
Number Representation

 Integer representation
 Unsigned Integers
 Signed integers

 Signed-Magnitude
 2’s complement

 Floating point representation

INTEGER REPRESENTATION

Integer Representation

Integers range between negative infinity (
– ∞) and positive infinity (+ ∞)

But can a computer store all
 the integers in between?

is a whole number without fractions, it can : Integer Number
be positive or negative

Integer Representation

Integer
Representation

Unsigned Signed

Sign and
Magnitude

One’s
Complement

Two’s
Complement

Unsigned Integer

 Unsigned Integer: is an integer without a sign and
ranges between 0 and + ∞

 The maximum unsigned integer depends on the number of
bits (N) allocated to represent the unsigned integer in a
computer

 1) 1) -- NN (2 (2 Range: 0 Range: 0

No. of bits Range

8 0 to 255

16 0 to 65535

32 0 to ?

Unsigned Integer

While storing unsigned integer, If the number of bits is
less than N, 0s are added to the left of the binary
number so that there is a total of N bits.

Store 7 in an 8-bit memory location using unsigned Store 7 in an 8-bit memory location using unsigned
representationrepresentation..

1.1. First First change change the integer to binary, (111)the integer to binary, (111)22..
2.2. Add five 0s to make a total of Add five 0s to make a total of NN (8) bits (8) bits, ,

(00000111)(00000111)22. .
3.3. The The integer is stored in the memory location. integer is stored in the memory location.

Example 1Example 1

SolutionSolution

Store Store 258 258 in an in an 16-16-bit memory location using bit memory location using
unsigned representationunsigned representation..

1.1. First change the integer to binary (100000010)First change the integer to binary (100000010)22. .
2.2. Add Add seven seven 0s 0s to to make make a a total total of of NN (16) (16) bitsbits, ,

(0000000100000010)(0000000100000010)22. .
3.3. The The integer is stored in the memory location.integer is stored in the memory location.

22Example Example

SolutionSolution

What will happen if you What will happen if you
Try to store an unsigned integerTry to store an unsigned integer
Such as 256 in an 8-bit memory Such as 256 in an 8-bit memory

??Location Location

Overflow
binary bits > n)range (if occurs if the decimal is out of

Unsigned Integer

 Example of storing unsigned integers in two different
computers

DecimalDecimal

7
234
258
24,760
1,245,678

8-bit allocation8-bit allocation

00000111
11101010
overflow
overflow
overflow

16-bit allocation16-bit allocation

0000000000000111
0000000011101010
0000000100000010
0110000010111000

overflow

Unsigned Integer Applications

 Counting : you don’t need negative numbers to count
and usually start from 0 or 1 going up

 Addressing: sometimes computers store the address

of a memory location inside another memory
location, addresses are positive numbers starting
from 0

Integer Representation

Integer
Representation

Unsigned Signed

Sign and
Magnitude

One’s
Complement

Two’s
Complement

SIGNED NUMBER
REPRESENTATION

SIGNED MAGNITUDE
REPRESENTATION

Sign-and-magnitude representation

 Signed Integer is an integer with a sign either + or -
 Storing an integer in a sign-and-magnitude format

requires 1(the leftmost) bit to represent the sign (0
for positive and 1 for negative) and rest of the bits
to represent madnitude

 Range of Sign and Magnitude representation

Sign-and-magnitude representation

No. of bits Range

8 -127 ……………….-0 +0 ……….. +127

16 -32767 ……………-0 +0 ………..+32767

32 -2,147,483,647 ……-0+0………..+2147483647

in sign-and-magnitude epresentation: in sign-and-magnitude epresentation: two 0s two 0s There are There are

positive and negative.positive and negative.

Sign-and-magnitude representation

 Storing sign-and-magnitude signed integer process:

1. The integer is changed to binary, (the sign is ignored).

2. If the number of bits is less than N-1, 0s are added to
the left of the number so that there will be a total of N-1
bits .

3. If the number is positive, 0 is added to the left (to make
it N bits). But if the number is negative, 1 is added to the
left (to make it N bits)

 Store Store +7+7 in an in an 8-bit 8-bit memory location using sign-and-memory location using sign-and-
magnitude representationmagnitude representation..

 The integer is changed The integer is changed to binary (111).to binary (111).
 Add 4 0s to make a total of Add 4 0s to make a total of N-1 N-1 (7) bits, 0000111 . (7) bits, 0000111 .
 Add an extra Add an extra 00 (in bold) to represent the (in bold) to represent the positivepositive sign sign

00 00001110000111

Example 4Example 4

SolutionSolution

 Store Store –258 –258 in a in a 16-bit 16-bit memory location using sign-memory location using sign-
and-magnitude representationand-magnitude representation

 First change the number to binary First change the number to binary 100000010100000010

 Add six 0s to make a total ofAdd six 0s to make a total of N-1N-1 (15) bits, (15) bits,
000000100000010 000000100000010

 Add Add an extra an extra 11 because the number is because the number is negativenegative. .

