1. Give the 1 's complement of each binary number:
a. 00011010
b. 11110111
c. 10001101

Give using three methods, the 2's complement of each of the binary numbers:
a. 01010
b. 11100
c. 10001
d. 10101.01

Solution:

1's complement (00011010) $=11100101$; $\quad 1$'s complement $(11110111)=00001000$;
1's complement $(10001101)=01110010$
2 's complement (01010) = 100000-01010 = 10110;
2 's complement (01010) = 1's complement (01010) $+1=10101+1=10110$
2 's complement $(11100)=100000-11100=00100$;
2's complement (11100) = 1's complement (11100) $+1=00011+1=00100$
2 's complement (10001) = 100000-10001 = 01111;
2's complement (10001) = 1's complement (10001) $+1=01110+1=01111$
2 's complement $(10101,01)=100000,00-10101,01=01010,11$;
2 's complement (10101,01) $=1$'s complement (10101,01) $+0,01=01010,10+0,01=01010,11$
2. Give the decimal value of the signed binary number 10010101, expressed in 8-bit sign-magnitude representation.
Give the decimal value of the signed binary numbers 010101 and 110101 expressed in 6-bit two's complement representation.

Solution :

-8-bit sign-magnitude representation of the signed binary number 10010101 =-21;
-6-bit 2's complement signed representation of the signed binary number $010101=+21$;

- 6-bit 2's complement signed representation of the signed binary number 110101

$$
=--(110101)=-2 \text { 's complement }(110101)=-(001011)=-11
$$

3. Assume numbers are represented in 8 -bit twos complement representation. Show the calculation of the following:
a. $6+13$
b. $-6+13$
c. 6-13
d. $-6-13$ s.

Solution :

4. Give the value of the following number in 8-bit 1's complement representation; 8-bit 2's complement signed representation and 8 -bit sign-magnitude representation.
a. -32
b. +128
c. -128
d. +127

Give the decimal value of the signed number (B7) ${ }_{16}$ expressed in 8-bit two's complement representation.

Solution :

Number	8-bit sign-magnitude representation	8-bit 2's complement signed representation
-32	10100000	11100000
+128	No representation	No representation
-128	No representation	10000000

$(B 7)_{16}=10110111=-(10110111)=-$ two's complement $(10110111)=-(01001001)=-73$
5. Add the following using 2's complement representation in 8-bit register. Also check overflow/underflow.
a. 15-6
b. 16-24
c. -5-9
d. $125+58$
e. - 62-89

Perform, in signed binary using 2's complement notation, the operation: 0011×1011, check the result by performing the operation in decimal. Conclusion.

Solution:

* 15-6=15+Cà2(6)=00001111+Cà2(00000110)=00001111+11111010

	1	1	1	1	1	1	1	
		0	0	0	0	1	1	1
+		1	1	1	1	1	0	1

= +9
Retenue à ignorer

* $16-24=16+C a ̀ 2(24)=00010000+C a ̀ 2(00011000)=00010000+11101000$

```
0
+
*-5-9 = Cà2(5)+Cà2(9) = Cà2(00000101)+Cà2(00001001) = 11111011+11110111
    1 1 1 1 1 1 1 1 1 1 1 1
        1
+
Retenue à ignorer
* 125+58=01111101+00111010
l
Dépassement de capacité (Overflow)
* -62-89 = Cà2(62)+Cà2(89) = Cà2(00111110)+Cà2(01011001) = 11000010+10100111
    }\begin{array}{lllllllll}{}&{1}&{1}&{0}&{0}&{0}&{0}&{1}&{0}\\{+}&{1}&{0}&{1}&{0}&{0}&{1}&{1}&{1}\\{\hline}&{1}&{0}&{1}&{1}&{0}&{1}&{0}&{0}
    Dépassement de capacité (Overflow)
Retenue à ignorer
* 0011 x 1011 = Cà2 (0011 x 0101)
N
+
0011 x 1011 = Cà2 (0011 x 0101) = Cà2 (00001111) = 11110001
```

In decimal: $3 \times(-5)=-(3 \times 5)=-15$
Conclusion: Multiplication is performed between absolute values, the result is final if the operands have the same sign. If the operands have different signs, the result is complemented by 2.
6. Give the value of the following number in 8-bit 1's complement representation; 8-bit 2's complement signed representation and 8 -bit sign-magnitude representation.
a. +88
b. -88
c. -127
d. +127

Solution :

Number	$\mathbf{+ 8 8}$	$\mathbf{- 8 8}$	$\mathbf{- 1 2 7}$	$\mathbf{+ 1 2 7}$
8-bit 1's complement representation of	01011000	10100111	10000000	01111111
8-bit 2's complement signed representation of	01011000	10101000	10000001	01111111
8-bit sign-magnitude representation of	01011000	11011000	11111111	01111111

7. Add the following using 2's complement representation in 8-bit register. Also check overflow/underflow.
b. $+45+(-65)$
b. $-27+(-101)$
c. $+27+101$
d. $-103+(-69)$

Solution:

Detecting Overflow/Underflow

Carry Bit	Sign Bit	Status
0	0	No Overflow/Underflow
1	1	
0	1	Overflow
1	0	Underflow

Binary values increase by 1 (dropping the carry bit)

2's Complement Representation

a. $+45+(-65)$

Represent 45 in binary
Represent -65 by 2's complement

```
->00101101
    ->11101100
```

0	0	1	1	1	1	1	1		
	0	0	1	0	1	1	0	1	45
	1	0	1	1	1	1	1	1	-65
	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	-20

Carry into Sign-Bit $=0$
 Carry out of Sign-Bit
 $=0$

Therefore, no overflow
b. $-27+(-101)$

Represent -27 by 2's complement
$\rightarrow 11100101$
Represent -101 by 2's complement $\quad \rightarrow 10011011$

1	1	1	1	1	1	1	1		
	1	1	1	0	0	1	0	1	-27
	1	0	0	1	1	0	1	1	-101
	1	0	0	0	0	0	0	0	-128

Carry into Sign-Bit	$=1$
Carry out of Sign-Bit	$=1$

Therefore, no overflow
c. $+27+101$

Represent 27 in binary $\quad \rightarrow 00011011$
Represent 101 in binary $\rightarrow 01100101$

0	1	1	1	1	1	1	1	1	
	0	0	0	1	1	0	1	1	27
	0	1	1	0	0	1	0	1	101
	1	0	0	0	0	0	0	0	128

Carry into Sign-Bit	$=1$
Carry out of Sign-Bit	$=0$

Therefore, overflow
d. $-103+(-69)$

Represent -103 by 2's complement
Represent -69 by 2's complement
$\rightarrow 10011001$
$\rightarrow 10111011$

1	0	1	1	1		1	1				
	1	0	0	1	1	0	0	1	-103		
	1	0	1	1	1	0	1	1	-69		
	0	1	0	1	0	1	0	0	-172		Carry into Sign-Bit
:---											
Carry out of Sign-Bit											

Therefore, underflow

