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1 Sequences
1.1 Definitions

_ 1.1. A real sequence (or sequence) is a mapping

N — R
n — Uy

It is denoted by (u,,)nen and u, is called general term of the sequence.
Definition 1.2. e A sequence (y,)nen is |bounded below | if

IEIaE]R,VnGN:unZa‘

e A sequence (ty)nen is | bounded above | if

|3 eR,Vn e N:u, <D

o A sequence (uy)nen is it it i« bounded below and bounded above . I

other words if

AC > 0,Vn e N: |u,| < C

‘Definition| 1.3. Let (u,)nen be a sequence.
1. We say (u,)nen is _ (resp. decreasing ) if

Vn € N:u, <u,i (resp. Upi1 < uy)

2. We say (up)nen is |EONSUGNN if ‘Vn eN:u, = un+1‘

3. We say (un)ney is [NONOIONG if it ‘inereasing or decreasing ‘

5" Example 1.1. e The sequence (uy)nen defined by u,, = (—1)" is not monotone.
e The sequence (uy,)nen defined by u,, = 27;:1 is not monotone. Indeed, for all n € N :
n+2 n+1 (n+2)2n+1)—(2n+3)(n+1)
Upp — Uy = — =
“ n+3 2n+1 (2n+3)(2n + 1)
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e Consider the geometric sequence (uy,)nen defined by w,, = a™ is monotone if and only
if a > 0. Indeed, if a > 0, we have for all n € N :

Unt1 antl = a.

Un am™

Thus, if a < 1, the sequence is decreasing, if a > 1 it is increasing and if a = 1 or
a =0, it is constant. Now if a < 0, then u, 11 — u, = a™(a — 1) which is positive if n
is even and negative if n is odd.

1.2 Convergence

_ 1.4. Let (uy)nen be a real sequence and ¢ € R.
1. We say ¢ is [ of the sequence (uy)nen and we write lim,, . = £ if

Ve>0,INeN, Vn> N : |u, — ¢ < ¢

(orVe>0,AN eN:n> N = |u, — {| <¢)

Definition| 1.5. 1. We say the sequence (uy)nen has +oo as a limit and we write
hmn*H,oo = +OO, if

IVA>0,3neN, Vn> N:u, > A |

2. We say the sequence (u,)nen has —oo as a limit and we write lim,, o, = —o0, if

VB <0, IneN, ¥n>N :u, <B.|

Definition 1.6. Let (u,)ncn be areal sequence and £ € R. We say the sequence (i, )nen i

B i - - it ¢ < R Otherwise, we say it is [divergent]

I Example 1.2. 1. If u, = ¢, Vn € N, then (u,),en is convergent to the limit c.
Indeed, we have

Ve>0,IN =0, Vn > N :|ju, —c|=|c—¢c|=0<e.

2. Ifu, = % Vn € N* then (uy,)nen+ converges to 0. Indeed. Let ¢ > 0 and n € N*. We
have

lup — 0] <e <= 1t <e<=n>1

Hence it suffices to choose N > 1 that is for example N = [1/e] + 1. Then
n>N=|u,—0| <e.



3. lfu, = 2’::;11 Vn € N*, then (u,)nen+ converges to 1/2. Indeed. Let € > 0 and n € N*.

We have

1 1 1 1

Hence it suffices to choose N > L — 1, that is for example N = [1/4¢] + 1. Then
n>N=|u,—1/2| <e.

4. u, = (—1)". Then the sequence (u,)nen is not convergent. Indeed, if not there
exists ¢ € R such that lim, ., u, = ¢. Hence taking ¢ = 1/2. according to the the
definition of the limit,

dN € N, VnZN:|un—£|§%.

but we have for n = 2N

2 = |ups1 — Un| < |tppr — € +Ju, — € <1/2+1/2=1

which is a contradiction.

5. If u,, = n?, then lim_, o u,, = +o00. Indeed, given any A > 0. Then

U, > A<= n>A.

Therefore, Vn > [v/A] + 1, we have n > A which implies that u, = n? > A.
I Example 1.3. Calculate the limit of the sequence (uy,),en in the following cases
1. u, =a", ac Ry

2. u, =nle /™" —1).

n
1
3. Uy — Z ok -
k=0

1. For u,, = a™, where a € R

400, ifa>1

lim u, = lim a" = ¢ 0, f0<a<1
n—oo n—oo
1,  ifa=1



2. For u, =n(e!/™ —1):

lim u, = lim n(e’™ —1) =0
n—oo n—oo

n
3. For u, = > 3
k=0

n

1
lim u,, = lim Z =2

n—oo n—00 2k
k=0

_ 1.1 (Uniqueness). A convergent sequence has a unique limit.

Proof. Suppose that (u,),en has two limits ¢;, 5 such that ¢4 # 5. Take e = |[¢1 —{5] > 0.
From the definition of the limit, there are N;, Ny € N such that

Vn > Ny :lu, — 6] <e/2, Yn> Ny:|u, —ls] <e/2.