1 1 000000100000010000000100000010

55Example Example

SolutionSolution

Signed-Magnitude Representation -
Example

Decimal
Number

Signed Magnitude
representation in 8
bits

Signed Magnitude
Representation in 16 bits

-7 10000111 100000000000111

-124 11111100 1000000001111100

+124 01111100 0000000001111100

+258 Overflow 0000000100000010

-24760 overflow 1110000010111000

Sign-and-magnitude Interpretation

Q: How do you interpret a signed binary

representation in decimal?

1. Ignore the first (leftmost) bit for a moment

2. Change the remaining N -1 bits from binary to

decimal

3. Attach a + or – sign to the number based on the

leftmost bit.

 Interpret 10111011 to decimal if the number was
stored as a sign-and-magnitude integer.

 Ignoring the leftmost bit for a moment, the
remaining bit are 0111011.

 This number in decimal is 59.
 the leftmost bit is 1 so the number is – 59.

66Example Example

SolutionSolution

The sign-and-magnitude representation is not used now

by computers because:

 Operations: such as subtraction and addition is not

straightforward for this representation.

 Uncomfortable in programming: because there are

two 0s in this representation

Signed Magnitude representation Applications

However..
The advantage of this representation is:

 Transformation: from decimal to binary and vice
versa which makes it convenient for applications that
don’t need operations on numbers

 Ex: Converting Audio (analog signals) to digital
signals.

igned Magnitude Representation S
Applications

2’S COMPLEMENT
REPRESENTATION

Complement of a number

 (R-1)’s complement

 R’s complement = [(R-1’s complement) + 1]
 Where is called radix (or base)

R = 10 (R-1)’s complement
9’s complement

R’s complement
(10’s complement)

473 999-473 = 526 526 + 1= 527

8437 9999 – 8437 = 1562 1562 + 1 = 1563

R = 2 (R-1)’s complement
1’s complement

R’s complement
(2’s complement)

1011 1111-1011 = 0100 0100 + 1= 0101

0011101 1111111 – 0011101 = 1100010 1100010 + 1 = 1100011

Complement of a number

 Exercise 7
 Write down the 1’s complement and 2’s complement of

following binary numbers in 8 bits
a) 11001
b) 10001101

 Write down the 1’s complement and 2’s complement of
following binary numbers in 16 bits
c) 11001
d) 000000110101

1’s complement representation

 The most significant bit (msb) is the sign bit, with value of
0 representing positive integers and 1 representing
negative integers.

 The remaining n-1 bits represents the magnitude of the
integer, as follows:
 for positive integers, the absolute value of the integer is

equal to "the magnitude of the (n-1)-bit binary pattern".
 for negative integers, the absolute value of the integer is

equal to "the magnitude of the complement (inverse) of the (n
-1)-bit binary pattern" (hence called 1's complement).

1’s complement representation

 Example 1: Suppose that n=8 and the binary
representation 0 100 0001.
 Sign bit is 0 ⇒ positive
 Absolute value is 100 0001 = 65
 Hence, the integer is +65

 Example 2: Suppose that n=8 and the binary
representation 1 000 0001.
 Sign bit is 1 ⇒ negative
 Absolute value is the complement of 000 0001,
i.e., 111 1110 = 126
 Hence, the integer is -126

1’s complement representation

 Example 3: Suppose that n=8 and the binary
representation 0 000 0000.
 Sign bit is 0 ⇒ positive
 Absolute value is 000 0000 = 0
 Hence, the integer is +0

 Example 4: Suppose that n=8 and the binary
representation 1 111 1111.
 Sign bit is 1 ⇒ negative
 Absolute value is the complement of 111 1111,
i.e., 000 0000 = 0
 Hence, the integer is -0

1’s complement representation

 Drawbacks of 1’s complement representation for
signed numbers :
 There are two representations (0000 0000 and 1111

1111) for zero.
 The positive integers and negative integers need to be

processed separately.

 Because of the above drawbacks 1’s complement
is not the preferred choice for representing signed
numbers

2’s complement representation

 Most significant bit (msb) is the sign bit, with value of 0
representing positive integers and 1 representing
negative integers.

 The remaining n-1 bits represents the magnitude of the
integer, as follows:
 for positive integers, the absolute value of the integer is

equal to "the magnitude of the (n-1)-bit binary pattern".
 for negative integers, the absolute value of the integer is

equal to "the magnitude of the complement of the (n-1)-bit
binary pattern plus one" (hence called 2's complement).

