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Envelope function 

 

envelope function was introduced to account for non-stationarity in amplitude and many 

suggested shapes were used (Shinozuka [12]). 

Most filters used are simple 1-degree of freedom oscillators. The filtering process is obtained by 

solving the differential equation of the oscillator characterized by a natural frequency ω and a 

damping constant ε. These parameters are obtained from predominant spectral characteristics of 

accurate acceleration time series records. A superposition of a large number of sinusoidal 

functions at different intervals with equal frequency difference ∆ω, in which the phase angles 

having a uniform probability density function was random, is weighted in combination using the 

power of filtered stationary white noise expressed through the spectral density. This procedure 

allows a successful simulation of time series acceleration. Alternatively, one can generate a 

white noise sequence with an average spectral amplitude over frequency equal to one and 

multiply the spectrum of the white noise with the specified spectrum of the acceleration time 

series and transform it back to the time domain. 

The modeling of acceleration time series has been suggested by academics. In the frequency 

domain approach, three methods of simulation have been used based upon assumptions of (1) 

stationarity in the amplitude and frequency content, (2) non-stationarity in the amplitude only, 

and (3) non-stationarity in both amplitude and frequency content. 

1.1 Simulation in the Time Domain 

 

The time-domain approach concerned with using ARMA models to describe acceleration time 

series data is relatively innovative. For example, Kozin's article [6] is an excellent 

methodological aid for evaluating the possibility of applying the ARMA approach to acceleration 

time series data. Acceleration time series records are digitized uniformly at equidistant time 

intervals. This set of observations forms a discrete time series. A model which describes the 
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probability structure of a sequence of observations is called a stochastic process. Key classes of 

stochastic processes include autoregressive (AR), moving average (MA), and their combination 

(ARMA). The autoregressive model denoted by AR(p) is generally written as: 

 
 

𝑍𝑡 = 𝜑1𝑍𝑡−1 − ⋯ − 𝜑𝑝𝑍𝑡−𝑝 + 𝑎𝑡 (1.1) 

 

 
where (𝜑i) are constant coefficients, ( 𝑎𝑡 ) is a sequence of equally random distributed 

independent Gaussian quantities, and (𝑍𝑡 ) indicates the sequence of data investigated. This 

model is of order (p). 

Another general linear model of time series analysis is the autoregressive moving average 

(ARMA) model. This model is obtained by adding a moving average (MA) component to the 

autoregressive (AR) component. It is defined by: 

 
 

𝑍𝑡 − 𝜑1𝑍𝑡−1 − ⋯ − 𝜑𝑝𝑍𝑡−𝑝 = 𝑎𝑡 − 𝜃1𝑎𝑡−1 − ⋯ − 𝜃𝑞𝑎𝑡−𝑞 (1.2) 

 

 
where (𝜑i)) and (𝜃i) are constant coefficients, and (p, q) is the order of the model. 

 

 
The model contains p+q+1 unknown parameters 𝜑1, 𝜑2, … , 𝜑𝑝, 𝜃1, 𝜃2, … , 𝜃𝑞, 𝜎𝑎 which are 

usually estimated from data based on maximum likelihood and the order is based on the partial 

AR functions. 

1.2 Stationarity Conditions 

 

Stationarity conditions in statistical terms can be considered to mean that there is no 

trend, it has a constant variance over a certain period, an autocorrelation structure that is 
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j=1 

𝑎 

i=0 j 

−∞ 

−∞ 

 

persistent over time, as well as null intervallic fluctuation. A stochastic process can be denoted as 

an output process (𝑍𝑡) represented by equation A1 below from a linear filter where (𝑎𝑡) is the 

white noise input. 

𝑍𝑡 = 𝑎𝑡 + ∑∞   𝜑j 𝑎𝑡−j (1.3) 
 

From equation (1.3) (𝑎𝑡) consists of a sequence of uncorrelated random variables with a mean of 

zero and constant variance 𝜎2. 

