Number Systems

Today's Topics

- The significance of the bit and powers of 2
- Data quantities (B, kB, MB, GB, etc)
- Number systems (decimal, binary, octal, hexadecimal)
- Representing negative numbers (sign-magnitude, 1's complement, 2's complement)
- Binary addition (carries, overflows)
- Binary subtraction

What is a bit?

The Significance of the Bit

- A bit (Binary digIT) is merely 0 or 1
- It is a unit of <u>information</u> since you cannot communicate with anything less than two states
- The use of binary encoding dates back to the 1600s with Jacquard's loom, which created textiles using card templates with holes that allowed needles through

Bits and Computers

- The nice thing about a bit is that, with only two states, it is easy to embody in physical machinery
- Each bit is simply a switch and computers moved from vacuum tubes to transistors for this

Binary

 Binary is exactly the same, only instead of ten digits/states (0 to 9) we have just two, so the base becomes 2:

Binary

 Binary is exactly the same, only instead of ten digits/states (0 to 9) we have just two, so the base becomes 2:

Binary

 Binary is exactly the same, only instead of ten digits/states (0 to 9) we have just two, so the base becomes 2:

Works for Fractional Numbers too...

$3x10^{1}+5x10^{0}+4x10^{-1}+6x10^{-2}+2x10^{-3}$

Works for Fractional Numbers too...

$3x10^{1}+5x10^{0}+4x10^{-1}+6x10^{-2}+2x10^{-3}$

Check

11.011_b

$1x2^{1} + 1x2^{0} + 0x2^{-1} + 1x2^{-2} + 1x2^{-3}$

Representable Numbers

- With d decimal digits, we can represent 10^d different values, usually the numbers 0 to (10^d-1) inclusive
- In binary with n bits this becomes 2ⁿ values, usually the range 0 to (2ⁿ-1)

- Computers usually assign a set number of bits (physical switches) to an instance of a type.
 - An integer is often 32 bits, so can represent positive integers from 0 to 4,294,967,295 incl.
 - Or a range of negative and positive integers...

- Higher bases make for shorter numbers that are easier for humans to manipulate. e.g.
 6654733_d=11001011000101100001101_b
- We traditionally choose powers-of-2 bases because this corresponds to whole chunks of binary

- Higher bases make for shorter numbers that are easier for humans to manipulate. e.g.
 6654733_d=11001011000101100001101_b
- We traditionally choose powers-of-2 bases because this corresponds to whole chunks of binary
- Octal is base-8 (8=2³ digits, which means 3 bits per digit)
 - 6654733 = 011-001-011-000-101-100-001-101 = 31305415

- Higher bases make for shorter numbers that are easier for humans to manipulate. e.g.
 6654733_d=11001011000101100001101_b
- We traditionally choose powers-of-2 bases because this corresponds to whole chunks of binary
- Octal is base-8 (8=2³ digits, which means 3 bits per digit)
 - 6654733 = 011-001-011-000-101-100-001-101 = 31305415
- Hexadecimal is base-16 (16=2⁴ digits so 4 bits per digit)
 - Our ten decimal digits aren't enough, so we add 6 new ones: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
 - $6654733_{d} = 0110 0101 1000 1011 0000 1101_{b} = 658B0D_{h}$

- Higher bases make for shorter numbers that are easier for humans to manipulate. e.g.
 6654733_d=11001011000101100001101_b
- We traditionally choose powers-of-2 bases because this corresponds to whole chunks of binary
- Octal is base-8 (8=2³ digits, which means 3 bits per digit)
 - 6654733 = 011-001-011-000-101-100-001-101 = 31305415
- Hexadecimal is base-16 (16=2⁴ digits so 4 bits per digit)
 - Our ten decimal digits aren't enough, so we add 6 new ones: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
 - 6654733 = 0110-0101-1000-1011-0000-1101 = 658B0D = 658B0D
- Because we constantly slip between binary and hex, we have a special marker for it
 - Prefix with '0x' (zero-x). So 0x658B0D=6654733, 0x123=291

Bytes

- A byte was traditionally the number of bits needed to store a character of text
- A de-facto standard of 8 bits has now emerged
 - 256 values
 - 0 to 255 incl.
 - Two hex digits to describe
 - 0x00=0, 0xFF=255
- Check: what does 0xBD represent?

Bytes

- A byte was traditionally the number of bits needed to store a character of text
- A de-facto standard of 8 bits has now emerged
 - 256 values
 - 0 to 255 incl.
 - Two hex digits to describe
 - 0x00=0, 0xFF=255
- Check: what does 0xBD represent?
 - $B \to 11 \text{ or } 1011$
 - $D \rightarrow 13 \text{ or } 1101$
 - Result is $11x16^{1}+13x16^{0}=189$ or 10111101

Larger Units

- Strictly the SI units since 1998 are:
- Kibibyte (KiB)
 - 1024 bytes (closest power of 2 to 1000)
- Mebibyte (MiB)
 - 1,048,576 bytes
- Gibibyte (GiB)
 - 1,073,741,824 bytes

Larger Units

- Strictly the SI units since 1998 are:
- Kibibyte (KiB)
 - 1024 bytes (closest power of 2 to 1000)
- Mebibyte (MiB)
 - 1,048,576 bytes
- Gibibyte (GiB)
 - 1,073,741,824 bytes
- but these haven't really caught on so we tend to still use the SI Kilobyte, Megabyte, Gigabyte. This leads to lots of confusion since technically these are multiples of 1,000.

