## Number Representation

$\square$ Integer representation

- Unsigned Integers
- Signed integers
- Signed-Magnitude
- 2's complement
$\square$ Floating point representation

INTEGER REPRESENTATION

## Integer Representation

Integer Number: is a whole number without fractions, it can be positive or negative

Integers range between negative infinity
$-\infty$ ) and positive infinity ( $+\infty$ )


But can a computer store all
the integers in between?

## Integer Representation



## Unsigned Integer

$\square$ Unsigned Integer: is an integer without a sign and ranges between 0 and $+\infty$
$\square$ The maximum unsigned integer depends on the number of bits ( $N$ ) allocated to represent the unsigned integer in a computer

## Range: $0 \rightarrow\left(2^{N}-1\right)$

| No. of bits | Range |  |
| :--- | :--- | :--- |
|  | 0 | to |
| 8 | 0 | to |
| 16 | 0 | to |
| 32 |  | $?$ |

## Unsigned Integer

While storing unsigned integer, If the number of bits is less than $N, O$ s are added to the left of the binary number so that there is a total of $N$ bits.

## Example I

Store 7 in an 8 -bit memory location using unsigned representation.

## Solution

1. First change the integer to binary, $(111)_{2}$.
2. Add five Os to make a total of $\mathrm{N}(8)$ bits, (00000111) 2 .
3. The integer is stored in the memory location.

Change 7 to binary


1
Add five bits at the left $\quad \rightarrow \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1$

## Example 2

Store 258 in an 16-bit memory location using unsigned representation.

## Solution

1. First change the integer to binary $(100000010)_{2}$.
2. Add seven Os to make a total of $\mathbf{N}$ (16) bits, (0000000100000010) ${ }_{2}$.
3. The integer is stored in the memory location.
$\left.\begin{array}{lllllllllllllllll}\text { Change } 258 \text { to binary } & \rightarrow \\ \text { Add seven bits at the left } & \rightarrow & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$

# What will happen if you <br> Try to store an unsigned integer <br> Such as 256 in an 8-bit memory <br> <br> Location 

 <br> <br> Location}

Overflow
occurs if the decimal is out of range (if binary bits $>\mathrm{n}$ )

## Unsigned Integer

$\square$ Example of storing unsigned integers in two different computers


## Unsigned Integer Applications

$\square$ Counting : you don't need negative numbers to count and usually start from 0 or 1 going up
$\square$ Addressing: sometimes computers store the address of a memory location inside another memory location, addresses are positive numbers starting from 0

## Integer Representation



## SIGNED NUMBER REPRESENTATION

## SIGNED MAGNITUDE REPRESENTATION

## Sign-and-magnitude representation

$\square$ Signed Integer is an integer with a sign either + or -
$\square$ Storing an integer in a sign-and-magnitude format requires 1 (the leftmost) bit to represent the sign ( 0 for positive and 1 for negative) and rest of the bits to represent madnitude

$$
\text { Range : }-\left(2^{\mathrm{N}-1}-1\right) \ldots+\left(2^{\mathrm{N}-1}=1\right)
$$

## Sign-and-magnitude representation

$\square$ Range of Sign and Magnitude representation

| No. of bits | Range |
| :--- | :--- |
| 8 | $-127 \ldots \ldots \ldots \ldots \ldots \ldots-0+0 \ldots \ldots \ldots \ldots+127$ |
| 16 | $-32767 \ldots \ldots \ldots \ldots-0+0 \ldots \ldots \ldots+32767$ |
| 32 | $-2,147,483,647 \ldots \ldots-0+0 \ldots \ldots \ldots+2147483647$ |

There are two Os in sign-and-magnitude epresentation: positive and negative.

## Sign-and-magnitude representation

$\square$ Storing sign-and-magnitude signed integer process:

1. The integer is changed to binary, (the sign is ignored).
2. If the number of bits is less than $\mathrm{N}-\mathrm{T}, \mathrm{Os}$ are added to the left of the number so that there will be a total of $\mathrm{N}-1$ bits.
3. If the number is positive, $\mathbf{O}$ is added to the left (to make it $N$ bits). But if the number is negative, 1 is added to the left (to make it $N$ bits)

## Example 4

$\square$ Store +7 in an 8-bit memory location using sign-andmagnitude representation.

