### Number Representation

#### Integer representation

- Unsigned Integers
- Signed integers
  - Signed-Magnitude
  - 2's complement

Floating point representation

# **INTEGER REPRESENTATION**

### Integer Representation

Integer Number: is a whole number without fractions, it can be positive or negative

Integers range between negative infinity (  $-\infty$ ) and positive infinity (+  $\infty$ )



### Integer Representation



# **Unsigned Integer**

□ Unsigned Integer: is an integer without a sign and ranges between 0 and +∞

The maximum unsigned integer depends on the number of bits (N) allocated to represent the unsigned integer in a computer

Range: 
$$0 \rightarrow (2^{N} - 1)$$

| No. of bits | Range |    |       |
|-------------|-------|----|-------|
| 8           | 0     | to | 255   |
| 16          | 0     | to | 65535 |
| 32          | 0     | to | ?     |

### Unsigned Integer

While storing unsigned integer, If the number of bits is less than N, Os are added to the left of the binary number so that there is a total of N bits.



Store 7 in an 8-bit memory location using unsigned representation.

### Solution

- 1. First change the integer to binary,  $(111)_2$ .
- Add five 0s to make a total of N (8) bits, (00000111)<sub>2</sub>.
- 3. The integer is stored in the memory location.

Change 7 to binary  $\rightarrow$  1 1 1 Add five bits at the left  $\rightarrow$  0 0 0 0 0 1 1 1



# Store 258 in an 16-bit memory location using unsigned representation.

### Solution

- 1. First change the integer to binary  $(10000010)_2$ .
- Add seven 0s to make a total of N (16) bits, (00000010000010)<sub>2</sub>.
- 3. The integer is stored in the memory location.

Change 258 to binary  $\rightarrow$  1 0 0 0 0 0 0 1 0 Add seven bits at the left  $\rightarrow$  0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 What will happen if you Try to store an unsigned integer Such as 256 in an 8-bit memory



# Overflow

occurs if the decimal is out of range (if binary bits > n)

### **Unsigned Integer**

# Example of storing unsigned integers in two different computers



### **Unsigned Integer Applications**

Counting : you don't need negative numbers to count and usually start from 0 or 1 going up

Addressing: sometimes computers store the address of a memory location inside another memory location, addresses are positive numbers starting from 0

### Integer Representation



SIGNED NUMBER REPRESENTATION SIGNED MAGNITUDE REPRESENTATION

# Sign-and-magnitude representation

- Signed Integer is an integer with a sign either + or -
- Storing an integer in a sign-and-magnitude format requires 1 (the leftmost) bit to represent the sign (0 for positive and 1 for negative) and rest of the bits to represent madnitude

Range : 
$$-(2^{N-1} - 1) \dots + (2^{N-1} - 1)$$

## Sign-and-magnitude representation

Range of Sign and Magnitude representation

| No. of bits | Range                        |
|-------------|------------------------------|
| 8           | -1270 +0 +127                |
| 16          | -327670 +0+32767             |
| 32          | -2,147,483,6470+0+2147483647 |
|             |                              |

There are two 0s in sign-and-magnitude epresentation:

positive and negative.

## Sign-and-magnitude representation

- Storing sign-and-magnitude signed integer process:
- 1. The integer is changed to binary, (the sign is ignored).
- If the number of bits is less than N-1, Os are added to the left of the number so that there will be a total of N-1 bits.
- 3. If the number is **positive**, 0 is added to the left (to make it **N** bits). But if the number is **negative**, **1** is added to the left (to make it **N** bits)



Store +7 in an 8-bit memory location using sign-andmagnitude representation.

### Solution

- $\Box$  The integer is changed to binary (111).
- Add 4 0s to make a total of N-1 (7) bits, 0000111.
- Add an extra 0 (in bold) to represent the positive sign

#### 0000111



Store –258 in a 16-bit memory location using signand-magnitude representation

### Solution

First change the number to binary 10000010

Add six 0s to make a total of N-1 (15) bits, 000000100000010

□ Add an extra 1 because the number is *negative*.

### 0000010000010

# Signed-Magnitude Representation -Example

| Decimal<br>Number | Signed Magnitude<br>representation in 8<br>bits | Signed Magnitude<br>Representation in 16 bits |
|-------------------|-------------------------------------------------|-----------------------------------------------|
| -7                | 10000111                                        | 1000000000111                                 |
| -124              | 1111100                                         | 100000001111100                               |
| +124              | 01111100                                        | 000000001111100                               |
| +258              | Overflow                                        | 00000010000010                                |
| -24760            | overflow                                        | 1110000010111000                              |

# Sign-and-magnitude Interpretation

- Q: How do you interpret a signed binary representation in decimal?
- 1. Ignore the first (leftmost) bit for a moment
- Change the remaining N -1 bits from binary to decimal
- Attach a + or sign to the number based on the leftmost bit.



Interpret 10111011 to decimal if the number was stored as a sign-and-magnitude integer.

