
Number Representation

 Integer representation
 Unsigned Integers
 Signed integers

 Signed-Magnitude
 2’s complement

 Floating point representation



INTEGER REPRESENTATION



Integer Representation

Integers range between negative infinity   (
– ∞)  and positive infinity (+ ∞)

But can a computer store all
 the integers in between?

is a whole number without fractions, it can : Integer Number
be positive or negative
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Unsigned Integer

 Unsigned Integer: is an integer without a sign and 
ranges between 0 and  + ∞

 The maximum unsigned integer depends on the number of 
bits (N) allocated to represent the unsigned integer in a 
computer

 1) 1) --  NN  (2  (2  Range:      0   Range:      0   

No. of bits Range

8 0           to       255

16 0           to       65535

32 0           to         ?

 



Unsigned Integer

While storing unsigned integer, If the number of bits is 
less than N, 0s are added to the left of the binary 
number so that there is a total of N bits.



Store 7 in an 8-bit memory location using unsigned Store 7 in an 8-bit memory location using unsigned 
representationrepresentation..

1.1. First First change change the integer to binary, (111)the integer to binary, (111)22..
2.2.   Add five 0s to make a total of Add five 0s to make a total of NN (8) bits (8) bits, , 

(00000111)(00000111)22. . 
3.3. The The integer is stored in the memory location. integer is stored in the memory location. 

Example 1Example 1

SolutionSolution



Store Store 258 258 in an in an 16-16-bit memory location using bit memory location using 
unsigned representationunsigned representation..

1.1. First change the integer to binary (100000010)First change the integer to binary (100000010)22. . 
2.2. Add Add seven seven 0s 0s to to make make a a total total of of NN  (16) (16) bitsbits, , 

(0000000100000010)(0000000100000010)22. . 
3.3. The The integer is stored in the memory location.integer is stored in the memory location.

22Example Example 

SolutionSolution



What will happen if you What will happen if you 
Try to store an unsigned integerTry to store an unsigned integer
Such as 256 in an 8-bit memory Such as 256 in an 8-bit memory 

??Location Location 

Overflow
binary bits > n )range (if occurs if the decimal is out of 



Unsigned Integer

 Example of storing unsigned integers in two different 
computers 

DecimalDecimal
------------

7
234
258
24,760
1,245,678

8-bit allocation8-bit allocation
------------
00000111
11101010
overflow
overflow
overflow

16-bit allocation16-bit allocation
------------------------------
0000000000000111
0000000011101010
0000000100000010
0110000010111000

overflow



Unsigned Integer Applications

 Counting : you don’t need negative numbers to count 
and usually start from 0 or 1 going up

 
 Addressing: sometimes computers store the address 

of a memory location inside another memory 
location, addresses are positive numbers starting 
from 0



Integer Representation

Integer 
Representation

Unsigned Signed

Sign and 
Magnitude

One’s 
Complement

Two’s 
Complement



SIGNED NUMBER 
REPRESENTATION



SIGNED MAGNITUDE 
REPRESENTATION



Sign-and-magnitude representation

 Signed Integer is an integer with a sign either + or - 
 Storing an integer in a sign-and-magnitude format 

requires 1(the leftmost) bit to represent the sign (0 
for positive and 1 for negative) and rest of the bits 
to represent madnitude



 Range of Sign and Magnitude representation

Sign-and-magnitude representation

No. of bits Range

8 -127 ……………….-0 +0 ……….. +127

16 -32767 ……………-0 +0 ………..+32767

32 -2,147,483,647  ……-0+0………..+2147483647

in sign-and-magnitude   epresentation:  in sign-and-magnitude   epresentation:  two 0s two 0s There are There are 

positive and negative.positive and negative.



Sign-and-magnitude representation

 Storing sign-and-magnitude signed integer process:

1. The integer is changed to binary, (the sign is ignored).

2. If the number of bits is less than N-1, 0s are added to 
the left of the number so that there will be a total of N-1  
bits .

