
Computer Fundamentals:
Number Systems

Dr Robert Harle

Today's Topics

 The significance of the bit and powers of 2

 Data quantities (B, kB, MB, GB, etc)

 Number systems (decimal, binary, octal , hexadecimal)

 Representing negative numbers (sign-magnitude, 1’s
complement, 2’s complement)

 Binary addition (carries, overflows)
 Binary subtraction

So...

 What is a bit?

The Significance of the Bit

 A bit (Binary digIT) is merely 0 or 1

 It is a unit of information since you cannot communicate
with anything less than two states

 The use of binary encoding dates back to the 1600s with
Jacquard's loom, which created textiles using card
templates with holes that allowed needles through

Bits and Computers

 The nice thing about a bit is that, with only two states, it is
easy to embody in physical machinery

 Each bit is simply a switch and computers moved from
vacuum tubes to transistors for this

e-

Decimal Number System

 Most computers count in binary, which we can easily
understand from the decimal so ingrained in us

35462

Decimal Number System

 Most computers count in binary, which we can easily
understand from the decimal so ingrained in us

35462

2x100

Decimal Number System

 Most computers count in binary, which we can easily
understand from the decimal so ingrained in us

35462

2x1006x101+

Decimal Number System

 Most computers count in binary, which we can easily
understand from the decimal so ingrained in us

35462

2x1006x101+4x102+

Decimal Number System

 Most computers count in binary, which we can easily
understand from the decimal so ingrained in us

35462

2x1006x101+4x102+5x103+

Decimal Number System

 Most computers count in binary, which we can easily
understand from the decimal so ingrained in us

35462

2x1006x101+4x102+5x103+3x104+

Binary

 Binary is exactly the same, only instead of ten
digits/states (0 to 9) we have just two, so the base
becomes 2:

10110

0x201x21+1x22+0x23+1x24+

Binary

 Binary is exactly the same, only instead of ten
digits/states (0 to 9) we have just two, so the base
becomes 2:

10110
b
 = 22

d

0x201x21+1x22+0x23+1x24+

Binary

 Binary is exactly the same, only instead of ten
digits/states (0 to 9) we have just two, so the base
becomes 2:

10110
b
 = 22

d

0x201x21+1x22+0x23+1x24+

Most Significant
Bit (MSB)

Least Significant
Bit (LSB)

Works for Fractional Numbers too...

35.462

2x10-36x10-2+4x10-1+5x100+3x101+

Works for Fractional Numbers too...

10.110
b
 = 2.75

d

0x2-31x2-2+1x2-1+0x20+1x21+

35.462

2x10-36x10-2+4x10-1+5x100+3x101+

Check

11.011
b

Check

11.011
b
 = 3.375

d

1x2-31x2-2+0x2-1+1x20+1x21+

Representable Numbers

 With d decimal digits, we can represent 10d different
values, usually the numbers 0 to (10d-1) inclusive

 In binary with n bits this becomes 2n values, usually
the range 0 to (2n-1)

 Computers usually assign a set number of bits
(physical switches) to an instance of a type.
 An integer is often 32 bits, so can represent

positive integers from 0 to 4,294,967,295 incl.
 Or a range of negative and positive integers...

Other Common Bases

 Higher bases make for shorter numbers that are easier for
humans to manipulate. e.g.
6654733

d
=11001011000101100001101

b

 We traditionally choose powers-of-2 bases because this
corresponds to whole chunks of binary

Other Common Bases

 Higher bases make for shorter numbers that are easier for
humans to manipulate. e.g.
6654733

d
=11001011000101100001101

b

 We traditionally choose powers-of-2 bases because this
corresponds to whole chunks of binary

 Octal is base-8 (8=23 digits, which means 3 bits per digit)

 6654733
d
=011-001-011-000-101-100-001-101

b
= 31305415

o

Other Common Bases

 Higher bases make for shorter numbers that are easier for
humans to manipulate. e.g.
6654733

d
=11001011000101100001101

b

 We traditionally choose powers-of-2 bases because this
corresponds to whole chunks of binary