## Solution

$\square$ The integer is changed to binary (111).
$\square$ Add 4 Os to make a total of $N$ - 1 (7) bits, 0000111 .
$\square$ Add an extra 0 (in bold) to represent the positive sign

00000111

## Example 5

$\square$ Store -258 in a 16-bit memory location using sign-and-magnitude representation

## Solution

$\square$ First change the number to binary 100000010
$\square$ Add six Os to make a total of N-1 (15) bits, 000000100000010
$\square$ Add an extra 1 because the number is negative.

1000000100000010

## Signed-Magnitude Representation Example

| Decimal <br> Number | Signed Magnitude <br> representation in 8 <br> bits | Signed Magnitude <br> Representation in 16 bits |
| :--- | :--- | :--- |
| -7 | 10000111 | 100000000000111 |
| -124 | 11111100 | 1000000001111100 |
| +124 | 01111100 | 0000000001111100 |
| +258 | Overflow | 0000000100000010 |
| -24760 | overflow | 1110000010111000 |

## Sign-and-magnitude Interpretation

Q: How do you interpret a signed binary representation in decimal?

1. Ignore the first (leftmost) bit for a moment
2. Change the remaining $N-1$ bits from binary to decimal
3. Attach a + or - sign to the number based on the leftmost bit.

## Example 6

$\square$ Interpret 10111011 to decimal if the number was stored as a sign-and-magnitude integer.

## Solution

$\square$ Ignoring the leftmost bit for a moment, the remaining bit are 0111011.
$\square$ This number in decimal is 59 .
$\square$ the leftmost bit is 1 so the number is -59 .

## Signed Magnitude representation Applications

The sign-and-magnitude representation is not used now by computers because:
$\square$ Operations: such as subtraction and addition is not straightforward for this representation.
$\square$ Uncomfortable in programming: because there are two $0 s$ in this representation

## Signed Magnitude Representation Applications

However..
The advantage of this representation is:
$\square$ Transformation: from decimal to binary and vice versa which makes it convenient for applications that don't need operations on numbers
$\square$ Ex: Converting Audio (analog signals) to digital signals.

## 2'S COMPLEMENT REPRESENTATION

## Complement of a number

$\square$ (R-1)'s complement
$\square$ R's complement $=[(R-1$ 's complement $)+1]$

- Where is called radix (or base)

| $\mathbf{R}=10$ | (R-1)'s complement <br> 9's complement | R's complement <br> (10's complement) |
| :--- | :--- | :--- |
| 473 | $999-473=526$ | $526+1=527$ |
| 8437 | $9999-8437=1562$ | $1562+1=1563$ |


| $R=2$ | (R-1)'s complement <br> 1's complement | R's complement <br> (2's complement) |
| :--- | :--- | :--- |
| 1011 | $1111-1011=0100$ | $0100+1=0101$ |
| 0011101 | $1111111-0011101=1100010$ | $1100010+1=1100011$ |

## Complement of a number

$\square$ Exercise 7
$\square$ Write down the 1's complement and 2's complement of following binary numbers in 8 bits
a) 11001
b) 10001101
$\square$ Write down the 1 's complement and 2's complement of following binary numbers in 16 bits
c) 11001
d) 000000110101

## 1's complement representation

$\square$ The most significant bit (msb) is the sign bit, with value of 0 representing positive integers and 1 representing negative integers.
$\square$ The remaining $n$ - 1 bits represents the magnitude of the integer, as follows:
$\square$ for positive integers, the absolute value of the integer is equal to "the magnitude of the ( $n-1$ )-bit binary pattern".
$\square$ for negative integers, the absolute value of the integer is equal to "the magnitude of the complement (inverse) of the ( $n$ -1)-bit binary pattern" (hence called 1's complement).

## l's complement representation

$\square$ Example 1: Suppose that $n=8$ and the binary representation 01000001.

Sign bit is $0 \Rightarrow$ positive
Absolute value is $1000001=65$
Hence, the integer is +65
$\square$ Example 2: Suppose that $n=8$ and the binary representation 10000001.

Sign bit is $1 \Rightarrow$ negative
Absolute value is the complement of 000 0001,
i.e., $1111110=126$

Hence, the integer is -126

## l's complement representation

$\square$ Example 3: Suppose that $n=8$ and the binary representation 00000000.
Sign bit is $0 \Rightarrow$ positive
Absolute value is $0000000=0$
Hence, the integer is +0
$\square$ Example 4: Suppose that $n=8$ and the binary representation 11111111.

