
Chapter 5:
Arrays and strings

Algorithms and data structure 1

Presented by: Dr. Benazi Makhlouf
Academic year : 2023/2024

Contents of chapter 05:

1. Introduction

2. The array type

3. Multidimensional arrays

4. Strings

1. Introduction

• In programming, data is organized in the form of constants and variables. There are

different types of data, which can be divided into two parts:

1. Simple types: Such as integers, floats, characters, and Booleans.

2. Composite types: Arrays, and structures or records.

• Suppose we want to enter the grades of 1000 students. It would be unreasonable to use

1000 variables to store the grades and write 1000 input instructions (read) in the

program.

• It is better to use a single variable that can hold all the grade values and use a loop to

input them.

• The structure that can store multiple values at the same time is called an array.

2. Arrays

Array: A complex data structure, consisting of a finite set of homogeneous elements (of the same

type), accessible through indexes indicating their location.

An array can be seen as a group of variables of the same type with the same name.

Index: When data is stored in an array, each element is identified by an index, which in C is a non-

negative integer (≥ 0). The index starts from 0 to N - 1 (where N is the size of the array).

One-dimensional array (vector): In this type of array, we use a single index to access its elements.

The array is represented in memory as a sequence of adjacent cells. Once the array is created, a

new cell cannot be added or removed (static).

indice 0 1 2 3 4 5 6 7

valeur 15 7 -3 0 9 2 0 -3

Declaration

Algorithm

array_name : array[Size] of type_Elements

In C language

type_Elements array_name [Size] ;

Example

Algorithm

const N=100

Grade : array[N] of real

arr : array[50] of integer

arr2 : array[20] of integer

In C language

const int N=100 ;

float Grade[N] ;

int arr[50], arr2[20];

Initialization

• In C, it is possible to specify initial values for all elements of the array within curly

braces { and } when declaring the array. The values must be of the same type and

separated by commas ','.

• You can specify the number of elements between the square brackets ‘[]', or leave them

empty, in this case the size will be calculated.

Example

int arr[] = {15, 7, -2, 0, 9, 2, 0, -3};

indice 0 1 2 3 4 5 6 7

valeur 15 7 -2 0 9 2 0 -3

Use

• The array cannot be treated as a single block like tab*10; instead, each element must be

accessed separately. To access a single element of the array, we use the name of the array

with an index inside square brackets [and].

Note: Attempting to access an element that does not exist (if the index is greater than or

equal to the size of the array or negative) will cause the program to terminate.

Example:

arr[5-3]arr[arr[3]+1]  arr[2]arr[0+1]  arr[2]7

Indice 0 1 2 3 4 5 6 7

valeur 15 7 7 0 9 2 0 -3

The reading of an array
read(tab[0])

read(tab[1])

…

read(tab[N-1])

Algorithm C

for i0 to N-1 do

write("nb", i, "")

read(tab[i])

End For

for(i = 0; i < N; i++){

printf("nb %d ", i);

scanf("%d", &tab[i]);

}

The display of an array

Algorithm C

for i0 to N-1 do

write(tab[i])

End For

for(i = 0; i < N; i++){

printf("%d\t", tab[i]);

}

Example
Algorithm nb_failed

Const MAX=200

var grade : array[MAX] of real

i, aj, N : integer

begin

do

write(" enter number of students (<", MAX, ")")

read(N)

while N>MAX

for i0 to N-1 do

write(" grade ", i, "")

read(grade[i])

end for

aj 0

for i0 to N-1 do

if grade[i]<10 then

ajaj+1

end if

end for

write("The number of students who failed is", aj)

end

Write a program that receives

the grades of N students, where

N is determined by the user,

and then calculates the number

of students who have not

passed the course. (Average

below 10).

C#include<stdio.h>

#define MAX 200

int main(){

float grade[MAX] ;

int i, N, aj=0; // aj càd nb ajournés

// retrieve number of students

do{

printf(" enter number of students (<%d)",MAX) ;

scanf("%f",&N) ;

}while (N>MAX) ;

// Fill in the table

for(i = 0; i < N; i++){

printf(" grade %d ", i);

scanf("%d", &grade[i]);

}

// calculate number of adjourned

for(i = 0; i < N; i++)

if(grade[i]<10) aj++ ;

// result display.

printf(" The number of students who failed is %d", aj);

}

3. Multidimensional arrays
A two-dimensional array (also called a matrix) is an array of arrays. The elements are

accessible through two indices, the first specifying the row number and the second

specifying the element number in that row (column).

