+\infty}=+\infty$, if

$$
\forall A>0, \exists n \in \mathbb{N}, \forall n \geq N: u_{n} \geq A
$$

2. We say the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ has $-\infty$ as a limit and we write $\lim _{n \rightarrow+\infty}=-\infty$, if

$$
\forall B<0, \exists n \in \mathbb{N}, \forall n \geq N: u_{n} \leq B
$$

Definition 1.6. Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a real sequence and $\ell \in \mathbb{R}$. We say the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ is convergent (or converges to $\ell$ ) if it has a limit $\ell \in \mathbb{R}$. Otherwise, we say it is divergent.

■ Example 1.2. 1. If $u_{n}=c, \forall n \in \mathbb{N}$, then $\left(u_{n}\right)_{n \in \mathbb{N}}$ is convergent to the limit $c$. Indeed, we have

$$
\forall \varepsilon>0, \exists N=0, \forall n \geq N:\left|u_{n}-c\right|=|c-c|=0<\varepsilon
$$

2. If $u_{n}=\frac{1}{n} \forall n \in \mathbb{N}^{*}$, then $\left(u_{n}\right)_{n \in \mathbb{N}^{*}}$ converges to 0 . Indeed. Let $\varepsilon>0$ and $n \in \mathbb{N}^{*}$. We have

$$
\left|u_{n}-0\right| \leq \varepsilon \Longleftrightarrow \frac{1}{n} \leq \varepsilon \Longleftrightarrow n \geq \frac{1}{\varepsilon}
$$

Hence it suffices to choose $N \geq \frac{1}{\varepsilon}$, that is for example $N=[1 / \varepsilon]+1$. Then $n \geq N \Longrightarrow\left|u_{n}-0\right| \leq \varepsilon$.
3. If $u_{n}=\frac{n+1}{2 n+1} \forall n \in \mathbb{N}^{*}$, then $\left(u_{n}\right)_{n \in \mathbb{N}^{*}}$ converges to $1 / 2$. Indeed. Let $\varepsilon>0$ and $n \in \mathbb{N}^{*}$. We have

$$
\left|u_{n}-\frac{1}{2}\right| \leq \varepsilon \Longleftrightarrow \frac{1}{4 n+2} \leq \varepsilon \Longleftrightarrow n \geq \frac{1}{4 \varepsilon}-\frac{1}{2}
$$

Hence it suffices to choose $N \geq \frac{1}{4 \varepsilon}-\frac{1}{2}$, that is for example $N=[1 / 4 \varepsilon]+1$. Then $n \geq N \Longrightarrow\left|u_{n}-1 / 2\right| \leq \varepsilon$.
4. $u_{n}=(-1)^{n}$. Then the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ is not convergent. Indeed, if not there exists $\ell \in \mathbb{R}$ such that $\lim _{n \rightarrow \infty} u_{n}=\ell$. Hence taking $\varepsilon=1 / 2$. according to the the definition of the limit,

$$
\exists N \in \mathbb{N}, \forall n \geq N:\left|u_{n}-\ell\right| \leq \frac{1}{2}
$$

but we have for $n=2 N$

$$
2=\left|u_{n+1}-u_{n}\right| \leq\left|u_{n+1}-\ell\right|+\left|u_{n}-\ell\right| \leq 1 / 2+1 / 2=1
$$

which is a contradiction.
5. If $u_{n}=n^{2}$, then $\lim _{\rightarrow+\infty} u_{n}=+\infty$. Indeed, given any $A>0$. Then

$$
u_{n} \geq A \Longleftrightarrow n \geq \sqrt{A}
$$

Therefore, $\forall n \geq[\sqrt{A}]+1$, we have $n \geq A$ which implies that $u_{n}=n^{2} \geq A$.
4 Example 1.3. Calculate the limit of the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ in the following cases