3. If the number is positive, 0 is added to the left (to make 
it N bits). But if the number is negative, 1 is added to the 
left (to make it N bits)



 Store Store +7+7  in an in an 8-bit 8-bit memory location using sign-and-memory location using sign-and-
magnitude representationmagnitude representation..

 The integer is changed The integer is changed to binary (111).to binary (111).
  Add 4 0s to make a total of Add 4 0s to make a total of  N-1  N-1  (7) bits, 0000111 . (7) bits, 0000111 . 
 Add an extra Add an extra 00 (in bold) to represent the  (in bold) to represent the positivepositive sign sign

00  00001110000111

Example 4Example 4

SolutionSolution



 Store Store –258 –258 in a in a 16-bit 16-bit memory location using sign-memory location using sign-
and-magnitude representationand-magnitude representation

 First change the number to binary First change the number to binary 100000010100000010

   Add six 0s to make a total ofAdd six 0s to make a total of  N-1N-1  (15) bits, (15) bits, 
000000100000010 000000100000010 

 Add Add an extra an extra 11 because the number is  because the number is negativenegative. . 
          

1  1  000000100000010000000100000010

55Example Example 

SolutionSolution



Signed-Magnitude Representation - 
Example

Decimal 
Number

Signed Magnitude 
representation in 8 
bits

Signed Magnitude 
Representation in 16 bits

-7 10000111 100000000000111

-124 11111100 1000000001111100

+124 01111100 0000000001111100

+258 Overflow 0000000100000010

-24760 overflow 1110000010111000



Sign-and-magnitude Interpretation

Q: How do you interpret a signed binary 

representation in decimal?

1. Ignore the first (leftmost) bit for a moment

2. Change the remaining N -1 bits from binary to 

decimal

3. Attach a + or – sign to the number based on the 

leftmost bit. 



 Interpret 10111011 to decimal if the number was 
stored as a sign-and-magnitude integer.

 Ignoring the leftmost bit for a moment, the 
remaining bit are 0111011. 

 This number in decimal is 59. 
 the leftmost bit is 1 so the number is    – 59. 

66Example Example 

SolutionSolution



The sign-and-magnitude representation is not used now 

by computers because:

 Operations:  such as subtraction and addition is not 

straightforward for this representation.

 Uncomfortable in programming: because there are 

two 0s in this representation

Signed Magnitude representation Applications



However..
The advantage of this representation is:

 Transformation: from decimal to binary and vice 
versa which makes it convenient for applications that 
don’t need operations on numbers

 Ex: Converting Audio (analog signals) to digital 
signals.

igned Magnitude Representation S
Applications



2’S COMPLEMENT
REPRESENTATION



Complement of a number

 (R-1)’s complement

 R’s complement = [(R-1’s complement) + 1]
 Where is called radix (or base)

R = 10 (R-1)’s complement
9’s complement

R’s complement
(10’s complement)

473 999-473 = 526 526 + 1= 527

8437 9999 – 8437 = 1562 1562 + 1 = 1563

R = 2 (R-1)’s complement
1’s complement

R’s complement
(2’s complement)

1011 1111-1011 = 0100 0100 + 1= 0101

0011101 1111111 – 0011101 = 1100010 1100010 + 1 = 1100011



Complement of a number

 Exercise 7
 Write down the 1’s complement and 2’s complement of  

following binary numbers in 8 bits
a)  11001
b)   10001101

 Write down the 1’s complement and 2’s complement of  
following binary numbers in 16 bits
c)  11001
d)   000000110101



1’s complement representation

 The most significant bit (msb) is the sign bit, with value of 
0 representing positive integers and 1 representing 
negative integers.

 The remaining n-1 bits represents the magnitude of the 
integer, as follows:
 for positive integers, the absolute value of the integer is 

equal to "the magnitude of the (n-1)-bit binary pattern".
 for negative integers, the absolute value of the integer is 

equal to "the magnitude of the complement (inverse) of the (n
-1)-bit binary pattern" (hence called 1's complement).



