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Chapter N°2 : Numerical Sequences

What is a sequence ?

0.1 Introduction
A sequence is an infinite list, technically an infinite tuple, of numbers, like this :

2, 4, 6, 8, 10, ...

or like one of these
1,

1
3 ,

1
9 ,

1
27 ,

1
81 , ...

1, 0, 1, 0, 1, 0, 1, 0, ...

An integral part of Analysis I is the study of various properties of real sequences and their relationships.
To think flexibly about those relationships, it helps to be aware of some different ways of representing
sequences and some advantages and disadvantages of those representations.

For example that we invest a sum S at an annual rate of 10 percent. If Sn represents the sum that
we will obtain after n years, we have

S0 = S, S1 = S.1, 1, ..., Sn = S.(1, 1)n.

At the end of n = 10 yers, then we will have S10 = S.(1.1)10 ≈ S.2, 59.

Definition 1 A function u : N → R whose domain of definition the set N is called a sequence.

The values u(n) = un of the function u are called the terms of the sequence. In this connection the
sequence itself is denoted (un), and also written as u1, u2, ..., un, .... It is called a sequence of elements
in R.
The element un is called the n-th term of sequence.

0.2 Convergence and divergence of sequence
Definition 2 If lim

n→∞
un = l, we say that the sequence (un) convergent to l or tends to l and write

un −→ l as n → +∞ A sequence having a limit is said to be convergent. A sequence that does not
have a limit is said to be divergent. And

lim
n→∞

un = l ⇔ ∀ϵ > 0, ∃N ∈ N, ∀n ∈ N(n > N) : |un − l| < ϵ.

We call the natural number N the threshold for the given ϵ.

Remark 3 We say that the limit of the sequence (un) is in ∞, or (un) diverges to ∞, if

∀A ∈ R, ∃N ∈ N, ∀n ∈ N(n > N) : un > A.

The notations :

lim
n→∞

un = ∞, or lim un = ∞, or un → ∞ if n → ∞ or un → ∞

Remark 4 We say that the limit of the sequence (un) is in −∞, or (un) diverges to −∞, if

∀A ∈ R, ∃N ∈ N, ∀n ∈ N(n > N) : un < A.

The notations :

lim
n→∞

un = −∞, or lim un = −∞, or un → −∞ if n → ∞ or un → −∞
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Exercise 1 : Using the definition of limit, verify that

1. lim
n→∞

1
n

= 0, since | 1
n

− 0| = 1
n

< ϵ, when n > N = [1
ϵ

] (We recall that [1
ϵ

] is the integer part

of the number [1
ϵ

].)

2. lim
n→∞

1 + n

n
= 1, since |1 + n

n
− 1| = 1

n
< ϵ, when n > N = [1

ϵ
]

3. lim
n→∞

1 + (−1)n

n
= 1, since |1 + (−1)n

n
− 1| = 1

n
< ϵ, when n > N = [1

ϵ
]

4. lim
n→∞

sin n

n
= 0, since |sin n

n
− 0| = 1

n
< ϵ, when n > N = [1

ϵ
]

5. lim
n→∞

1
qn

= 0, if |q| > 1

Example 1 :
— The sequence 1, 2,

1
3 , 4,

1
5 , 6,

1
7 , ... whose n-th term is un = n(−1)n

, n ∈ N is divergent.
— One can verify similarly that the sequence 1, −1, 1, −1, ..., for which un = (−1)n, has not limit.

0.2.1 Properties of the Limit of a Sequence
1. A sequence assuming only one value will be called a constant sequence.
2. If there exists a number a and an index p such that un = a for all n > p, the sequence (un) will

be called ultimately constant. For example the sequence of n-th term un = max{11
10 ,

n + 1
n

},

for n ≥ 10, (un) is ultimately constant.
3. sequence (un) is bounded if there exists M such that |un| < M for all n ∈ N.

Theorem 5 a. An ultimately constant sequence converges.
b. A convergent sequence cannot have two different limits.
c. A convergent sequence is bounded.