1. $u_{n}=a^{n}, a \in \mathbb{R}_{+}$
2. $u_{n}=n\left(e^{1 / n}-1\right)$.
3. $u_{n}=\sum_{k=0}^{n} \frac{1}{2^{k}}$.
4. $u_{n}=$
5. For $u_{n}=a^{n}$, where $a \in \mathbb{R}_{+}$:

$$
\lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty} a^{n}= \begin{cases}+\infty, & \text { if } a>1 \\ 0, & \text { if } 0<a<1 \\ 1, & \text { if } a=1\end{cases}
$$

2. For $u_{n}=n\left(e^{1 / n}-1\right)$ :

$$
\lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty} n\left(e^{1 / n}-1\right)=0
$$

3. For $u_{n}=\sum_{k=0}^{n} \frac{1}{2^{k}}$ :

$$
\lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \frac{1}{2^{k}}=2
$$

Proposition 1.1 (Uniqueness). A convergent sequence has a unique limit.
Proof. Suppose that $\left(u_{n}\right)_{n \in \mathbb{N}}$ has two limits $\ell_{1}, \ell_{2}$ such that $\ell_{1} \neq \ell_{2}$. Take $\varepsilon=\left|\ell_{1}-\ell_{2}\right|>0$. From the definition of the limit, there are $N_{1}, N_{2} \in \mathbb{N}$ such that

$$
\forall n \geq N_{1}:\left|u_{n}-\ell_{1}\right|<\varepsilon / 2, \quad \forall n \geq N_{2}:\left|u_{n}-\ell_{2}\right|<\varepsilon / 2 .
$$

Hence for $n \geq \max \left\{N_{1}, N_{2}\right\}$, we have

$$
\varepsilon=\left|\ell_{1}-\ell_{2}\right| \leq\left|u_{n}-\ell_{1}\right|+\left|u_{n}-\ell_{2}\right|<\varepsilon / 2+\varepsilon / 2=\varepsilon
$$

contradiction.
Proposition 1.2. A convergent sequence is bounded.
Proof. Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a convergent sequence to the limit $\ell$. Hence taking $\varepsilon=1$. According to the the definition of the limit,

$$
\exists N \in \mathbb{N}, \forall n \geq N:\left|u_{n}-\ell\right| \leq 1
$$

Then

$$
\begin{equation*}
\forall n \geq N:\left|u_{n}\right| \leq\left|u_{n}-\ell\right|+|\ell| \leq 1+\ell:=M_{0} \tag{1.1}
\end{equation*}
$$

and we have

$$
\begin{equation*}
\forall n \leq N:\left|u_{n}\right| \leq M_{1}:=\max \left\{\left|u_{0}\right|,\left|u_{1}\right|, \ldots,\left|u_{N}\right|\right\} \tag{1.2}
\end{equation*}
$$

From (1.1) and (1.2), we deduce that $\forall n \in \mathbb{N}:\left|u_{n}\right| \leq M:=\max \left\{M_{0}, M_{1}\right\}$. Hence the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ is bounded.

Proposition 1.3. Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ and $\left(v_{n}\right)_{n \in \mathbb{N}}$ be two sequences converging respectively to $u$ and $v$. Then

1. $\lim _{n \rightarrow+\infty}\left(\lambda u_{n}\right)=\lambda u, \forall \lambda \in \mathbb{R}$.
2. $\lim _{n \rightarrow+\infty}\left(u_{n}+v_{n}\right)=u+v$.
3. $\lim _{n \rightarrow+\infty}\left(u_{n} v_{n}\right)=u v$.
4. $\lim _{n \rightarrow+\infty} \frac{1}{u_{n}}=\frac{1}{u}$, if $u \neq 0$ and $u_{n} \neq 0, \forall n \in \mathbb{N}$.