The autocorrelation of equation (1.3) is given by: 

 

𝐶(𝑘) = 𝐸[𝑍𝑡𝑍𝑡+𝑘] 
 

Or (1.4) 
 

𝐶(𝑘) = 𝐸[∑∞ ∑∞ ØiØj] 
 

Since the random variables 𝑎𝑡 are uncorrelated, 

 
𝜎2 ƒ𝑜𝑟 𝑘 = 0 

𝐸(𝑎𝑡𝑎𝑡+𝑘) = { 𝑎 

0 ƒ𝑜𝑟 𝑘 G 0 
(1.5) 

 

Therefore, equation A2 can be written as; 
 

𝐶(𝑘) = 𝜎2 ∑∞   Ø Ø (1.6) 
𝑎 j=0    j j+𝑘 

 

𝐶(0) = 𝜎2 ∑∞    Ø2 for k=0 
𝑎 j=0    j 

 

The autocovariance generating function is then to be defined as follows: 
 

𝐶(𝐵) = ∑∞ 𝐶(𝑘)𝐵𝑘 (1.8) 
 

𝐶(𝐵) = ∑∞ ∞ 
j=0 𝐵

𝑘 

 

Or simply 

 
𝐶(𝐵) = 𝜎2Ø(𝐵)Ø(𝐵 ) (1.9) 

𝑎 1 
 

If we substitute 𝐵 = exp (−i2𝜋ƒ) and 𝐵−1 = exp (i2𝜋ƒ), half the power spectrum of the 

process is obtained as: 

∑ 
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𝑎 

𝑎 

1 

 

𝑝(ƒ) = 2𝜎2Ø(exp (−i2𝜋ƒ)Ø(exp(i2𝜋ƒ)) 0 ≤ ƒ ≤ 1/2 
 

Or (1.11) 

 

𝑝(ƒ) = 2𝜎2|Ø(exp (−i2𝜋ƒ)| 0 ≤ ƒ ≤ 1/2 
 

Therefore, the variance of the process is 
 

𝜎  = 2𝜎2 ∫
1/2 

Ø(exp (−i2𝜋ƒ)Ø(exp(i2𝜋ƒ) 𝑑ƒ (1.12) 
𝑧 𝑎  0 

 

This integral converges when the infinity series Ø(𝐵) converges for B on or within the unit circle 

(Box & Jenkins, 1973). Intuitively, stationarity will be definite to express that the statistical 

properties of the time series generating process stay constant over a certain period. Therefore, it 

is a common case to articulate that if a time series is considered for the stationarity condition, it 

is imperative to state that the conditions of constant mean and variance across the timeframe. 

1.3 Invertibility Conditions 

 

The time series of a statistical phenomenon can be considered invertible if the errors have 

the capability of inverting into a past observation depiction. The autoregressive moving average 

(ARMA) process can be written as: 

Ø(𝐵)𝑍𝑡 = 𝜃(𝐵)𝑎𝑡 (1.13) 

 

The requirement of invertibility is required to associate current events with past events. This 

requirement is illustrated by assuming the following model; 

𝑍𝑡 = 𝑎𝑡−𝜃1𝑎𝑡−1 

 

Or (1.14) 

 

𝑍𝑡 = 𝑎𝑡(1 − 𝜃1𝐵) 
 

When expressed in terms of 𝑍′𝑠, the following is obtained 

 

𝑎𝑡 = (1 − 𝜃1𝐵)−1𝑍𝑡 (1.15) 

 

The weights (−𝜃1𝐵)−1 = ∑ 𝜃i𝐵i 
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This series converges when |𝐵| ≤ 1. In general, the process in equation A11 is invertible if the 

series converges on or within the unit circle. 

The excellent and indispensable statuses for the stationarity and invertibility conditions of 

the above simple equations and representations are much easier to attain. Still, it is conceivable 

that the more intricate models pose a severe problem obtaining. However, according to Quinn 

(1982), it is an evident occurrence that invertibility is a zero-one phenomenon instead of a 

stochastic phenomenon. 

1.4 Previous Studies 

 

The first work in modeling acceleration time series data as time series using linear models was 

completed by Robinson [15], Liu [45], and Kozin [8]. Robinson used a moving average process to 

generate artificial acceleration time series records for experimental purposes. Liu studied and 

compared several models. ARMA models were specified as a potential approach to characterize 

acceleration time series records. However, the concern of that paper was a general study and 

comparison of stochastic models. Kozin [38] proposed a continuous nonstationary time model: 

 

X¨ (𝑡) + 𝑎(𝑡)X˙ + 𝑏(𝑡)X(𝑡) = Ø(𝑡)W(𝑡) (1.16) 

 

where a(t) and b(t) are polynomials, 
 

𝑎(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡2 + 𝑎3𝑡3 (1.17) 

 

𝑏(𝑡) = 𝑏0 + 𝑏1𝑡 + 𝑏2𝑡2 + 𝑏3𝑡3 

 

 
Ø(t) is a function obtained by a cubic spline fit to the envelope of the actual record, and w(t) is 