 Numéro de colonne

 0 1 2 3 4

N
 l

ig
n
e 0 15 7 -3 0 9

1 6 12 4 33 85

2 2 -8 17 28 -52

3 14 42 36 49 -12

Declaration
Algorithm

matrix_name : array[Lignes][Colonnes] of typeElements

C

typeElements matrix_name [Lignes][Colonnes] ;

Example

Algorithm

const L=100

const C=100

M : array[L][C] of real

mat1 : array[50][30] of integer

mat2 : array[30][20] of integer

C

const int L=100 , C=200 ;

float M[L][C] ;

int mat1[50][30],mat2[30][20];

Initialisation

int mat[][] = {{15, 7, -3 ,0 ,9},

{6, 12, 4,33,85},

{2, -8, 17 ,28,-52},

{14, 42, 36, 49, -12}};

 numéro de colonne

 0 1 2 3 4

n
 l

ig
n

e

0 15 7 -3 0 9

1 6 12 4 33 85

2 2 -8 17 28 -52

3 14 42 36 49 -12

Use
To access a single element of the matrix, we use the name of the matrix with two sets of square brackets [] specifying the

row number and the column number, respectively.

syntax mat[ligne][colonne]

example mat[1][3]mat[1][3]+2

 Numéro de colonne

 0 1 2 3 4
N

 l
ig

n
e 0 15 7 -3 0 9

1 6 12 4 35 85

2 2 -8 17 28 -52

3 14 42 36 49 -12

Reading a matrix
for j0 to C-1 do

read(M[0][j])

end for

for j0 to C-1 do

read(M[1][j])

end for

…

for j0 to C-1 do

read(M[L-1][j])

end for

for i0 to L-1 do

for j0 to C-1 do

write("M[", i, ",", j, "]")

read(M[i][j])

end for

end for

for(i = 0; i < L; i++)

for(j = 0; j < C; j++){

printf("M[%d, %d] ", i,j);

scanf("%d", &M[i][j]);

}

Displaying a matrix

Algorithm C

for i0 to L-1 do

for j0 to C-1 do

write(M[i][j])

end for

end for

for(i = 0; i < L; i++){

for(j = 0; j < C; j++)

printf("%d\t", M[i][j]);

printf("\n") ;

}

Example

Write a program that reads hourly temperatures for 30 days in the form of a matrix (30 by 24),

then displays them on the screen. After that, it shows the highest temperature recorded and when it

was recorded.

maxTT[0][0]

maxJr0

maxHr0

for i0 to Jr-1 do

for j0 to Hr-1 do

if (T[i][j]>maxT) then

maxTT[i][j]

maxJri

maxHrj

end if

end for

end for

write("The maximum temperature

is ", maxT, " and was

recorded on day ",

maxJr+1, " at ", maxHr)

end

Algorithm nb_ajourned

Const Jr =30 Hr=24

var T : array[Jr][Hr] of real

maxT : real

i, j, maxJr, maxHr : integer

début

for i0 to Jr-1 do

for j0 to Hr-1 do

write("T[", i+1, ",", j,

"]")

read(T[i][j])

end for

end for

for i0 to Jr-1 do

for j0 to Hr-1 do

write(M[i][j])

end for

end for

#include<stdio.h>

#define Jr 30 // nb lignes

#define Hr 24 // nb colonnes

int main(){

float T[Jr][Hr] ,maxT;

int i, j,maxJr,maxHr;

// Fill in temperatures

for(i = 0; i < Jr; i++)

for(j = 0; j < Hr; j++){

printf("T[%d, %d] ", i+1,j);

scanf("%d", &T[i][j]);

}

// display all temperatures

for(i = 0; i < Jr; i++){

for(j = 0; j < Hr; j++)

printf("%d\t", M[i][j]);

printf("\n") ;

}

// search for maximum temperature

maxT=T[0][0];

maxJr=0 ;

maxHr=0 ;

for(i = 0; i < Jr; i++)

for(j = 0; j < Hr; j++)

if (T[i][j]>maxT){

maxT=T[i][j];

maxJr=i;

maxHr=j;

}

// display of results

printf(" The maximum temperature is

%d and was recorded on day %d

at %d", maxT, maxJr+1, maxHr) ;

}

4. Strings
• A string of characters is an ordered set of characters.

• They are always enclosed in double quotes « " »

such as "computer science", "Good luck\n", "1", "3.14".

