MANIPULATION N ${ }^{\circ} 5$

Titration of vinegar

Acid/base titration (Application to the titration of commercial vinegar)

1 - Introduction :

Vinegar is a wine (alcohol) made sour by acetic fermentation and used as a condiment or preservative. Vinegar is considered to be an aqueous solution of acetic acid with a density (d) of about 1. The objective of this practical work is to determine the degree of acidity D or $\left(^{\circ}\right)$ of a vinegar, defined as the mass of pure acetic or ethanoic acid contained in 100 g of solution. To do this, the acetic (ethanoic) acid contained in a known volume of vinegar will be determined using a strong base solution of known concentration: sodium hydroxide solution (NaOH).

During titration, the concentration of the titrating solution (in this case NaOH) must be known precisely. In most cases, however, the concentrations of the solutions are not strictly accurate because:

- the solution is prepared from a solid product, the purity of which is not guaranteed by the manufacturer.
- the solution is prepared from a product whose sampling (weighing, volume) cannot be precise.
- the chemical composition of the solution changes over time.

2- The degree of acidity of the vinegar (D) or $\left({ }^{\circ}\right)$:

The degree of a vinegar D is the same number as the mass, in grams, of pure ethanoic acid contained in 100 g of solution.

The degree of acidity of the commercialised vinegar is indicated on each bottle. 1% acidity corresponds to 1 g of ethanoic acid in 100 g of vinegar solution. The percentage of acidity therefore corresponds to a percentage by mass.

For a volume of 100 g of vinegar: (Ac: acetic acid)
$m_{A c}=n_{A c} \times M_{A c}=C_{a} \times V_{a} \times M_{A c} \quad$ from the formula $n=C \times V$

For vinegar we also have: $\rho=m / V \quad$ so $\quad V=m / \rho: \quad m_{A c}=\frac{m}{\rho} \times C \times M_{A c}=\frac{100}{\rho} \times C \times M_{A c}$
Degree of acidity $=D^{\circ}=m_{A c}=\frac{100}{\rho} \times C \times M_{A c}$
Example: vinegar at 6° contains 6 g of pure acetic (ethanoic) acid per 100 g of vinegar solution.

3- Objective of the practical work (TP) :

- How to control the quality of a product by titration.
- Products tested: different types of commercial vinegar.

4- Experimental part :

- Titration of commercial vinegar (acetic acid) :

Materials: Burette, Erlenmeyer flask, beaker, Graduated cylinder, wash bottle, distilled water, NaOH solution $(0.1 \mathrm{~N})$, different types of commercial vinegar $\left(\mathrm{CH}_{3}-\mathrm{COOH}\right)$ and colour indicators.

1 - Preparation of the dilute vinegar solution:

1 - Using a pipette, take precisely 10 mL of commercial white vinegar.
2- Put it in a 100 mL volumetric flask.
3- Complete with distilled water to the mark.
4- Cap the flask and agitate to homogenise the solution.

2- Titration in the presence of phenophthalein :

1- Rinse the equipment. Burette, Erlenmeyer flask, etc.
2- Fill the burette with the NaOH solution of concentration ($\mathrm{N}_{\mathrm{B}}=0.1 \mathrm{~N}$).
3- Take $\left(\mathrm{V}_{A}=10 \mathrm{ml}\right)$ of the $\left(\mathrm{CH}_{3}-\mathrm{COOH}\right)$ solution and place it in a 100 mL Erlenmeyer flask.
4- Add about 20 mL of distilled water.
5- Add 2 drops of the colour indicator: phenolphthalein.
6- Make a rapid titration to estimate the volume of equivalence $\left(V_{B}\right)$.
7- Record the volume V_{B} of (NaOH) added.
8- Using a pH paper or pH meter, read the pH of the solution every 2 ml until coloured.
9- Make 2 titration tests.

$$
M_{\text {снз-соон }}=60 \mathrm{~g} \cdot \mathrm{~mol}^{-1}, \rho=1,01 \mathrm{~kg} \cdot \mathrm{~L}^{-1}
$$

3-Résultats et calculs :

1-Write down the reaction equation:
2- Note the volume V_{B} of (NaOH) added and determine the concentration C_{A} of $\left(\mathrm{CH}_{3}-\mathrm{COOH}\right)$.
3- Calculate the initial molar concentration C_{0} of the ethanoic acid (commercial vinegar).
4- Calculate the degree of acidity of the vinegar (D) and compare this result with that on the sticker on the bottle of commercial vinegar.
5- Draw the graph representing the value of $\mathrm{pH}=f\left(V_{B}\right)$ on millimetric paper.
6- Determine the volume V_{E} and the pH at equivalence using the graph.
7- Which of the coloured indicators in the table below is best adapted for identifying equivalence. Justify
your answer

Indicator	Acidic colour	Transition zone	Basic colour
Helianthine	Red	$3,1-4,4$	Yellow
Methyl red	Red	$4,2-6,2$	Yellow
Bromothymol blue	Yellow	$6,0-7,6$	Blue
Phenolphthalein	Uncoloured	$8,2-10,0$	Pink-violet

8- Why is distilled water added? Does the addition of distilled water change the volume V_{E} added at equivalence?

