Contents

1 Sequences 2
1.1 Subsequence . 2

1 Sequences

1.1 Subsequence

Definition 1.1. Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a sequence and $\left.k_{n}\right)_{n \in \mathbb{N}}$ be a strictly increasing sequence of natural numbers. Then the sequence $\left(u_{k_{n}}\right)_{n \in \mathbb{N}}$ is called a subsequence of $\left(u_{n}\right)_{n \in \mathbb{N}}$.
(1)요 Example 1.1. - The sequences $\left(u_{2 n}\right)_{n \in \mathbb{N}},\left(u_{2 n+1}\right)_{n \in \mathbb{N}}$ are sub-sequences of $\left(u_{n}\right)_{n \in \mathbb{N}}$ (with $k_{n}=2 n, k_{n}=2 n+1$ respectively).

- The sequence $\left(u_{6 n}\right)_{n \in \mathbb{N}}$ is a subsequence of $\left(u_{n}\right)_{n \in \mathbb{N}}$, with $k_{n}=6 n$ and it is a subsequence of $\left(u_{2 n}\right)_{n \in \mathbb{N}}$ with $k_{n}=3 n$.

Proposition 1.1. If the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ is convergent, then every subsequence $\left(u_{k_{n}}\right)_{n \in \mathbb{N}}$ is also convergent and we have $\lim _{n \rightarrow+\infty} u_{k_{n}}=\lim _{n \rightarrow+\infty} u_{n}$.

Proof. Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a convergent sequence with limit ℓ, and let $\left(u_{k_{n}}\right)_{n \in \mathbb{N}}$ be a subsequence (indexed by natural numbers k_{n}, where $k_{0}<k_{1}<k_{2}<k_{3}<\ldots$). Since $\left(u_{n}\right)_{n \in \mathbb{N}}$ converges to ℓ, for any given $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that

$$
\forall n \geq N:\left|u_{n}-\ell\right| \leq \varepsilon
$$

Now, since $\left(u_{k_{n}}\right)_{n \in \mathbb{N}}$ is a subsequence, then $k_{n} \rightarrow+\infty$ as $n \rightarrow+\infty$. so we can find N^{\prime} such that

$$
\forall n \geq N^{\prime}: k_{n} \geq N
$$

By the convergence of $\left(u_{n}\right)_{n \in \mathbb{N}}$, we have

$$
n \geq N^{\prime} \Longrightarrow k_{n} \geq N \Longrightarrow\left|u_{k_{n}}-\ell\right| \leq \varepsilon
$$

This satisfies the definition of convergence of the sub sequence.
Theorem 1.2. Every bounded sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ has convergent subsequence.

Proof. Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a bounded sequence. This means that there exists a constant $M>0$ such that $\left|u_{n}\right| \leq M$ for all $n \in \mathbb{N}$.

Consider the closed interval $\left[u_{1}-M, u_{1}+M\right]$. Since the sequence is bounded, all of its terms must lie within this interval. Now, divide this interval into two closed subintervals of equal length: $\left[u_{1}-M, u_{1}\right]$ and $\left[u_{1}, u_{1}+M\right]$.

At least one of these subintervals must contain infinitely many terms of the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$. Let's denote the chosen subinterval as I_{1}.

Next, divide I_{1} into two equal subintervals and proceed similarly: choose the one that contains infinitely many terms of the sequence. Denote this subinterval as I_{2}.

Continue this process recursively. At the k-th step, divide the current interval into two equal subintervals and choose the one containing infinitely many terms of the sequence. Denote this subinterval as I_{k}.

We now have a nested sequence of closed intervals:

$$
I_{1} \supseteq I_{2} \supseteq I_{3} \supseteq \ldots
$$

By the nested interval property of real numbers, there exists a unique point c that belongs to all of these intervals:

$$
c \in \bigcap_{k=1}^{\infty} I_{k}
$$

Since each interval I_{k} contains infinitely many terms of the sequence, it follows that c is a limit point of the sequence. Therefore, there exists a subsequence $\left(u_{n_{k}}\right)_{k \in \mathbb{N}}$ converging to c.

Thus, every bounded sequence has a convergent subsequence.