• In C, character arrays (char []) are used to create strings.

• When reading a string from the keyboard, each character is placed in a memory area and

the character '\0' is added at the end of the text to indicate its termination.

• The character '\0' is called "null" and it has the ASCII code 0.

• There is a constant declared in the « stdio.h » library called NULL in uppercase.

#define NULL 0

NULL  ‘\0’  0

Declaration & Initialization
Algorithm

var str : string

var str :array [30] of characters

in C
char str[30] ;

Initialization in C
char slt[] = {'W', 'e', 'l', 'c', 'o', 'm', 'e', '\0'};

This instruction creates an array of 8 characters (7 positions for the word 'Welcome' and one slot

containing the character '\0'). However, there is a simpler and faster way to create and initialize a

string:

char slt[] = "Welcome";

This leads to the same result, which is the creation of an array of 8 characters, ending with the

character '\0'.

The size of the array can also be specified:

char slt[30] = "Welcome";

 0 1 2 3 4 5 6 7

slt W e l c o m e \0

 0 1 2 3 4 5 6 7 8 … 28 29

slt W e l c o m e \0 …

Assignment

Since strings are arrays, a string cannot be assigned to a variable directly after its declaration.

The following operation is incorrect.

char slt[30];

slt = "Welcome";// erreur : assignment to an array.

To assign a string to a variable or copy a variable to another variable, we use the strcpy()

function.

strcpy(slt , "Welcome");

Display & Reading
Display

write(str)

In C

printf("%s",str) ;

Puts(str);

Reading

read(str)

In C

scanf("%s",str) ;

or

#include <string.h>

…

gets(slt) ; // for text containing spaces

Some functions specific to strings in C

strcpy(dest, src); Copies the string from src to the destination (dest)

strcat(s1, s2); Concatenates (appends) s2 to s1.

strlen(s); Returns the length of the string s (excluding '\0')

strcmp(s1, s2); Returns 0 if s1 and s2 are identical ;

less than 0 if s1<s2 ; greater than 0 if s1>s2.

Examples
Example 1 : Empty string str="" ; which has a length of 0.

The content of the cells after '\0' doesn't matter; the string ends at the first '\0'. Therefore, any

string can be converted to an empty string by placing str[0]='\0' ;

Example 2 : A string containing a single character is different from the character type. Thus,

"w"≠'w' because "w" is a string.

 0 1 2 3 4 5 6 … 28 29

str \0 …

 0 1 2 3 4 5 6 … 28 29

str w \0 …

Examples
Example 3 : Write a program that takes input text and converts uppercase letters to lowercase and

lowercase letters to uppercase.

algorithm inverse

var txt :array[200] of charactere

i : integer

begin

write((" enter text ")

read(txt)

i0

while txt[i]≠’\0’ do

if txt[i]>=’A’ and txt[i]<=’Z’ then

txt[i]=txt[i]+’a’-’A’

else

if (txt[i]>=’a’ and txt[i]<=’z’) then

txt[i]=txt[i]-(’a’-’A’);

end if

end if

end while

write(txt)

end.

Examples
#include<stdio.h>

#include<string.h>

int main(){

char txt[200] ;

int i ;

printf(" enter text \n") ;

gets(txt)

for(i=0 ;txt[i] !=’\0’ ;i++)

if (txt[i]>=’A’&&txt[i]<=’Z’)

txt[i]+=’a’-’A’ ;

else

if (txt[i]>=’a’&&txt[i]<=’z’)

txt[i]-=’a’-’A’ ;

printf("%s",txt) ;

return 0 ;

}

End Chapter 05