Sign bit is $1 \Rightarrow$ negative
Absolute value is the complement of 1111111 ,
i.e., $0000000=0$

Hence, the integer is -0

## l's complement representation

$\square$ Drawbacks of 1's complement representation for signed numbers :
$\square$ There are two representations (0000 0000 and 1111 1111) for zero.
$\square$ The positive integers and negative integers need to be processed separately.
$\square$ Because of the above drawbacks l's complement is not the preferred choice for representing signed numbers

## 2's complement representation

$\square$ Most significant bit (msb) is the sign bit, with value of 0 representing positive integers and 1 representing negative integers.
$\square$ The remaining $n$ - 1 bits represents the magnitude of the integer, as follows:
$\square$ for positive integers, the absolute value of the integer is equal to "the magnitude of the ( $n-1$ )-bit binary pattern".
$\square$ for negative integers, the absolute value of the integer is equal to "the magnitude of the complement of the ( $n-1$ )-bit binary pattern plus one" (hence called 2's complement).

## 2's complement representation

$\square$ Example 1: Suppose that $n=8$ and the binary representation 01000001.

Sign bit is $0 \Rightarrow$ positive
Absolute value is $1000001=65$
Hence, the integer is +65
$\square$ Example 2: Suppose that $n=8$ and the binary representation 10000001.

Sign bit is $1 \Rightarrow$ negative
Absolute value is the complement of 0000001 plus 1, i.e., $1111110+1=127$

Hence, the integer is -127

## 2's complement representation

$\square$ Example 3: Suppose that $n=8$ and the binary representation 0000 0000B.

Sign bit is $0 \Rightarrow$ positive
Absolute value is $0000000 \mathrm{~B}=0 \mathrm{D}$
Hence, the integer is $+0 D$
$\square$ Example 4: Suppose that $n=8$ and the binary representation 11111111 B .

Sign bit is $1 \Rightarrow$ negative
Absolute value is the complement of 111
1111 B plus 1 , i.e., $0000000 \mathrm{~B}+1 \mathrm{~B}=1 \mathrm{D}$
Hence, the integer is -1D

## Signed Integer Representation



For 8 bits

## Range

$\square$ An n-bit 2's complement signed integer can represent integers from

$$
\text { Range : }-\left(2^{n-1}\right) \text { to }+\left(2^{n-1}-1\right)
$$

| $n$ | minimum |  |
| :---: | :--- | :--- |
| 8 | $-\left(2^{\wedge} 7\right)(=-128)$ | $+\left(2^{\wedge} 7\right)-1 \quad(=+127)$ |
| 16 | $-\left(2^{\wedge} 15\right)(=-32,768)$ | $+\left(2^{\wedge} 15\right)-1 \quad(=+32,767)$ |
| 32 | $-\left(2^{\wedge} 31\right)(=-2,147,483,648)$ | $+\left(2^{\wedge} 31\right)-1 \quad(=+2,147,483,647)(9+$ digits $)$ |
| 64 | $-\left(2^{\wedge} 63\right)(=-9,223,372,036,854,775,808)$ | $+\left(2^{\wedge} 63\right)-1 \quad(=+9,223,372,036,854,775,807)(18+$ digits $)+$ digits $)$ |

## 2's complement representation

$\square$ There is only one representation of 0 which makes 2 's complement representation a preferred choice for representing signed numbers
$\square$ Computers also use 2's complement representation for representing signed numbers

## 2's complement representation

$\square$ Exercise 8
$\square$ Write down the following numbers in binary using 2's complement representation for signed numbers in 8 bits

- -58
$\square+58$
- 102
$\square$ Figure out the decimal numbers (including sign) from the following binary numbers represented using 2 's complement.
- 00100010
- 10111001
- 11000110


## FLOATING POINT REPRESENTATION

## Floating Point Numbers

$\square$ A floating-point number is typically expressed in the scientific notation, with a fraction (F), and an exponent (E) of a certain radix ( $r$ ), in the form of $F \times \mathbf{r}^{\wedge} \mathbf{E}$.
$\square$ Decimal numbers use radix of $10 \rightarrow\left(\mathrm{~F} \times 10^{\wedge} \mathrm{E}\right)$

$$
\begin{aligned}
547.32 & =547.32 \times 10^{0} \\
& =54.732 \times 10^{1} \\
& =5.4732 \times 10^{2} \\
& =0.54732 \times 10^{3}
\end{aligned}
$$

$\square$ Binary numbers use radix of $2 \rightarrow\left(\mathbf{F} \times \mathbf{2}^{\mathbf{A}} \mathbf{E}\right)$

$$
0110.101=0110.101 \times 2^{0}
$$

$$
=011.0101 \times 2^{1}
$$

$$
=01.10101 \times 2^{2}
$$

$$
=0.110101 \times 2^{3}
$$

## Floating Point Representation

$\square$ In computers, floating-point numbers are represented in scientific notation of fraction (F) and exponent $(E)$ with a radix of 2 , in the form of $F \times 2^{\wedge} E$.
$\square$ Both E and F can be positive as well as negative.
$\square$ Modern computers adopt IEEE 754 standard for representing floating-point numbers.
$\square$ There are two representation schemes: 32-bit single -precision and 64-bit double-precision.