2’s complement representation

 Example 1: Suppose that n=8 and the binary
representation 0 100 0001.
 Sign bit is 0 ⇒ positive
 Absolute value is 100 0001 = 65
 Hence, the integer is +65

 Example 2: Suppose that n=8 and the binary
representation 1 000 0001.
 Sign bit is 1 ⇒ negative
 Absolute value is the complement of 000 0001 plus 1,
i.e., 111 1110 + 1 = 127
 Hence, the integer is -127

2’s complement representation

 Example 3: Suppose that n=8 and the binary
representation 0 000 0000B.
 Sign bit is 0 ⇒ positive
 Absolute value is 000 0000B = 0D
 Hence, the integer is +0D

 Example 4: Suppose that n=8 and the binary
representation 1 111 1111B.
 Sign bit is 1 ⇒ negative
 Absolute value is the complement of 111
1111B plus 1, i.e., 000 0000B + 1B = 1D
 Hence, the integer is -1D

Signed Integer Representation

For 8 bits

Range

 An n-bit 2's complement signed integer can
represent integers from

-1) -1n) to +(2n-1 -(2: Range

2’s complement representation

 There is only one representation of 0 which makes
2’s complement representation a preferred choice
for representing signed numbers

 Computers also use 2’s complement representation
for representing signed numbers

2’s complement representation

 Exercise 8
 Write down the following numbers in binary using 2’s

complement representation for signed numbers in 8 bits
 -58
 +58
 -102

 Figure out the decimal numbers (including sign) from the
following binary numbers represented using 2’s complement.
 00100010
 10111001
 11000110

FLOATING POINT
REPRESENTATION

Floating Point Numbers

 A floating-point number is typically expressed in the
scientific notation, with a fraction (F), and an exponent (E) of
a certain radix (r), in the form of F×r^E.

 Decimal numbers use radix of 10  (F×10^E)

 Binary numbers use radix of 2  (F×2^E)

Floating Point Representation

 In computers, floating-point numbers are
represented in scientific notation of fraction (F)
and exponent (E) with a radix of 2, in the form
of F×2^E.

 Both E and F can be positive as well as negative.
 Modern computers adopt IEEE 754 standard for

representing floating-point numbers.
 There are two representation schemes: 32-bit single

-precision and 64-bit double-precision.

IEEE-754 32-bit Single-Precision Floating-Point
Number Representation

 In 32-bit single-precision floating-point representation:
 The most significant bit is the sign bit (S), with 0 for positive

numbers and 1 for negative numbers.
 The following 8 bits represent biased exponent (E).
 The remaining 23 bits represents fraction (F).

IEEE-754 32-bit Single-Precision Floating-Point
Number Representation

 Example 1
 Represent -13.8 using IEEE 754 32 bit single

precision floating point representation
1. (13.8)  (1101.11001)
2. 1101.1100 = 1.10111001x 23
3. Actual exponent = 3
4. Biased exponent = 3 + 127 = 130 = (10000010)
5. Sign of Fraction/Mantissa (s) = -ve = 1

1 10000010 10111001000000000000000

Biased
ExponentS Matissa/Fraction

Bias of 127 is to be
added to the actual
exponent so that
sign of exponent is
taken care of

IEEE-754 32-bit Single-Precision Floating-Point
Number Representation

 Example 2
 Let's illustrate with an example, suppose that the 32-bit pattern is

1 1000 0001 011 0000 0000 0000 0000 0000
S = 1
Biased Exponent = 1000 0001 (Actual Exponent = 10000001 – 127 =2)
F = 011 0000 0000 0000 0000 0000

In the normalized form, the actual fraction is normalized with an implicit leading
1 in the form of 1.F

 In this example, the actual fraction is
1.011 0000 0000 0000 0000 0000 = 1 + 1×2^-2 + 1×2^-3 = 1.375

The sign bit represents the sign of the number, with S=0 for positive and S=1 for
negative number.

In this example with S=1, this is a negative number, i.e., -1.375

 The actual exponent is (biased exponent -127). This is
because we need to represent both positive and
negative exponent.

 With an 8-bit for exponent, ranging from 0 to 255,
the bias(127) scheme could provide actual exponent
of -127 to 128.

 In this example, actual exponent is =129-127=2

 Hence, the number represented is -1.375×2^2=-5.5

IEEE-754 32-bit Single-Precision Floating-Point
Number Representation

IEEE-754 32-bit Single-Precision Floating-Point
Number Representation

 Example 2
 Figure out the floating point number
110000010 10111000000000000000000 which is represented by IEEE

754 -32 bit

 Solution
 S= 1 (number is –ve)
 Biased Exponent = 10000010 = 130
 Actual Exponent = Biased Exponent -127 = 130 -127 = 3
 Fraction = 1.10111001000000000000000
= 1 + (1x 2-1) +(0x 2-2) + (1x2-3)+ (1x 2-4) + (1x 2-5)+ 0 + 0 +(1x2-6) = 1.734375
 1.734375 x 23 = 13.875

1 10000010 10111001000000000000000

IEEE-754 32-bit Single-Precision Floating-Point
Number Representation

 Exercise 9
 Represent -102.27 using IEEE 754 32 bit single

precision floating point representation

 Exercise 10
 Figure out the floating point number which has been

represented by IEEE 754 -32 bit
a) 0 10000000 110 0000 0000 0000 0000 0000

b) 1 01111110 100 0000 0000 0000 0000 0000.

Thank you

Reference

 https://www.ntu.edu.sg/home/ehchua/programmin
g/java/datarepresentation.html

https://www.ntu.edu.sg/home/ehchua/programming/java/datarepresentation.html
https://www.ntu.edu.sg/home/ehchua/programming/java/datarepresentation.html