Proof 6 b This is the most important part of the theorem.
Let l1, l2 tow limits of the sequence (un) such that l1 > l2. put ϵ < (l1−l2)

2 , so, since the sequence
un converge respectively to l1 and l2 :

∃N1 ∈ N such that ∀n ∈ N, (n > N) ⇒ |un − l1| < ϵ

∃N1 ∈ N such that ∀n ∈ N, (n > N) ⇒ |un − l2| < ϵ

But that for n > max(N1, N2) :

l1 − l2 = |l1 − l2| = |l1 − un + un − l2| ≤ |l1 − un| + |un − l2| < 2ϵ

but this is impossible.
c Let lim

n→∞
un = a. Setting ϵ = 1 in the definition of limit, we find N such that |un −a| < 1 for all

n > N. Then for n > N we have |un| < |a| + 1. If we now take M > max{|u1|, ..., |un|, |a| + 1}

Theorem 7 (Arithmetic proprieties of limits) Let (an), and (bn) two convergent real sequences, with
an −→ a and bn −→ b. Then we have

1. The sequence (an + bn) convergent with

lim
n→∞

(an + bn) = a + b (sum rule).

2. The sequence (an.bn) convergent with

lim
n→∞

(an.bn) = a.b (product rule).

3. For c ∈ R,the sequence (c.an) convergent with

lim
n→∞

(c.an) = c.a (constant multiple rule).
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4. If bn ̸= 0, for all n ∈ N and b ̸= 0 Then the sequence (an

bn
) convergent with

lim
n→∞

(an

bn
) = a

b
(quotient rule).

Exercise 2 : Find the limits of the following sequences

lim
n→∞

sin(n2 + 1)
n2 + 1 , lim

n→∞
(
√

n + 2 −
√

n + 1√
n + 1 −

√
n

), lim
n→∞

sin n

n
(
√

n + 1 −
√

n), lim
n→∞

(
√

n4 + n2 − n2),

Theorem 8 (Passage to the Limit and Inequalities)
— Let (an), and (bn) two convergent real sequences, with an −→ a and bn −→ b. If a < b, then

there exists an index N ∈ N such that an < bn, for all n > N.
— Suppose the sequences (an), (bn), and (cn) ave such that an < bn < cn for all n > N ∈ N. the

sequences (an) and (cn) both converge to the same limit, then the sequence (an) also converges
to that limit.

For example −1 ≤ sin(n2 + 1) ≤ 1, then −1
n2 + 1 ≤ sin(n2 + 1)

n2 + 1 ≤ 1
n2 + 1 by passage to the limit

lim
n→∞

sin(n2 + 1)
n2 + 1 = 0.

Let us investigate what happens if we consider a sequence (an) with (an) −→ +∞and a sequences
(bn) which is controlled by (an) by

∀n ∈ N : an ≤ bn

Theorem 9 (Comparison theorem for sequences tending to +∞). Let (an) and (bn) be real sequences.
Suppose that (an) −→ +∞ and that there exists an N ∈ N such that for all n > N , we have bn > an.
Then, (bn) −→ +∞

0.3 Monotonicity, boundedness, and convergence
• A numerical sequence (un) is strictly increasing if un < un+1, ∀n ∈ N
• A numerical sequence (un) is increasing if un ≤ un+1, ∀n ∈ N
• A numerical sequence (un) is strictly decreasing if un > un+1, ∀n ∈ N
• A numerical sequence (un) is decreasing if un ≥ un+1, ∀n ∈ N

For example the sequence (un) such that the n-th term un = n2 est strictly increasing.

Remark 10 A numerical sequence is said to be monotonic if it is increasing or decreasing.

Remark 11 Let (un) a numerical sequence
• If un+1

un
≥ 1 is increasing and strictly increasing if un+1

un
> 1, ∀n ∈ N

• If un+1
un

≤ 1 is decreasing and strictly decreasing if un+1
un

< 1, ∀n ∈ N

Theorem 12 Every increasing sequence (un) that is bounded above is convergent.