Proof. 1. If $\lambda=0$, then $\lambda u_{n}=0 \rightarrow 0$, as $n \rightarrow+\infty$. If not, let $\varepsilon>0$. According to the the definition of the limit, $\exists N \in \mathbb{N}$ :

$$
\forall n \geq N:\left|u_{n}-u\right| \leq \frac{\varepsilon}{|\lambda|} .
$$

Hence

$$
\forall n \geq N:\left|\lambda u_{n}-\lambda u\right|=|\lambda|\left|u_{n}-u\right| \leq \varepsilon .
$$

2. Let $\varepsilon>0$. According to the the definition of the limit, there are $N_{1}, N_{2} \in \mathbb{N}$ :

$$
\forall n \geq N_{1}:\left|u_{n}-u\right| \leq \frac{\varepsilon}{2}, \quad \forall n \geq N_{2}:\left|v_{n}-v\right| \leq \frac{\varepsilon}{2}
$$

Hence, taking $N:=\max \left\{N_{1}, N_{2}\right\}$

$$
\forall n \geq N:\left|\left(u_{n}+v_{n}\right)-(u+v)\right| \leq\left|u_{n}-u\right|+\left|v_{n}-v\right| \leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2} \leq \varepsilon .
$$

3. Let $\varepsilon>0$.

$$
\left|u_{n} v_{n}-u v\right|=\left|u_{n}\left(v_{n}-v\right)+v\left(u_{n}-u\right)\right| \leq\left|u_{n}\right|\left|v_{n}-v\right|+|v|\left|u_{n}-u\right|
$$

Since $\left(u_{n}\right)_{n \in \mathbb{N}}$ converges, it is bounded (see Proposition 1.2). Therefore, there is $M>0$ such that

$$
\forall n \in \mathbb{N}:\left|u_{n}\right| \leq M
$$

$$
\left|u_{n} v_{n}-u v\right| \leq M\left|v_{n}-v\right|+v\left|u_{n}-u\right| \leq M^{\prime}\left(\left|v_{n}-v\right|+\left|u_{n}-u\right|\right), M^{\prime}=\max \{M, v\} .
$$

Otherwise, according to the the definition of the limit, there are $N_{1}, N_{2} \in \mathbb{N}$ :

$$
\forall n \geq N_{1}:\left|u_{n}-u\right| \leq \frac{\varepsilon}{2 M^{\prime}}, \quad \forall n \geq N_{2}:\left|v_{n}-v\right| \leq \frac{\varepsilon}{2 M^{\prime}}
$$

Hence, $\forall n \geq N:=\max \left\{N_{1}, N_{2}\right\}$, we have

$$
\left|u_{n} v_{n}-u v\right| \leq M^{\prime}\left(\frac{\varepsilon}{2 M^{\prime}}+\frac{\varepsilon}{2 M^{\prime}}\right)=\varepsilon \text {. }
$$

4. The proof is left as an exercise.

Proposition 1.4. Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a real sequence.

1. If $\left(u_{n}\right)_{n \in \mathbb{N}}$ is increasing and bounded above, it is convergent.
2. If $\left(u_{n}\right)_{n \in \mathbb{N}}$ is decreasing and bounded below, it is convergent.

Proof. 1. Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be an increasing sequence that is bounded above. Consider the set

$$
A=\left\{u_{n}: n \in \mathbb{N}\right\}
$$

Since $A$ is a set of real numbers and is bounded above, it has a least upper bound (supremum) denoted by $\alpha$. We claim that $\lim _{n \rightarrow \infty} u_{n}=\alpha$.
Given $\varepsilon>0$, since $\alpha=\sup A$, there exists an element $u_{N}$ in $A$ such that

$$
\alpha-\varepsilon<u_{N} .
$$

Since $\left(u_{n}\right)$ is increasing,

$$
\forall n \geq N: \alpha-\varepsilon<a_{N} \leq u_{n}
$$

This implies

$$
\forall n \geq N:\left|u_{n}-\alpha\right|=\alpha-u_{n} \leq \varepsilon
$$

which satisfies the definition of the limit. This proves that the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ converges to $\alpha$.
2. The proof is left as an exercise.