Gaussian white noise. The parameters are to be estimated from data using non-linear filtering 

techniques. Such techniques are extensions of the methods of recursive estimation of Kalman 
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filtering. It was found that if the initial parameters were not close to the actual values, the recursive 

computation would be unstable. Since there were no convergence theorems about the non-linear 

method applied to estimate the desired parameters, Kozin has used maximum likelihood estimators 

instead of ARMA models. Two theoretical papers by Nakajima and Kozin [11] and Kozin and 

Nakajima [6] discussed the general problem of convergence, and a fundamental theorem that 

guarantees convergence of parameters was obtained. The Akaike Information Criteria was 

extended to include nonstationary models such as the model proposed by Kozin [4] and [5] on the 

modeling of nonstationary time series, which has the following form: 

 
 

𝑦(𝑘) + 𝑎1(𝑘 − 1)𝑦(𝑘 − 1) + ⋯ + 𝑎𝐿(𝑘 − 𝐿)𝑦(𝑘 − 𝐿) = 𝑔(𝑘)𝑢(𝑘) (1.18) 

where y(k) is the acceleration time series data, u(k) is white noise, and a(k), g(k) are time- 

varying functions estimated from the data. The coefficients a(k) was parameterized as a linear 

combination of discrete orthogonal functions. 
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Chapter 2 

 

Acceleration Time Series Process Models 

 
2.1 Acceleration Time Series Process Models (ARMA) 

 

The acceleration time series event is a time-dependent phenomenon initiated by regular slippage 

along faults for which it is not possible to write a deterministic model that allows exact 

calculation. Thus, an acceleration time series event is is considered as a sample of the whole set 

of time series that could be generated by the stochastic process. Since acceleration time series 

records show a highly irregular motion and have finite durations, they are modeled as a non- 

stationary stochastic process. As a general concept in this analysis, the damage potential is 

characterized by the properties of the population generated by the stochastic process model. 

Thus, ARMA (p, q) process model could be represented as follows: 

 
 

𝑍𝑡 − 𝜑1𝑍𝑡−1 − ⋯ − 𝜑𝑝𝑍𝑡−𝑝 = 𝑎𝑡 − 𝜃1𝑎𝑡−1 − ⋯ − 𝜃𝑞𝑎𝑡−𝑞 (2.1) 

 

 
where (𝜑i) and (𝜃i) are constant coefficients, and (p, q) is the order of the model. The model 

contains p+q+1 unknown parameters 𝜑1, 𝜑2, … , 𝜑𝑝, 𝜃1, 𝜃2, … , 𝜃𝑞, 𝜎𝑎 which are usually estimated 

from data based on maximum likelihood and the model order is based on the Akaike information 

criteria (AIC) [Ref]. 

 
 

2.2 The Autocorrelation Function 

 

An Autoregressive AR process is written as: 
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i 

 

𝑍𝑡 = 𝜑1𝑍𝑡−1 + 𝜑2𝑍𝑡−2 + ⋯ + 𝜑𝑝𝑍𝑡−𝑝 + 𝑎𝑡 (2.2) 

The theoretical autocorrelation function is found by multiplying Eq. (2.2) by 𝑍𝑡−𝑘and taking 

expectations, the following is found: 

𝐶(𝑘) = 𝜑1𝐶(𝑘 − 1) + ⋯ + 𝜑𝑝𝐶(𝑘 − 𝑝) + 𝐶𝑧𝑎(𝑘) (2.3) 

Since 𝑍𝑡−𝑘 involves shocks 𝑎𝐿 up to time L=t-k, 𝐸[𝑍𝑡𝑎𝑡] = 0. 

Dividing by C(0), the following is equation is obtained 
 

𝑅(𝑘) = 𝜑1𝑅(𝑘 − 1) + ⋯ + 𝜑𝑝𝑅(𝑘 − 𝑝) + 𝑅𝑧𝑎(𝑘) (2.4) 

In general, the solution of this equation (Box & Jenkins, 2) is given by 

𝑅(𝑘) = 𝐴1𝐺𝑘 + 𝐴2𝐺𝑘 + ⋯ + 𝐴 𝐺𝑘 (2.5) 
1 2 𝑝  𝑝 

 

Where 1/𝐺1, 1/𝐺2, … , 1/𝐺𝑝 are the roots of the characteristic equation given by: 

 
1 − 𝜑(𝐵) = 1 − 𝜑1𝐵 − 𝜑2𝐵2 − ⋯ − 𝜑𝑝𝐵𝑝 = 0 (2.6) 

Equation C4 is stationary if |𝐺| < 1 

If the roots 𝐺i are real, it can be shown that 𝐴i𝐺𝑘 goes to infinity, when k goes to infinity. If 

the roots 𝐺i are complex, the following term contributes to equation (2.3). 

