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1 Sequences

1.1 Cauchy sequence

Definition 1.1. The sequence (un)n∈N is called a Cauchy sequence, if

∀ε > 0, ∃N ∈ N, ∀p, q ≥ N : |up − uq| ≤ ε
2

Proposition 1.1. A convergent sequence is Cauchy.

Proof. Let (un)n∈N be a convergent sequence with limit `. This means that for any ε > 0,
there exists an N such that

∀n ≥ N : |un − `| < ε
2

Now, let’s choose two arbitrary indices p and q such that p, q ≥ N . Then, by the triangle
inequality,

|up − uq| ≤ |up − `|+ |`− uq| ≤ ε
2
+ ε

2
= ε.

This shows that for any ε > 0, there exists an N such that for all p, q ≥ N , |up − uq| ≤ ε,
which is the definition of a Cauchy sequence. Hence, a convergent sequence is a Cauchy
sequence.

Proposition 1.2. Every Cauchy sequence is convergent

Proof. Let (un)n∈N be a Cauchy sequence. Let ε > 0. Then, there exists an N1 ∈ N such
that

∀p, q ≥ N1 : |up − uq| <
ε

2
. (1.1)

Since (un)n∈N is Cauchy, it is also bounded. By the Bolzano-Weierstrass theorem ??, there
exists a convergent subsequence (ukn)n∈N of (un). Let ` be the limit of this subsequence.
Then there exists an N2 ∈ N such that

∀n ≥ N2 : |ukn − `| < ε

2
(1.2)

Now, we will show that the entire sequence (un) converges to `. By the definition of the
subsequence, we have kn → +∞ as n→ +∞, Hence, there exists N3 ∈ N such that

∀n ≥ N3 : kn ≥ N1. (1.3)

Choose N = max{N1, N2, N3}. Then, for all n ≥ N , we have from (1.1),(1.2) and (1.3) :

|un − `| ≤ |un − ukn|+ |ukn − `| < ε/2 + ε/2 = ε,

which proves that limn→∞ un = ` and the proposition is proved.
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