 Octal is base-8 (8=23 digits, which means 3 bits per digit)

 6654733
d
=011-001-011-000-101-100-001-101

b
= 31305415

o

 Hexadecimal is base-16 (16=24 digits so 4 bits per digit)

 Our ten decimal digits aren't enough, so we add 6 new
ones: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

 6654733
d
=0110-0101-1000-1011-0000-1101

b
=658B0D

h

Other Common Bases

 Higher bases make for shorter numbers that are easier for
humans to manipulate. e.g.
6654733

d
=11001011000101100001101

b

 We traditionally choose powers-of-2 bases because this
corresponds to whole chunks of binary

 Octal is base-8 (8=23 digits, which means 3 bits per digit)

 6654733
d
=011-001-011-000-101-100-001-101

b
= 31305415

o

 Hexadecimal is base-16 (16=24 digits so 4 bits per digit)

 Our ten decimal digits aren't enough, so we add 6 new
ones: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

 6654733
d
=0110-0101-1000-1011-0000-1101

b
=658B0D

h

 Because we constantly slip between binary and hex, we have
a special marker for it

 Prefix with '0x' (zero-x). So 0x658B0D=6654733
d
, 0x123=291

d

Bytes

 A byte was traditionally the number of bits needed to
store a character of text

 A de-facto standard of 8 bits has now emerged
 256 values
 0 to 255 incl.
 Two hex digits to describe

 0x00=0, 0xFF=255

 Check: what does 0xBD represent?

Bytes

 A byte was traditionally the number of bits needed to
store a character of text

 A de-facto standard of 8 bits has now emerged
 256 values
 0 to 255 incl.
 Two hex digits to describe

 0x00=0, 0xFF=255

 Check: what does 0xBD represent?
 B → 11 or 1011
 D → 13 or 1101
 Result is 11x161+13x160 = 189 or 10111101

Larger Units

 Strictly the SI units since 1998 are:

 Kibibyte (KiB)
 1024 bytes (closest power of 2 to 1000)

 Mebibyte (MiB)
 1,048,576 bytes

 Gibibyte (GiB)
 1,073,741,824 bytes

Larger Units

 Strictly the SI units since 1998 are:

 Kibibyte (KiB)
 1024 bytes (closest power of 2 to 1000)

 Mebibyte (MiB)
 1,048,576 bytes

 Gibibyte (GiB)
 1,073,741,824 bytes

 but these haven't really caught on so we tend to still use the SI
Kilobyte, Megabyte, Gigabyte. This leads to lots of confusion
since technically these are multiples of 1,000.

The Problem with Ten

Unsigned Integer Addition

 Addition of unsigned integers works the same way as
addition of decimal (only simpler!)
 0 + 0 = 0
 0 + 1 = 1
 1 + 0 = 1
 1 + 1 = 0, carry 1

 Only issue is that computers have fixed sized types so we
can't go on adding forever...

111
+ 001

001
+ 001

Carry flag: Carry flag:

Modulo or Clock Arithmetic

 Overflow takes us across the dotted
boundary
 So 7+1=0 (overflow)
 We say this is (7+1) mod 8

000

001

010

011100

101

110

111 000
001
010
011
100
101
110
111

Negative Numbers

 All of this skipped over the need to represent
negatives.

 The naïve choice is to use the MSB to indicate +/-
 1 in the MSB → negative
 0 in the MSB → positive

 This is the sign-magnitude technique

-7 = 1111

Negative
Normal positive
representation of 7

Difficulties with Sign-Magnitude

 Has a representation of minus zero (1000
2
=-0) so

wastes one of our 2n labels
 Addition/subtraction circuitry must be designed

from scratch

 1101
+ 0001
 1110

Our unsigned addition alg.