𝐺i = 𝑥i + i𝑦j 
 

Equation (2.3) will follow a damped sine wave. For a stationary process, the autocorrelation 

function generally consists of a mixture of exponential and damped sine waves. 

To provide information about the choice of the order (p, q) of the ARMA process, which may be 

used to represent an acceleration time series record, it is essential to refer to the behavior of the 

theoretical autocorrelation function R(k). The theoretical autocovariance function, C(k), may be 

derived in multiplying Eq.( 2.1) by 𝑍𝑡 and taking expectations. 

 

𝐶(𝑘) = 𝜑1𝐶(𝑘 − 1) + ⋯ + 𝜑𝑝𝐶(𝑘 − 𝑝) + 𝐶𝑧𝑎(𝑘) − 𝜃1𝐶𝑧𝑎(𝑘 − 1) − ⋯ − 𝜃𝑞𝐶𝑧𝑎(𝑘 − 𝑞) (2.7) 
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where 𝐶𝑧𝑎(𝑘) = 𝐸[𝑍𝑡−𝑘.𝑎𝑡]. The autocorrelation function R(k) is obtained by dividing Eq.( 2.7) 

by C (0) and a similar form is obtained: 

 
 

𝑅(𝑘) = 𝜑1𝑅(𝑘 − 1) + ⋯ + 𝜑𝑝𝑅(𝑘 − 𝑝) + 𝑅𝑧𝑎(𝑘) − 𝜃1𝑅𝑧𝑎(𝑘 − 1) − ⋯ − 𝜃𝑞𝑅𝑧𝑎(𝑘 − 𝑞) (2.8) 

 

 

The fact that the values of 𝑍𝑡−𝑘 are correlated only to white noise values up to time t-k 

implies that: 

 
 

𝐶𝑧𝑎(𝑘) = 0   for k > 0 (2.9) 

 

 
There are some differences in the nature of the function depending on the instrument 

chosen. Thus, for processes using AR, the function will take the form of an exponentially 

decaying decay or series of waves as lag K increases. Alternatively, for MA, when lag K 

reaches a specific order g, the function becomes equal to zero. Finally, when the ARMA 

process is used, when the first g-p lag is overcome, the function takes the form of a 

combination of exponentially decaying waves. 

2.3 The Function of Partial Autocorrelation 

 

Partial autocorrelation function should be understood as such a way of describing the time 

dependence of the series, when combined with the use of AR, it becomes possible to 

accurately identify the order and type of the model being estimated. For stationary 
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autoregressive (AR) processes, the autocorrelation function is infinite in extent. Therefore, 

it is very convenient to describe the autoregressive process by the number of non-zero 

functions of the autocorrelations. The theoretical partial autocorrelation function P(k) could 

be found by the Yule-Walker equations (Box and Jenkins, [2]). 

For the ARMA process, which can be characterized as a stationary and invertible one, the 

partial autocorrelation function P(k) s is dominated by a damped exponential and sine 

waves depending on the moving average parameters after the first p-q lags. 

 
 

2.4 AIC RITERIA 

 

A fundamental problem is estimating the number of parameters and their 

numerical values to fit a model to a time series. The parameter estimation is based on the non- 

linear least squares, but the order of the model is based on the Akaike Information Criterion 

(Akaike [15]), which has received wide attention. Akaike has approached this problem using the 

maximum entropy measure. The Akaike Information Criterion (AIC) as a methodical 

mathematical model aids in the evaluation of the manner in which a model data can fit the data 

from which it was generated. The AIC mathematical model will warrant a sure comparison of 

numerous probable models as well as make a decision on which model can be best suited for the 

data. 

If we consider N independent observations of a random variable characterized by the 

probability density function g(x) and consider the parametric density function f(x/𝜃), the 

expected log-likelihood will be: 

𝐴 = 𝐸[log ƒ(𝑥/𝜃)] = 
1

 
𝑛 

𝑁 
i=1 log (f(𝑥/𝜃)) (2.10) 

 

When N goes to infinity, the following is obtained: 

∑ 
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𝑎 

𝑎 

 

lim𝑁→∞ 𝐴 = ∫ 𝑔(𝑥). log f(𝑥/𝜃)𝑑𝑥 with prob. 1. (2.11) 
 

Letting 𝑠(𝑔, ƒ(𝑥/𝜃)) = ∫ 𝑔(𝑥). log ƒ(𝑥/𝜃)𝑑𝑥, the difference is as illustrated in equation (2.12) 

below. 