Proposition 1.5. Let $\left(u_{n}\right)_{n \in \mathbb{N}},\left(v_{n}\right)_{n \in \mathbb{N}},\left(w_{n}\right)_{n \in \mathbb{N}}$ be three sequences such that

$$
\forall n \in \mathbb{N}: u_{n} \leq v_{n} \leq w_{n}
$$

Then

$$
\lim _{n \rightarrow+\infty} u_{n}=\lim _{n \rightarrow+\infty} w_{n}=\ell \Longrightarrow \lim _{n \rightarrow+\infty} v_{n}=\ell
$$

Proof. Assume that $\lim _{n \rightarrow+\infty} u_{n}=\lim _{n \rightarrow+\infty} w_{n}=\ell$. We want to show that $\lim _{n \rightarrow+\infty} v_{n}=$ $\ell$.

Given any $\varepsilon>0$, since $\lim _{n \rightarrow+\infty} u_{n}=\ell$, there exists $N_{1} \in \mathbb{N}$ such that for all $n \geq N_{1}$, we have $\left|u_{n}-\ell\right|<\varepsilon$.

Similarly, since $\lim _{n \rightarrow+\infty} w_{n}=\ell$, there exists $N_{2} \in \mathbb{N}$ such that for all $n \geq N_{2}$, we have $\left|w_{n}-\ell\right|<\varepsilon$.

Let $N=\max \left\{N_{1}, N_{2}\right\}$. For all $n \geq N$, we have $u_{n} \leq v_{n} \leq w_{n}$, which implies

$$
\ell-\varepsilon<u_{n} \leq v_{n} \leq w_{n}<\ell+\varepsilon
$$

Therefore, for all $n \geq N$, we have $\left|v_{n}-\ell\right|<\varepsilon$. This shows that $\lim _{n \rightarrow+\infty} v_{n}=\ell$, as desired.

Hence, we have proved the proposition.

Proposition 1.6. Let $\left(u_{n}\right)_{n \in \mathbb{N}},\left(v_{n}\right)_{n \in \mathbb{N}}$ be two sequences such that

$$
\forall n \in \mathbb{N}: u_{n} \leq v_{n}
$$

Then

1. $\lim _{n \rightarrow+\infty} u_{n}=+\infty \Longrightarrow \lim _{n \rightarrow+\infty} v_{n}=+\infty$.
2. $\lim _{n \rightarrow+\infty} v_{n}=-\infty \Longrightarrow \lim _{n \rightarrow+\infty} u_{n}=-\infty$.

Proof. 1. Assume that $\lim _{n \rightarrow+\infty} u_{n}=+\infty$. We want to show that $\lim _{n \rightarrow+\infty} v_{n}=+\infty$. Given any $M>0$, since $\lim _{n \rightarrow+\infty} u_{n}=+\infty$, there exists $N_{1} \in \mathbb{N}$ such that for all $n \geq N_{1}$, we have $u_{n}>M$.
Since $u_{n} \leq v_{n}$ for all $n \in \mathbb{N}$, it follows that $v_{n} \geq u_{n}>M$ for all $n \geq N_{1}$. This implies that $\lim _{n \rightarrow+\infty} v_{n}=+\infty$.
2. Assume that $\lim _{n \rightarrow+\infty} v_{n}=-\infty$. We want to show that $\lim _{n \rightarrow+\infty} u_{n}=-\infty$.

Given any $M<0$, since $\lim _{n \rightarrow+\infty} v_{n}=-\infty$, there exists $N_{2} \in \mathbb{N}$ such that for all $n \geq N_{2}$, we have $v_{n}<M$.
Since $u_{n} \leq v_{n}$ for all $n \in \mathbb{N}$, it follows that $u_{n} \leq v_{n}<M$ for all $n \geq N_{2}$. This implies that $\lim _{n \rightarrow+\infty} u_{n}=-\infty$.
Hence, both parts of the proposition have been proved.