Difficulties with Sign-Magnitude

 Has a representation of minus zero (1000
2
=-0) so

wastes one of our 2n labels
 Addition/subtraction circuitry must be designed

from scratch

 1101
+ 0001
 1110

Our unsigned addition alg.

+13
+1

+14

Unsigned
interpretation

Difficulties with Sign-Magnitude

 Has a representation of minus zero (1000
2
=-0) so

wastes one of our 2n labels
 Addition/subtraction circuitry must be designed

from scratch

 1101
+ 0001
 1110

-5
+1
-6

+13
+1

+14

Sign-mag
interpretation

Unsigned
interpretation

Our unsigned addition alg.

Alternatively...

 Gives us two discontinuities and a
reversal of direction using normal
addition circuitry!!

000

001

010

011100

101

110

111 000
001
010
011
100
101
110
111

Ones' Complement

 The negative is the positive with all the bits flipped
 7 → 0111 so -7 → 1000
 Still the MSB is the sign
 One discontinuity but still -0 :-(

000

001

010

011100

101

110

111 000
001
010
011
100
101
110
111

Two's Complement

 The negative is the positive with all the bits flipped
and 1 added (the same procedure for the inverse)

 7 → 0111 so -7 → 1000+0001 → 1001
 Still the MSB is the sign
 One discontinuity and proper ordering

000
001
010
011
100
101
110
111

000

001

010

011100

101

110

111

Two's Complement

 Positive to negative: Invert all the bits and add 1

 Negative to positive: Same procedure!!

1011 (-5) → 0100 → 0101 (+5)

0101 (+5) → 1010 → 1011 (-5)

Signed Addition

 1101
+0001
 1110

Our unsigned addition alg.

 ...it just works with our addition algorithm!

+13
+1

+14

Unsigned

Signed Addition

 1101
+0001
 1110

-3
+1
-2

+13
+1

+14

2's-comp Unsigned

Our unsigned addition alg.

 ...it just works with our addition algorithm!

Signed Addition

 1101
+0001
 1110

-3
+1
-2

+13
+1

+14

2's-comp Unsigned

Our unsigned addition alg.

 ...it just works with our addition algorithm!

 So we can use the same circuitry for unsigned and 2s-
complement addition :-)

 Well, almost.

Signed Addition

 0100
+0100
 1000

+4
+4
+8

Unsigned

Carry flag: 0

 So we can use the same circuitry for unsigned and 2s-
complement addition :-)

 Well, almost.

 The problem is our MSB is now signifying the sign and our carry
should really be testing the bit to its right :-(

Signed Addition

 0100
+0100
 1000

+4
+4
-8

+4
+4
+8

2's-comp Unsigned

Carry flag: 0

 So we can use the same circuitry for unsigned and 2s-
complement addition :-)

 Well, almost.

 The problem is our MSB is now signifying the sign and our carry
should really be testing the bit to its right :-(

 So we introduce an overflow flag that indicates this problem

Signed Addition

 0100
+0100
 1000

+4
+4
-8

+4
+4
+8

2's-comp Unsigned

Carry flag: 0
Overflow: 1

Integer subtraction

 Could implement the “borrowing”
algorithm you probably learnt in school

 But why bother? We can just add the
2's complement instead.

 0100
- 0011

 0100
+1101
 0001

→

Flags Summary

 When adding/subtracting
 Carry flag → overflow for unsigned integer
 Overflow flag → overflow for signed integer

 The CPU does not care whether it's
handling signed or unsigned integers
 Down to our compilers/programs to

interpret the result

Fractional Numbers
 Scientific apps rarely survive on integers alone, but

representing fractional parts efficiently is
complicated.

 Option one: fixed point
 Set the point at a known location. Anything to

the left represents the integer part; anything to
the right the fractional part

 But where do we set it??
 Option two: floating point

 Let the point 'float' to give more capacity on its
left or right as needed

 Much more efficient, but harder to work with
 Very important: more in Numerical Methods

course