𝐼(𝑔, ƒ(𝑥/𝜃) = 𝑠(𝑔, 𝑔) − 𝑠(𝑔, ƒ(𝑥/𝜃) (2.12) 
 

Equation B3 is sensitive to the average log-likelihood 𝑠(𝑔, ƒ(𝑥/𝜃). Thus, a criterion for defining 

the best fit is by minimizing the entropy H as illustrated in equation B4 below: 

𝐻 = − ∫ 𝑔(𝑥). log ƒ(𝑥/𝜃)𝑑𝑥 (2.13) 
 

 

 

One of the essential difficulties encountered during the run was the qualitative and 

quantitative estimation of the parameters. Specifically, it was necessary to determine the 

number of parameters needed as well as their numerical values in order to reduce the gap 

between the simulation model and the real time series. The problem is that the order of the 

model was previously studied with (Akaike Information Criteria, Akaike [16]), while the 

estimation of its parameters is based on the least squares method of a nonlinear function. 

Thus, Akaike has approached this problem using the maximum information criteria. If one 

considers independent observations entropy measure and Kullback-Liebler information 

criteria. Based on the AIC criteria for a stationary time series, the model to be chosen is the 

one that minimizes: 

𝐴𝐼𝐶(𝑝, 𝑞) = 𝑁. 𝐿𝑛(𝜎2) + 2(𝑝 + 𝑞) (2.14) 

 

 

where N is the sample size and 𝜎2 is the maximum likelihood estimate of the residual 
 

variance. 
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2.5 Modulating Function 

 

Another difficulty in performing the simulation was estimating the variance or, in other words, 

the envelope function. The main problem was to quantify this function since, for given 

conditions, its use is critical. Thus, the variance controls the non-stationarity of the processes and 

also takes into account some statistical parameters, among which the response of the structure or 

extreme values of acceleration. The variance of (𝑍𝑡), the acceleration time series data, considered 

as random variables, is given as follows: 
 

 

 
𝜎2 = 𝐸(𝑍 − 𝜇 )2 (2.15) 

𝑎 𝑡 𝑡 

 
 
 

The assumption that 𝐸(𝑍𝑡) = 0 has been commonly used in acceleration time series simulations. 

Ellis [17] used equally weighted two-second time windows with time intervals of 0.02 sec and 

estimated the variance as follows: 

 

 

ƒ2(𝑡) =  
1

 ∑i=𝑡+50(𝑍 )2 (2.16) 
𝑧 100 i=𝑡−50 i 

 
 
 

f(t) provides an approximate estimate of the modulating function. However, this approach does 

not have a criterion to distinguish between stationarity and non-stationarity data. For practical 

purposes, it is essential to characterize the variance function with a minimum number of 

parameters. In this study, a moving window of time interval equal to 0.5 seconds is utilized to 

determine the acceleration time series variance under question. This method to determine the 
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variance is used in all three acceleration time series used. MATLAB is used to do all necessary 

calculations. 

 
 

2.6 Parametric Envelope Function 

 

For practical purposes, it is essential to characterize the variance function with a minimum 

number of parameters. One approach used by Kozin [5] to estimate the envelope function is to 

use a cubic spline interpolation that follows the irregularities in acceleration time series. The 

spline is applied by fitting functions of the following form to a number of segments of the 

acceleration time series records. 

 
 

ƒ(𝑡) = 𝑎. 𝑡3 + 𝑏. 𝑡2 + 𝑐. 𝑡 + 𝑑 (2.17) 

 

 

Continuity at the intersections of these functions is assured by imposing a condition of an equal 

slope. The need to account for a large number of parameters limits the use of the cubic spline, 

even though it can be an excellent tool for fitting a record. In general, a simple function with a 

limited number of parameters may be a satisfactory answer for the current problem, to use a 

model approximation. A smoothed function is used in this studies of the form: 

 

 
𝑡−𝛽 

 
 

𝑆(𝑡) = 𝛼𝑒
−( 

𝛾  
)
 (2.18) 

 

 

 

where 𝛼, 𝛽, 𝛾, are constants found by fitting the function to the estimated variance using the least 

squares method. This function is effective in fitting modulating functions with narrow peaks. 