1’s complement representation

 Example 1: Suppose that n=8 and the binary 
representation 0 100 0001.
   Sign bit is 0 ⇒ positive
   Absolute value is 100 0001 = 65
   Hence, the integer is +65

 Example 2: Suppose that n=8 and the binary 
representation 1 000 0001.
   Sign bit is 1 ⇒ negative
   Absolute value is the complement of 000 0001, 
i.e., 111 1110 = 126
   Hence, the integer is -126



1’s complement representation

 Example 3: Suppose that n=8 and the binary 
representation 0 000 0000.
   Sign bit is 0 ⇒ positive
   Absolute value is 000 0000 = 0
   Hence, the integer is +0

 Example 4: Suppose that n=8 and the binary 
representation 1 111 1111.
   Sign bit is 1 ⇒ negative
   Absolute value is the complement of 111 1111, 
i.e., 000 0000 = 0
   Hence, the integer is -0



1’s complement representation

 Drawbacks of 1’s complement representation for 
signed numbers :
 There are two representations (0000 0000 and 1111 

1111) for zero.
 The positive integers and negative integers need to be 

processed separately.

 Because of the above drawbacks 1’s complement 
is not the preferred choice for representing signed 
numbers



2’s complement representation

 Most significant bit (msb) is the sign bit, with value of 0 
representing positive integers and 1 representing 
negative integers.

 The remaining n-1 bits represents the magnitude of the 
integer, as follows:
 for positive integers, the absolute value of the integer is 

equal to "the magnitude of the (n-1)-bit binary pattern".
 for negative integers, the absolute value of the integer is 

equal to "the magnitude of the complement of the (n-1)-bit 
binary pattern plus one" (hence called 2's complement).



2’s complement representation

 Example 1: Suppose that n=8 and the binary 
representation 0 100 0001.
   Sign bit is 0 ⇒ positive
   Absolute value is 100 0001 = 65
   Hence, the integer is +65

 Example 2: Suppose that n=8 and the binary 
representation 1 000 0001.
   Sign bit is 1 ⇒ negative
   Absolute value is the complement of 000 0001 plus 1, 
i.e., 111 1110 + 1 = 127
   Hence, the integer is -127



2’s complement representation

 Example 3: Suppose that n=8 and the binary 
representation 0 000 0000B.
   Sign bit is 0 ⇒ positive
   Absolute value is 000 0000B = 0D
   Hence, the integer is +0D

 Example 4: Suppose that n=8 and the binary 
representation 1 111 1111B.
   Sign bit is 1 ⇒ negative
   Absolute value is the complement of 111 
1111B plus 1, i.e., 000 0000B + 1B = 1D
   Hence, the integer is -1D



Signed Integer Representation

For 8 bits



Range

 An n-bit 2's complement signed integer can 
represent integers from

-1)  -1n) to +(2n-1 -(2: Range 



2’s complement representation

 There is only one representation of 0 which makes 
2’s complement representation a preferred choice 
for representing signed numbers

 Computers also use 2’s complement representation 
for representing signed numbers



2’s complement representation

 Exercise 8
 Write down the following numbers in binary using 2’s 

complement representation for signed numbers in 8 bits
 -58 
 +58
 -102

 Figure out the decimal numbers (including sign) from the 
following binary numbers represented using 2’s complement.
 00100010
 10111001
 11000110



FLOATING POINT 
REPRESENTATION



Floating Point Numbers

 A floating-point number is typically expressed in the 
scientific notation, with a fraction (F), and an exponent (E) of 
a certain radix (r), in the form of F×r^E. 

 Decimal numbers use radix of 10   (F×10^E) 

 Binary numbers use radix of 2  (F×2^E)



Floating Point Representation

 In computers, floating-point numbers are 
represented in scientific notation of fraction (F) 
and exponent (E) with a radix of 2, in the form 
of F×2^E. 