From that follows in a straight forward way

Corollary 13 Every decreasing sequence that is bounded below is convergent.

From Theorem 10 and Corollary 13 follows immediately

Corollary 14 Every monotonic bounded sequence is convergent.
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0.4 Adjacent sequences
In general. Two sequences are adjacent if the first is increasing, the second is decreasing, and their

difference converges to 0.

Definition 15 Two real sequences (un) and (vn) are called adjacent if (un) is increasing, (vn) is
decreasing, and lim

n→∞
(an − bn) = 0.

Example 2 : The two sequences (un) and (vn) defined by

un = 1 + 1
n + 1 , vn = 1 − 1

n + 1 , ∀n ∈ N

are adjacent.
Exercise 2 : Let ∀n ∈ N

un =
k=n∑
k=1

1
k2 , and vn = un + 2

n + 1

Prove that (un) and (vn) are adjacent.
Exercise 3 : (Un) and (Vn) be two sequences such that :

U0 ≤ V0, 0 < β < α

Un = αUn−1 + βVn−1
α + β

Vn = αVn−1 + βUn−1
α + β

1. Let Wn = Un − Vn. Prove that (Wn) is geometric sequence. Identify q and W0.

2. Prove that (Un) is an increasing and that (Vn) is decreasing.
3. Deduce that (Un) and (Vn) are adjacent sequences.
4. Find the limit l in terms of U0 and V0.

0.5 Recurrence Sequence (or Recursively-defined sequences)
Definition 16 Let f : R → R a real function. A recursively-defined sequence is an relation that
expresses each element of a sequence as a function of the preceding one.

u0 ∈ R, un+1 = f(un)

Then a recurrence sequence is defined by two data u0 the first term and recurrence relation

u0, u1 = f(u0), u2 = f(u1) = fof(u0), ... , un = fof...of(u0)

Example 3 : Let
u0 = 2, and for n ≥ 0, un+1 = f(un)

u1 = 1 +
√

2, u2 == fof(2) = 1 +
√

1 +
√

2, , u3 = fofof(2) = 1 +
√

1 +
√

1 +
√

2, ...

Example 4 :(Fubunacci sequence) is defined as follow : The succeeding terms are dependent on the
last two preceding terms

F0 = 0, F1 = 1, and for n ≥ 2, Fn = Fn−1 + Fn−2

In fact,it is easier to list these out in a list by just adding the previous two terms to get the next
term.

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, ...

The Fibonacci sequence has a long history in mathematics and you can find out more about it on line at
any number of websites. The Fibonacci sequence is named after the 13th-century Italian mathematician
known as Fibonacci,who used it to solve a problem concerning the breeding of rabbits.This sequence
also occurs in numerous applications in plant biology.

4



Remark 17 Two simple examples of recursive definitions are for arithmetic sequences and geo-
metric sequences. An arithmetic sequence has a common difference, or a constant difference between
each term.

un − un−1 = r or un = un−1 + r

A geometric sequence has a common ratio

un = q.un−1, or
un

un−1
= q

Again, in this case it is relatively easy to find a formula for the n-th term : un = u0.qn

Finding an explicit expression for un as in the above example is often not possible, because solving
recursions can be very difficult or even impossible. How, then, can we say anything about the limiting
behavior of are cursively defined sequence ? The following procedure will allow us to identify candidates
for limits : A fixed point of a function is a point x so that f(x) = x. For recursive sequences this
translates as if the sequence un is can be given as un+1 = f(un) and if l is a fixed point for f(x), then
if un = l is equal to the fixed point for some k, then all successive values of un are also equal to l for
k > n

Proposition 18 If f is associate function of a convergent recursive sequence to l, then l is solution
of the equation f(l) = l.