2 
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1 

 

2.7 Modeling Procedure 

 

Determining the subset of models and the corresponding orders was realized through the 

necessary to compare the estimated AR and partial AR functions with the behavior of the 

corresponding theoretical AR and partial AR functions, respectively. Thus, a satisfactory 

estimate of the AR function R(k) for a time series with zero mean at lag k is given as follows: 

 
 

𝑅(𝑘) = 𝐶(𝑘)/𝐶(0) (2.19) 
 

 

 

where 𝐶(𝑘) = (
1 

) ∑𝑡=𝑁−𝑘(𝑍 𝑍 ) 𝑘 = 1, 2, … , 𝑘 
𝑁 𝑡=1 𝑡   𝑡+𝑘 

 

It is essential to compute the variance of the estimated autocorrelation coefficients as a criterion 

to decide that the autocorrelation function is zero after certain lag K. Standard errors of the 

autocorrelation estimates is given by Bartlett [1] 

 

 

𝑅(𝑘) = ( 
1 

)(1 + (1 + 2(𝑅 
𝑛2 

2(1) + ⋯ + 𝑅 2(𝑞 ))2 k > q (2.20) 

 

The partial autocorrelation function may be estimated either by the Yule-Walker equations or by 

successively fitting autoregressive (AR) processes of order 1, 2,…,k. The Yule-Walker equations 

are obtained by substituting estimated autocorrelation coefficients R(k) obtained using Eq. 2.20 

and solving for successive values of k = 1,2, ..., K. Using the Yule-Walker equations may lead to 

problems when the parameters are close to the boundary values of the non-stationarity condition. 

Therefore, the use of fitting autoregressive processes of k orders is adopted to estimate the partial 

autocorrelation function. Again, the standard errors of partial autocorrelation estimates are 
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needed to decide if specific values may be considered to be zero beyond some lag K. Quenouille 

 

[18] has shown that for an AR process of order P, the estimates of the partial autocorrelation 

function of order p+1 or higher are nearly independent. The variance is given by: 

 
 

𝑉𝑎𝑟(ØØ𝑘𝑘) = 1/var [kk] - 1/n k > p+1 (2.21) 

 

 
Based on the estimated and theoretical autocorrelation and partial autocorrelation functions, 

subclasses from the general ARMA (p, q) process could be selected for further investigation. 

The selected subclasses of ARMA models are used to model the stationary time series obtained. 

The idea of maximum likelihood is usually used for the estimation of the parameters in the 

stochastic model. The maximum likelihood function is defined as the function associated with 

fixed observations Z, the variable set of parameters. In this study, the set of parameters refer to 

the p+q+1 parameters 〖(𝜑i, 𝛽i, 𝜎𝑎) of the ARMA model. If the original observation time series 

(𝑍i), which is in our case the stabilized acceleration record of being modeled by the ARMA (p, 

q) model. For a stationary invertible ARMA (p, q) model, it could be written the following: 

 
 

𝑎𝑡 = 𝑍𝑡 − 𝜑1𝑍𝑡−1 − ⋯ − 𝜑𝑝𝑍𝑡−𝑝 + 𝜃1𝑎𝑡−1 − ⋯ − 𝜃𝑞𝑎𝑡−𝑞 (2.22) 

 

 
with the assumption that 𝑍𝑡 = 0, for 𝑡 ≤ 0 , and 𝑎𝑡 = 0, for 𝑡 ≤ 0. 

 
For any set of parameters (𝜑, 𝜃), the values 𝑎𝑡 could be calculated successively. 

 

 
𝐿(£/𝑍) = 𝑎𝑡(𝜑, 𝜃/𝑍) (2.23) 

 

The a's are assumed to be independently normally distributed. 
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𝑛 𝑡 

 

 

 

 
𝑝(𝑎1 

 
, 𝑎2 

 
, … , 𝑎𝑛 ) = [ 

1
 

 
] exp (− ∑ 𝑎2/2) (2.24) 

𝑛 
2𝜋2 𝜎𝑎 

 
 
 

For any given parameters £, the probability distribution 𝑝(𝑎1, 𝑎2, … , 𝑎𝑛) is associated for a given 

data (𝑍𝑡). In this study, the likelihood function is Eq. (2. 8). It is convenient to work with log 

likelihood function 𝐿(£/𝑍). 

2.8 Generation of a Stationary White Noise 

 

Stationary white noise can be generated, but it needs to meet the general condition of 

demonstrating the same intensity at different times, providing it with a constant power spectral 

density. For analytical purposes, white noise is approximated by sample functions. First, a series 

of pseudo-random numbers 𝑢i are generated such that they will be repeated only after a vast 

cycle. Usually, the multiplicative congruence method is used, where the present pseudo-random 

number is 𝑢i is related to the next one by the following relationship: 

𝑟i+1 = 𝑘. 𝑟i(𝑚𝑜𝑑𝑢𝑙𝑜 𝑚) (2.26) 

 

Where 𝑘 𝑎𝑛𝑑 𝑚 are integers chosen to obtain the largest possible cycle. In this study, 𝑘 = 

16807 and 𝑚 = 2147483647 were used. Repetition occurs after a sequence length of the order 

214. 