Hence for n > max{Ny, N2}, we have

€:|€1—€2|S|un—€1|+|un—€2|<5/2+5/2:5

contradiction. N

_ 1.2. A convergent sequence is bounded.

Proof. Let (uy,)nen be a convergent sequence to the limit ¢. Hence taking ¢ = 1. According
to the the definition of the limit,

AN eN, Vn> N : |u, — ¢ < 1.

Then
Vn > N u,| < |u, — €+ 0| <1+ 0:= M, (1.1)
and we have
Vn < N :uy,| < My = max{|uo|, |ui], ..., [un|} (1.2)
From (1.1) and (1.2), we deduce that Vn € N : |u,| < M := max{M,, M;}. Hence the
sequence (U, )nen s bounded. O

1.3. Let (un)nen and (v, )nen be two sequences converging respectively to
uw and v. Then

1. | lim (Au,) = Au, VA e R|

n—-+0o00

2. 1limy, 400 (tn +v,) =u+v|.

3. 1 limy, 400 (Uny) = uv|.

4. |limy_yqo0 =~ = %, if u £ 0 and u,, # 0, Vn € N.

Un,




Proof. 1. If A=0, then Au,, =0 — 0, as n — +o0. If not, let ¢ > 0. According to the
the definition of the limit, 3NV € N :

VnZN:|un—u|§m.

Hence

Vn > N | Au, — Al = |A||u, —u| <e.

2. Let € > 0. According to the the definition of the limit, there are Ny, Ny € N :

VYn>Ny:lu,—ul <2 Vn>Ny:l|v,—v| <

£
29 2

Hence, taking N := max{N;, Ny}

VnzN:|(un+vn)—(u+v)|§|un—u|+|vn—v|§§+g§s.

3. Let € > 0.

|tnvn — wo| = |up (v, — v) + 0(up — w)| < fun||ve — o] + |v[|uy — ul

Since (uy,)nen converges, it is bounded (see Proposition . Therefore, there is
M > 0 such that

Vn € N: |u,| < M.

|un v, — uv| < Mo, —v| + v|u, —u| < M'(Ju, — 0| + |u, —ul), M' = max{M,v}.

Otherwise, according to the the definition of the limit, there are Ny, Ny € N :

VnENli\un—ulﬁﬁ, Vnzsz\vn—v\gﬁ,

Hence, ¥n > N := max{Ny, Na}, we have

€ €
e

|unvy, — uv| < MI(2M’ 2M’) =¢|

4. The proof is left as an exercise.



_ 1.4. Let (un)nen be a real sequence.

1. If (up)nen is increasing and bounded above, it is convergent.

2. If (un)nen is decreasing and bounded below, it is convergent.

Proof. 1. Let (up)nen be an increasing sequence that is bounded above. Consider the
set

A=A{u,:n €N}

Since A is a set of real numbers and is bounded above, it has a least upper bound
(supremum) denoted by «. We claim that lim,, . u, = «.

Given € > 0, since a = sup A, there exists an element uy in A such that

Since (uy,) is increasing,
Vn>N:a—c<ay <u,.

This implies
VYn>N:lu, —a|l=a—u, <e.

which satisfies the definition of the limit. This proves that the sequence (u,)nen
converges to a.

2. The proof is left as an exercise.

_ 1.5. Let (un)nen, (Un)nen, (Wn)nen be three sequences such that

“v’nGN:ungvnSwn.

Then

lim, o0 = lim, o w, =¢ = lim v, =¢.
n—-+o0o

Proof. Assume that lim,, , o u, = lim,,_, , w, = . We want to show that lim,, , . v, =
‘.

Given any ¢ > 0, since lim,, . o, u,, = ¢, there exists N; € N such that for all n > Ny,
we have |u,, — (] < e.

Similarly, since lim,, o, w, = ¢, there exists Ny € N such that for all n > N5, we have
|w, — (| <e.

Let N = max{Ny, No}. For all n > N, we have u,, < v, < w,, which implies

l—e<u, <v, <w, <l+e.

Therefore, for all n > N, we have |v, — ¢| < . This shows that lim, v, = ¢, as
desired.
Hence, we have proved the proposition. O



_ 1.6. Let (un)nen, (Un)nen be two sequences such that

‘VnGN:ungvn

Then
1. lim, oo up, = 00 = lim,, o, v, = +00.
2. limy, 100 ¥y = —00 = limy, 4 oo U, = —00.
Proof. 1. Assume that lim,, , ., u, = +00. We want to show that lim,,_, . v, = +00.

Given any M > 0, since lim,, o, u, = 400, there exists N; € N such that for all
n > Ny, we have u, > M.

Since u,, < v, for all n € N, it follows that v, > wu,, > M for all n > N;. This implies
that lim,, v, = +00.

. Assume that lim, ., v, = —o0. We want to show that lim,,_, ., u, = —o0.

Given any M < 0, since lim,, ., v, = —00, there exists Ny € N such that for all
n > Ns, we have v, < M.

Since u,, < v, for all n € N, it follows that u, < v, < M for all n > N,. This implies
that lim,, o u, = —00.

Hence, both parts of the proposition have been proved. O
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