 Both E and F can be positive as well as negative. 
 Modern computers adopt IEEE 754 standard for 

representing floating-point numbers. 
 There are two representation schemes: 32-bit single

-precision and 64-bit double-precision.



IEEE-754 32-bit Single-Precision Floating-Point 
Number Representation

 In 32-bit single-precision floating-point representation:
 The most significant bit is the sign bit (S), with 0 for positive 

numbers and 1 for negative numbers.
 The following 8 bits represent biased exponent (E).
 The remaining 23 bits represents fraction (F).



IEEE-754 32-bit Single-Precision Floating-Point 
Number Representation

 Example 1
 Represent -13.8 using IEEE 754 32 bit single 

precision floating point representation
1. (13.8)  (1101.11001)
2. 1101.1100 = 1.10111001x 23 
3. Actual exponent = 3 
4. Biased exponent = 3 + 127 = 130 = (10000010)
5. Sign of Fraction/Mantissa (s) = -ve = 1 

1 10000010 10111001000000000000000

Biased
ExponentS Matissa/Fraction

Bias of 127 is to be 
added to the actual 
exponent so that 
sign of exponent is 
taken care of



IEEE-754 32-bit Single-Precision Floating-Point 
Number Representation

 Example 2
 Let's illustrate with an example, suppose that the 32-bit pattern is 

1 1000 0001 011 0000 0000 0000 0000 0000
S = 1
Biased Exponent = 1000 0001 (Actual Exponent = 10000001 – 127 =2 )
F = 011 0000 0000 0000 0000 0000

In the normalized form, the actual fraction is normalized with an implicit leading 
1 in the form of 1.F

 In this example, the actual fraction is 
1.011 0000 0000 0000 0000 0000 = 1 + 1×2^-2 + 1×2^-3 = 1.375

The sign bit represents the sign of the number, with S=0 for positive and S=1 for 
negative number. 

In this example with S=1, this is a negative number, i.e., -1.375



 The actual exponent is (biased exponent -127).  This is 
because we need to represent both positive and 
negative exponent. 

 With an 8-bit for exponent, ranging from 0 to 255, 
the bias(127) scheme could provide actual exponent 
of -127 to 128. 

 In this example, actual exponent is =129-127=2

 Hence, the number represented is -1.375×2^2=-5.5

IEEE-754 32-bit Single-Precision Floating-Point 
Number Representation



IEEE-754 32-bit Single-Precision Floating-Point 
Number Representation

 Example 2
 Figure out the floating point number 
110000010 10111000000000000000000  which is represented by IEEE 

754 -32 bit

 Solution
 S= 1 (number is –ve)
 Biased Exponent = 10000010 = 130
 Actual Exponent = Biased Exponent -127 = 130 -127 = 3
 Fraction = 1.10111001000000000000000
=  1 + (1x 2-1) +(0x 2-2 ) + (1x2-3 )+ (1x 2-4) + (1x 2-5 )+ 0 + 0 +(1x2-6)  =  1.734375
 1.734375 x 23 = 13.875

1 10000010 10111001000000000000000



IEEE-754 32-bit Single-Precision Floating-Point 
Number Representation

 Exercise 9
 Represent -102.27 using IEEE 754 32 bit single 

precision floating point representation

 Exercise 10
 Figure out the floating point number which has been 

represented by IEEE 754 -32 bit
a)  0 10000000 110 0000 0000 0000 0000 0000

b)   1 01111110 100 0000 0000 0000 0000 0000.



Thank you



Reference

 https://www.ntu.edu.sg/home/ehchua/programmin
g/java/datarepresentation.html

https://www.ntu.edu.sg/home/ehchua/programming/java/datarepresentation.html
https://www.ntu.edu.sg/home/ehchua/programming/java/datarepresentation.html