The pseudo-random number 𝑟i generated by this method can be assumed to be independent 

realizations 𝑢i of random variables 𝑢 having a rectangular distribution 0 < 𝑢 < 1. These pseudo- 

random numbers will be used to generate a sample function that approaches white noise with a 

Gaussian distribution with mean 𝜇 and variance 𝑠2. Transformation of variables used in 

conjunction with sample rejection method of Ahrens and Dieter [19] 
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) 

 

Let 𝑥1 = 2𝑟1 − 1 
 

𝑥2 = 2𝑟2 − 1 
 

W = 𝑥1 + 𝑥2 
 

If W > 1 , the procedure is repeated. Otherwise; 
 

𝑦1 = (𝑥1 (− 
2𝐴𝑙𝑜g(𝑥1)  1/2 

𝖶 
). 𝑠 + 𝑢 (2.27) 

 

 

𝑦2 
 

= (𝑥2 (− 
2𝐴𝑙𝑜𝑔(𝑥2)

)1/2). 𝑠 + 𝑢 
W 

 

A sample function ƒ𝑘 can now be established by assigning 𝑦1, 𝑦2, … , 𝑦𝑛 to n successive 

ordinates spaced at equal intervals (𝛿𝑡 = 0.001 sec ). By repeating this procedure m times, a 

stationary process  is obtained. The process  is characterized by the autocorrelation function 

𝑅ƒ(𝑘), which is practically close to zero. 

 
The generation of white noise and its correlation function are shown in figures 1 and 2. 
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Chapter 3 

Application of ARMA Models 

 

3.1 Models Adopted 

 

In this study of acceleration time series, the choice of a model depends on the nature of the 

intended application. For design purposes, it is essential to employ the smallest possible number 

of acceleration time series parameters in the analysis. The model adopted is the autoregressive 

moving average ARMA model used in conjunction with a parametric envelope function. From 

previous sections, it is understood that the acceleration time series event is a non-stationary time 

series. As the first step in modeling procedures, the event is divided by the modulating function 

so as to obtain the stationary value of the series. The modulating function obtained is used to fit 

a smoothed parametric envelope function. A simple form for an event with a single peak, is 

given by: 

 

 
𝑡−𝛽 

 
 

𝑆(𝑡) = 𝛼𝑒
−( 

𝛾  
)
 (3.1) 

 

 

 

where 𝛼, 𝛽 , 𝛾, are constants found by fitting the function to the estimated variance using the least 

squares method. This function is effective in fitting modulating functions with narrow 

peaks. Subsequently, the stationary series is used to perform an estimation analysis of the model 

parameters. 

2 
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3.2 Acceleration Time Series Modeled 

 

It is worth noting that data from three acceleration time series were consistently used for this 

study. These included Afroun with 16000 data points (0.005-second digitization increment), Ain 

Defla with 5000 data points (0.005-second increment), and Dar Beida with 5528 data points 

(0.005-second increment). Thus, the critical difference between the series was the number of 

points to estimate. Shown in Fig. 3.1, Fig. 3.2, and Fig. 3.3 are the measured acceleration time 

series plots. 

 

 

 

 
 

 
Figure 3.1 Afroun Acceleration Time Series 
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Figure 3.2 Ain Defla Acceleration Time Series 
 
 

 
Figure 3.3 Dar El Beida Acceleration Time Series 
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As the first step in model identification, the modulating function f(t) was computed for each 

measured acceleration record using Eq. 2.7 The results are shown in Figs. 3.4, 3.5, and 3.6. It 

could be concluded that the non-stationarity is significant in each event. 

 

 

 

 

Figure 3.4 Afroun Measured and Envelope Functions. 
 

 

 

 

 
Figure 3.5 Ain Defla Measured and Envelope Functions. 
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Figure 3.6 Dar Beida Measured and Envelope Functions. 