Example 3 : Assume that lim
n→∞

un exists for

un+1 =
√

3un, with u0 = 2

Find lim
n→∞

un

Since the problem tells us that the limit exists, we don’t have to worry about existence. We may
assume that lim

n→∞
un = l The problem that remains is to identify the limit. To do this we need to note

that if lim
n→∞

un = l then it is true that lim
n→∞

un+1 = l, ,since these are exactly the same sequence. Now,
we compute the fixed points.We solve

lim
n→∞

un+1 = lim
n→∞

=
√

3un ⇔ l =
√

3l,

This has two solutions, namely,l = 0 and l = 3. When u0 = 2, we have un > 2 for all n = n1, n2, n3, ...
so we can exclude l = 0 as the limiting value. This leaves only one possibility,and we conclude that

lim
n→∞

un = 3.

0.6 Cauchy Criterion
We now have a test that allows us to establish that a monotonic sequence converges without

knowing its limit.

Definition 19 A sequences (un) is called fundamental or Cauchy sequence if for any ϵ > 0 there
exists an index N ∈ N such that |um − un| < ϵ whenever n > N, and m > N i.e

∀ϵ > 0, ∃N ∈ N, ∀m > n > N : |um − un| < ϵ.

For example, the sequence ( 1
n

)nN is a Cauchy sequence.

Theorem 20 (Cauchy’s converges criterion) A numerical sequence converges if and only if is a Cau-
chy sequence.

For example the sequence (−1)n is not Cauchy sequence, because has not limit. Even though this
fact is obvious we shall give a formal verification. The negation of the statement that (un) is cauch
sequence is the following :

∃ϵ > 0, ∀N ∈ N, ∃m > n > N : |um − un| ≥ ϵ.

That is, there exists ∃ϵ > 0, such that for any N ∈ N, two numbers n, m larger than N for which
|um − un| ≥ ϵ. In our cases it suffices to set ϵ = 1 then for any N ∈ N, we shall have

|uN+1 − uN+2| = |1 − (−1)| = 2 > 1 = ϵ
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0.7 Cauchy sequences and convergence
It probably will not surprise you to learn that every convergent sequence is Cauchy, and vice versa.

Theorem 21 Let (un) be a real sequence. Then, (un) is convergent iff (un) is a Cauchy sequence.

To prove Theorem 15, we first prove a lemma 16 :

Lemma 22 (Cauchy sequences are bounded). Let (un) be a Cauchy sequence. Then, there exists a
non-negative constant C such that

|un| ≤ C, ∀n ∈ N

Proof of Theorem 15 :

— [⇒] Let ϵ > 0 be arbitrary. Since (un) −→ l there exists N ∈ N such that

∀m > n > N, |um − l| <
ϵ

2 and |un − l| <
ϵ

2

So for all ∀m > n > N we have

|um − un| = |um − l + l + un| < |un − l| + |um − l| <
ϵ

2 + ϵ

2 = ϵ

So (un) is a Cauchy sequence.
— [⇒] Since (un) is a Cauchy sequence, it is bounded by Lemma 16. Hence, by the Bolzano-

Weierstrass theorem, (un) has a convergent subsequence, say (uni). Suppose that (uni) convergent
to l. We will show that (un) convergent to l also.
To this end, let ϵ > 0 be arbitrary. Then, since (un) is Cauchy, there exists N1 ∈ N such that

∀n, ni ≥ N1, |un − uni | <
ϵ

2

Also, since (uni) convergent to l, there exists N2inN such that

∀i ≥ N2, |uni − l| <
ϵ

2

Let N = max{N1, N2}. Then, since ni > i, we have

∀n > N, |un − l| = |un − l − uni + uni | < |uni − un| + |uni − l| <
ϵ

2 + ϵ

2 = ϵ

Hence (un) convergent to l, i.e. (un) is convergent.
Exercise 3 :

— Show that un =
∑n

k=1
1
k2 is Cauchy sequence.

— Show that un =
∑n

k=1
1√
k

, un =
∑n

k=1
3

2 ln k
are not Cauchy sequence.
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