The Problem with Ten

Decimal Division Binny Division 0.818181 11)9.0000000 901111 10, 2011 201 00 20 = 0.00011 =) it takes a bits to represent ten exactly! = 0.81

Unsigned Integer Addition

- Addition of unsigned integers works the same way as addition of decimal (only simpler!)
 - 0 + 0 = 0
 - 0 + 1 = 1
 - 1 + 0 = 1
 - 1 + 1 = 0, carry 1
- Only issue is that computers have fixed sized types so we can't go on adding forever...

Modulo or Clock Arithmetic

- Overflow takes us across the dotted boundary
 - So 7+1=0 (overflow)
 - We say this is (7+1) mod 8

Negative Numbers

- All of this skipped over the need to represent negatives.
- The naïve choice is to use the MSB to indicate +/-
 - 1 in the MSB \rightarrow negative
 - 0 in the MSB \rightarrow positive

This is the <u>sign-magnitude</u> technique

Difficulties with Sign-Magnitude

- Has a representation of minus zero $(1000_2 = -0)$ so wastes one of our 2ⁿ labels
- Addition/subtraction circuitry must be designed from scratch

1101 + 0001 1110

Difficulties with Sign-Magnitude

- Has a representation of minus zero (1000₂=-0) so wastes one of our 2ⁿ labels
- Addition/subtraction circuitry must be designed from scratch

Difficulties with Sign-Magnitude

- Has a representation of minus zero (1000₂=-0) so wastes one of our 2ⁿ labels
- Addition/subtraction circuitry must be designed from scratch

Alternatively...

 Gives us two discontinuities and a reversal of direction using normal addition circuitry!!

Ones' Complement

- The negative is the positive with all the bits flipped
- $7 \rightarrow 0111 \text{ so } -7 \rightarrow 1000$
- Still the MSB is the sign
- One discontinuity but still -0 :-(

000 0 001 1 010 2 011 3 100 -37 101-2 110-1 111-0 Increasing,

Two's Complement

- The negative is the positive with all the bits flipped and 1 added (the same procedure for the inverse)
- $7 \rightarrow 0111 \text{ so } -7 \rightarrow 1000 + 0001 \rightarrow 1001$
- Still the MSB is the sign
- One discontinuity and proper ordering

- Positive to negative: Invert all the bits and add 1 $0101 (+5) \rightarrow 1010 \rightarrow 1011 (-5)$
- Negative to positive: Same procedure!! $1011 (-5) \rightarrow 0100 \rightarrow 0101 (+5)$

...it just works with our addition algorithm!

```
1101+13
+0001 +1
1110 +14
```

...it just works with our addition algorithm!

-3 1101+13 +1 +0001 +1 -2 1110 +14 1 110 +14

The result (in terms of bits) is the same. The interpretation of the result differs of course

...it just works with our addition algorithm!

```
-3 1101+13
+1 +0001 +1
-2 1110 +14
1 110 +14
```

- So we can use the same circuitry for unsigned and 2scomplement addition :-)
- Well, almost.

- So we can use the same circuitry for unsigned and 2scomplement addition :-)
- Well, almost.

The problem is our MSB is now signifying the sign and our carry should really be testing the bit to its right :-(

- So we can use the same circuitry for unsigned and 2scomplement addition :-)
- Well, almost.

- The problem is our MSB is now signifying the sign and our carry should really be testing the bit to its right :-(
- So we introduce an overflow flag that indicates this problem

Integer subtraction

- Could implement the "borrowing" algorithm you probably learnt in school
- But why bother? We can just <u>add</u> the 2's complement instead.

		1 1 0 0
0100	\rightarrow	0100
- 0011		+1101
		0001

Flags Summary

- When adding/subtracting
 - Carry flag \rightarrow overflow for **unsigned** integer
 - \blacksquare Overflow flag \rightarrow overflow for signed integer
- The CPU does not care whether it's handling signed or unsigned integers
 - Down to our compilers/programs to interpret the result

Fractional Numbers

- Scientific apps rarely survive on integers alone, but representing fractional parts efficiently is complicated.
- Option one: fixed point
 - Set the point at a known location. Anything to the left represents the integer part; anything to the right the fractional part
 - But where do we set it??
- Option two: floating point
 - Let the point 'float' to give more capacity on its left or right as needed
 - Much more efficient, but harder to work with
 - Very important: more in Numerical Methods course