
Modeling of dynamic

discret events systems 2 
(DDES)

University of Msila

FACULTY OF MATHEMATICS AND

INFORMATICS

DEPARTMENT OF COMPUTER

SCIENCE



SAED modeling approaches
 EVENT-BASED APPROACH

In this approach, a system is modeled by defining the changes that take place when events 
occur. The designer must therefore determine which events can change the state of the system, 
and then develop the logic associated with each type of event.
Example:
The system to be modeled is a bank where customers arrive and are served by a single waiter 
(employee). Customers arrive at the bank, wait in front of a counter, are served and then leave 
the bank.

 he state of the system is defined by the state of the server and the number of waiting customers. 
In this way, the state remains constant except when a customer arrives or when a customer 
leaves the bank.

 The event-based approach describes what happens when a customer arrives and when a 
customer leaves the service. Since the system only changes state
at the instants of these two events (customer arrival or customer departure), these are sufficient 
to fully describe the dynamics of the system.



SAED modeling approaches



SAED modeling approaches



Discrete event system





SAED modeling approaches

 In the event-driven approach, the kernel's main tasks are :
1) Time control: determine the date of the next event and initialize the clock with this

date
2) Identify events: determine which events must take place at the current time (clock)
3) Execute events: trigger the events identified as due to take place.

Example:
The arrival of a customer will trigger the addition of an End_Of_Service event to the
calendar. It also triggers the addition of a Customer_Arrival event corresponding to the next

customer.
The end of a service can trigger the addition of an End_Of_Service event to the schedule, if
the queue is not empty, and which in this case concerns the new customer in the queue.
In this way, each event in the list must include at least the following two items of information:
- the date of occurrence of the event
- the event identification (usually a number)
Information on the entities involved in the event may also be useful (e.g.: selection of a
customer in the queue).
As the simulation progresses, the kernel will execute a 2-phase cycle:



SAED modeling approaches

 1) Time control: this phase includes

a) determining the date of the next event by examining the calendar (list of events)

b) initializing the clock with the date of the next event

c) construction of a list of current events including all events whose date of 

occurrence is equal to the clock.

 2) Execution of current events

Current events are executed under kernel control. No event can be triggered 

without the kernel. This ensures that the logical sequence of events is entirely 

controlled by the kernel. Once an event has been executed, it is deleted (from the 

calendar and from the list of current events).

This cycle is repeated until the end of the simulation. A simplified kernel flowchart 

might look like this:



SAED modeling approaches



SAED modeling approaches

 Components of a discrete-event simulation model

The following components are found in most discrete-event simulation models adopting the "event" 

approach:

 System state: defined by a collection of state variables describing the state of the system at a particular 

time.

 Simulation clock: a variable indicating the current value of simulation time.

 Event list: A list containing the dates of occurrence of events scheduled to take place in the future. 

 Statistical counters: Variables used to collect statistical information on system performance.

 Initialization routine. Subroutine used to initialize the simulation model at time zero.

• Time management routine (time control): subroutine which determines the next event from the event list 

and initializes the simulation clock with the date of occurrence of this current event.

 Event routines: subroutines that update the system state when a particular type of event occurs (there is 

an event routine for each type of event).

 utility routine library: set of subroutines used to generate random variables identified as part of the 

simulation model.

 Results generator: subroutine which calculates estimates (from statistical counters) of the desired 

performance measures and generates a report at the end of the simulation.

 Main program: responsible for initializing the system state at the start of the simulation, and all variables 

used during the simulation. It invokes the time management routine to determine the next event to take 

place and passes control to the routine associated with that event. It also checks whether the end of the 

simulation has been reached and, if so, invokes the results generator.





Simulation languages

 The first simulation languages appeared around 1960, and were more oriented 

towards the representation and simulation of discontinuous (discrete-event) 

systems.



Simulation languages

GPSS (General Purpose Simulation System) is a language offering a process-oriented

approach. It was first developed by IBM in 1961, and several versions have since been

released, the most recent of which is GPSS/V. GPSS is one of the forerunners of the "process"

modeling approach, and has graphical representation support like most current languages.







Specialized simulators
 A specialized simulator is a simulation tool offering a description language (or an interactive 

data input system) in which the instructions (or primitives) are objects of the system to be 
modeled. The primitives offered are, in this case, aggregates of elementary processes (queues, 
resources, activities, etc ... ) representing a particular object of the system (machine, stock, 
conveyor, pallet, etc ... in the case of a production system) and its behavior.
One of the advantages of specialized simulators is the reduced conceptualization effort 
required in the modeling stage. The following figure shows how easy it is to represent the same 
problem (here, the modeling of a diverging switch in a handling network) using a specialized 
"handling network" simulator, and a general simulation language (here, SLAM II).



Specialized simulators