### Solution

- Ignoring the leftmost bit for a moment, the remaining bit are 0111011.
- □ This number in decimal is 59.
- $\Box$  the leftmost bit is 1 so the number is 59.

Signed Magnitude representation Applications

The sign-and-magnitude representation is **not used** now by computers because:

Operations: such as subtraction and addition is not straightforward for this representation.

Uncomfortable in programming: because there are two Os in this representation

# Signed Magnitude Representation Applications

However..

The **advantage** of this representation is:

Transformation: from decimal to binary and vice versa which makes it convenient for applications that don't need operations on numbers

Ex: Converting Audio (analog signals) to digital signals.

2'S COMPLEMENT REPRESENTATION

## Complement of a number

#### □ (R-1)'s complement

 $\square$  R's complement = [(R-1's complement) + 1]

| Where | is | called | radix | (or | base) |  |
|-------|----|--------|-------|-----|-------|--|
|-------|----|--------|-------|-----|-------|--|

| R = 10 | (R-1)'s complement<br>9's complement | R's complement<br>(10's complement) |  |
|--------|--------------------------------------|-------------------------------------|--|
| 473    | 999-473 = 526                        | 526 + 1= 527                        |  |
| 8437   | 9999 - 8437 = 1562                   | 1562 + 1 = 1563                     |  |

| R = 2   | (R-1)'s complement<br>1's complement | R's complement<br>(2's complement) |
|---------|--------------------------------------|------------------------------------|
| 1011    | 1111-1011 = 0100                     | 0100 + 1= 0101                     |
| 0011101 | 1111111 - 0011101 = 1100010          | 1100010 + 1 = 1100011              |

# Complement of a number

#### **Exercise 7**

Write down the 1's complement and 2's complement of following binary numbers in 8 bits

- a) 11001
- b) 10001101
- Write down the 1's complement and 2's complement of following binary numbers in 16 bits
  - c) 11001
  - d) 000000110101

- The most significant bit (msb) is the sign bit, with value of 0 representing positive integers and 1 representing negative integers.
- The remaining n-1 bits represents the magnitude of the integer, as follows:
  - for positive integers, the absolute value of the integer is equal to "the magnitude of the (n-1)-bit binary pattern".
  - for negative integers, the absolute value of the integer is equal to "the magnitude of the complement (inverse) of the (n -1)-bit binary pattern" (hence called 1's complement).

Example 1: Suppose that n=8 and the binary representation 0 100 0001.
 Sign bit is 0 ⇒ positive Absolute value is 100 0001 = 65 Hence, the integer is +65

■ Example 2: Suppose that n=8 and the binary representation 1 000 0001. Sign bit is 1 ⇒ negative Absolute value is the complement of 000 0001, i.e., 111 1110 = 126 Hence, the integer is -126

■ Example 3: Suppose that n=8 and the binary representation 0 000 0000. Sign bit is 0 ⇒ positive Absolute value is 000 0000 = 0 Hence, the integer is +0

■ Example 4: Suppose that n=8 and the binary representation 1 111 1111. Sign bit is 1 ⇒ negative

Absolute value is the complement of 111 1111,

i.e.,  $000\ 0000 = 0$ 

Hence, the integer is -0

- Drawbacks of 1's complement representation for signed numbers :
  - There are two representations (0000 0000 and 1111 1111) for zero.
  - The positive integers and negative integers need to be processed separately.
- Because of the above drawbacks 1's complement is not the preferred choice for representing signed numbers

- Most significant bit (msb) is the sign bit, with value of 0 representing positive integers and 1 representing negative integers.
- The remaining n-1 bits represents the magnitude of the integer, as follows:
  - for positive integers, the absolute value of the integer is equal to "the magnitude of the (n-1)-bit binary pattern".
  - for negative integers, the absolute value of the integer is equal to "the magnitude of the complement of the (n-1)-bit binary pattern plus one" (hence called 2's complement).

 Example 1: Suppose that n=8 and the binary representation 0 100 0001.
 Sign bit is 0 ⇒ positive Absolute value is 100 0001 = 65 Hence, the integer is +65

Example 2: Suppose that n=8 and the binary representation 1 000 0001.
 Sign bit is 1 ⇒ negative Absolute value is the complement of 000 0001 plus 1, i.e., 111 1110 + 1 = 127 Hence, the integer is -127

Example 3: Suppose that n=8 and the binary representation 0 000 0000B.
 Sign bit is 0 ⇒ positive
 Absolute value is 000 0000B = 0D
 Hence, the integer is +0D

Example 4: Suppose that n=8 and the binary representation 1 111 1111B.