## IEEE-7 54 32-bit Single-Precision Floating-Point Number Representation

$\square$ In 32-bit single-precision floating-point representation:
$\square$ The most significant bit is the sign bit (S), with 0 for positive numbers and 1 for negative numbers.
$\square$ The following 8 bits represent biased exponent (E).
$\square$ The remaining 23 bits represents fraction (F).


32-bit Single-Precision Floating-point Number

## IEEE-7 54 32-bit Single-Precision Floating-Point Number Representation

$\square$ Example 1

- Represent - 13.8 using IEEE 75432 bit single precision floating point representation Bias of 127 is to be 1. (13.8) $\rightarrow$ (1101.11001)

2. $1101.1100=1.10111001 \times 2^{3}$
3. Actual exponent $=3$ added to the actual exponent so that sign of exponent is taken care of
4. Biased exponent $=3+127=130=(10000010)$
5. Sign of Fraction/Mantissa (s) =-ve =1

| Biased <br> S <br> Exponent |  | Matissa/Fraction |
| :--- | :--- | :--- |
| $\mathbf{1}$ | $\mathbf{1 0 0 0 0 0 1 0}$ | $\mathbf{1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0}$ |

## IEEE-754 32-bit Single-Precision Floating-Point Number Representation

## $\square$ Example 2

$\square$ Let's illustrate with an example, suppose that the 32-bit pattern is 11000000101100000000000000000000
$S=1$
Biased Exponent $=10000001$ (Actual Exponent $=10000001-127=2)$
$F=01100000000000000000000$

In the normalized form, the actual fraction is normalized with an implicit leading
1 in the form of 1.F
In this example, the actual fraction is

$$
1.01100000000000000000000=1+1 \times 2^{\wedge}-2+1 \times 2^{\wedge}-3=1.375
$$

The sign bit represents the sign of the number, with $S=0$ for positive and $S=1$ for negative number.
In this example with $S=1$, this is a negative number, i.e., -1.375

## IEEE-7 54 32-bit Single-Precision Floating-Point Number Representation

$\square$ The actual exponent is (biased exponent -127). This is because we need to represent both positive and negative exponent.
$\square$ With an 8-bit for exponent, ranging from 0 to 255 , the bias(127) scheme could provide actual exponent of -127 to 128.
$\square$ In this example, actual exponent is $=129-127=2$
$\square$ Hence, the number represented is $-1.375 \times 2^{\wedge} 2=-5.5$

## IEEE-754 32-bit Single-Precision Floating-Point Number Representation

$\square$ Example 2

- Figure out the floating point number

11000001010111000000000000000000 which is represented by IEEE 754-32 bit
$\square$ Solution

```
11000001010111001000000000000000
```

$\square S=1$ (number is -ve)
$\square$ Biased Exponent $=10000010=130$
$\square$ Actual Exponent $=$ Biased Exponent -127 $=130-127=3$
$\square$ Fraction $=1.10111001000000000000000$
$=1+\left(1 \times 2^{-1}\right)+\left(0 \times 2^{-2}\right)+\left(1 \times 2^{-3}\right)+\left(1 \times 2^{-4}\right)+\left(1 \times 2^{-5}\right)+0+0+\left(1 \times 2^{-6}\right)=1.734375$
$\square 1.734375 \times 2^{3}=13.875$

## IEEE-754 32-bit Single-Precision Floating-Point Number Representation

$\square$ Exercise 9
$\square$ Represent -102.27 using IEEE 75432 bit single precision floating point representation
$\square$ Exercise 10
$\square$ Figure out the floating point number which has been represented by IEEE $754 \mathbf{- 3 2}$ bit
a) 01000000011000000000000000000000
b) 10111111010000000000000000000000 .

## Thank you

Reference

- https://www.ntu.edu.sg/home/ehchua/programmin g/iava/datarepresentation.htm