Sign bit is  $1 \Rightarrow$  negative

Absolute value is the complement of 111

1111B plus 1, i.e., 000 0000B + 1B = 1D Hence, the integer is -1D

## Signed Integer Representation



For 8 bits



#### An *n*-bit 2's complement signed integer can represent integers from

### Range: $-(2^{n-1})$ to $+(2^{n-1}-1)$

| n  | minimum                               | maximum                                                       |
|----|---------------------------------------|---------------------------------------------------------------|
| 8  | -(2^7) (=-128)                        | +(2^7)-1 (=+127)                                              |
| 16 | -(2^15) (=-32,768)                    | +(2^15)-1 (=+32,767)                                          |
| 32 | -(2^31) (=-2,147,483,648)             | +(2^31)-1 (=+2,147,483,647)(9+ digits)                        |
| 64 | -(2^63) (=-9,223,372,036,854,775,808) | +(2^63)-1 (=+9,223,372,036,854,775,807)(18+ digits) + digits) |

There is only one representation of 0 which makes 2's complement representation a preferred choice for representing signed numbers

Computers also use 2's complement representation for representing signed numbers

#### Exercise 8

- Write down the following numbers in binary using 2's complement representation for signed numbers in 8 bits
  - **-58**
  - +58
  - -102
- Figure out the decimal numbers (including sign) from the following binary numbers represented using 2's complement.
  - **00100010**
  - **1**0111001
  - **1**1000110

FLOATING POINT REPRESENTATION

# **Floating Point Numbers**

- A floating-point number is typically expressed in the scientific notation, with a fraction (F), and an exponent (E) of a certain radix (r), in the form of F×r^E.
- $\Box$  Decimal numbers use radix of 10  $\rightarrow$  (F×10<sup>\*</sup>E)

547.32 = 547.32 x 10<sup>0</sup> = 54.732 x 10<sup>1</sup> = 5.4732 x 10<sup>2</sup> = 0.54732 x 10<sup>3</sup>

 $\square$  Binary numbers use radix of 2  $\rightarrow$  (F×2^E)

 $0110.101 = 0110.101 \times 2^{0}$ = 011.0101 x 2<sup>1</sup> = 01.10101 x 2<sup>2</sup> = 0.110101 x 2<sup>3</sup>

# **Floating Point Representation**

- In computers, floating-point numbers are represented in scientific notation of fraction (F) and exponent (E) with a radix of 2, in the form of F×2<sup>A</sup>E.
- □ Both E and F can be positive as well as negative.
- Modern computers adopt IEEE 754 standard for representing floating-point numbers.
- There are two representation schemes: 32-bit single -precision and 64-bit double-precision.

□ In 32-bit single-precision floating-point representation:

- The most significant bit is the sign bit (S), with 0 for positive numbers and 1 for negative numbers.
- The following 8 bits represent **biased exponent** (E).
- The remaining 23 bits represents fraction (F).



#### **Example 1**

Represent -13.8 using IEEE 754 32 bit single precision floating point representation
Bias

- 1. (13.8) → (1101.11001)
- 2. 1101.1100 =  $1.10111001 \times 2^{3}$
- 3. Actual exponent = 3

Bias of 127 is to be added to the actual exponent so that sign of exponent is taken care of

- 4. Biased exponent = 3 + 127 = 130 = (10000010)
- 5. Sign of Fraction/Mantissa (s) = -ve = 1



#### Example 2

Let's illustrate with an example, suppose that the 32-bit pattern is <u>11000 0001\_011 0000 0000 0000 0000</u>

S = 1

```
Biased Exponent = 1000 0001 (Actual Exponent = 10000001 - 127 = 2)
F = 011 0000 0000 0000 0000
```

### In the *normalized form*, the actual fraction is normalized with an implicit leading 1 in the form of 1.F

In this example, the actual fraction is

**1.011 0000 0000 0000 0000 =**  $1 + 1 \times 2^{-2} + 1 \times 2^{-3} = 1.375$ 

The sign bit represents the sign of the number, with S=0 for positive and S=1 for negative number.

In this example with S=1, this is a negative number, i.e., -1.375

- The actual exponent is (biased exponent -127). This is because we need to represent both positive and negative exponent.
- With an 8-bit for exponent, ranging from 0 to 255, the bias(127) scheme could provide actual exponent of -127 to 128.
- $\Box$  In this example, actual exponent is =129-127=2

 $\Box$  Hence, the number represented is -1.375×2<sup>2</sup>=-5.5

#### **Example 2**

□ Figure out the floating point number

110000010 10111000000000000000 which is represented by IEEE 754 -32 bit

Solution

10000010 1011100100000000000000

- □ S= 1 (number is -ve)
- Biased Exponent = 10000010 = 130
- Actual Exponent = Biased Exponent -127 = 130 -127 = 3
- $= 1 + (1 \times 2^{-1}) + (0 \times 2^{-2}) + (1 \times 2^{-3}) + (1 \times 2^{-4}) + (1 \times 2^{-5}) + 0 + 0 + (1 \times 2^{-6}) = 1.734375$
- **1.734375** x  $2^3 = 13.875$

Exercise 9

Represent -102.27 using IEEE 754 32 bit single precision floating point representation

- **Exercise 10**
- Figure out the floating point number which has been represented by IEEE 754 -32 bit

Thank you



https://www.ntu.edu.sg/home/ehchua/programmin g/java/datarepresentation.html