 

The one peak envelope function proposed in Eq. 3.1 is fitted to each of the modulating functions 

of the measured records using the least square method. Measured and fitted functions are shown 

for the four acceleration time series in Figs. 3.4, 3.5, and 3.6. The original acceleration record and 

the modulating function obtained are then utilized to estimate the stabilized (stationary in the 

broad sense) acceleration time series. The stabilized time series obtained for the three events are 

shown in Figs. 3.7, 3.8, and 3.9 The variance of the series is approximately one with zero mean 

value. The frequency content of each of the time series will be included in the ARMA model 

parameters. 
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Figure 3.7 Stabilized Acceleration Series – Afroun 
 

 

 

 
 

 
Figure 3.8 Stabilized Acceleration Series – Ain Defla 
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Figure 3.9 Stabilized Acceleration Series – Dar El Beida 
 

 

 

 

The estimated autocorrelations for the three stabilized time series of the measured records were 

computed using Eq. 2.10. For illustration, the autocorrelation functions obtained are plotted in 

Figs. 3.10, 3.11, and 3.12. The tendency of the autocorrelation functions to die out rapidly 

indicates that none of the roots of the characteristic equations is close to the boundary of the unit 

circle. This ensures the time series stationarity obtained. 
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Figure 3.10 Estimated Autocorrelation for Afroun 
 

 

 

 

 

 
 

 
Figure 3.11 Estimated Autocorrelation for Ain Defla 
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Figure 3.12 Estimated Autocorrelation for Dar El Beida 

 

As explained previously, the partial autocorrelation functions for a record are estimated by fitting 

successive autoregressive processes of k orders using MATLAB. The results are plotted in Figs. 

3.13, 3.14, and 3.15. From the partial autocorrelation function of Afroun, Ain Defla, and Dar El 

Beida time series, it is seen that after lag k = 2, or k = 3, the correlations decrease. This suggests 

the use of an ARMA model of order (p, q) such that p-q = 2 or 3. A model ARMA (p, q) of p-q 

around p-q=2 or 3 should be tried. The use of AE and partial AR functions suggested the process 

models which might be used. To obtain efficient estimates of the parameters, all the models 

suggested by the AR and partial AR functions were applied to the three events under 

investigation. A variety of ARMA models were fitted to the experimental records for the three 

acceleration time series using the maximum likelihood estimates, which could be approximated 

by the least squares method. The comparison needed to select the order of the model could be 

done through the use of the AIC criteria. Subsequently, several ARMA simulations that had one 

or two MAs were found during the computation phase. In other words, the AIC (p, q) comparison 

clearly characterizes the simulation model with the minimum AIC value as the final one. Table 
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3.2 displays AIC values for ARMA (p, q) models for each events. The results indicate that 

Afroun, Ain Defla, and Dar El Beida acceleration time series are best characterized by ARMA (2, 

2) processes. Shown in Table 3.1 are the autoregressive parameters 𝜑1, 𝜑2, the moving average 

𝜃1, 𝜃2, and the envelope function parameters α,β,γ, corresponding to maximum likelihood 

estimates for each event. 

 

 

 

 
Figure 3.13 Partial Autocorrelation Function – Afroun 
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Figure 3.15 Partial Autocorrelation Function – Dar El Beida 

 

 
 

3.4 Acceleration Time Series Simulation [19] 

 

As previously stated, through the use of simulated ARMA process systems in a time-based 

approach, good results can be achieved with a limited number of parameters. To produce the 

population that describes the observed acceleration and be used for response spectra and damage, 
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acceleration time series simulation is needed. The experimental procedure used was as follows: 

first of all, the station time series were generated using the ARMA model. Once this was done, 

the stationary series was multiplied by the function s(t), an envelope form. In addition, the 

assumption that ARMA is treated as a linear combination of Gaussian random variables (𝑎𝑡) and 

already existing values (𝑍𝑡) was used: this means that the generated time series can be simulated 

recursively. Hence, shown in Figs. 3.16, 3.17, and 3.18 are three simulations of the acceleration 

time series. 

Table 3.1 ARMA and Envelope Function Parameters 
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Table 3.2 AIC Values for ARMA (p, q) Models 

 

Acceleration Time Series Model AIC (p, q) 

Afroun ARMA (1, 1) -3.77779 

 

ARMA (1, 2) -5.24942 

 

ARMA (2, 1) -5.27942 

 

ARMA (2, 2) -6.39901* 

 

ARMA (3, 1) -6.38901 

 

ARMA (3, 2) -6.39902 

Ain Defla ARMA (1, 1) -4.88647 

 

ARMA (1, 2) -5.75858 

 

ARMA (2, 1) -7.54612 

 

ARMA (2, 2) -7.91847* 

 

ARMA (3, 1) -7.90599 

 

ARMA (3, 2) -7.90799 

Dar El Beida ARMA (1, 1) -5.-00972 

 

ARMA (1, 2) -5.30972 

 

ARMA (2, 1) -6.0831 

 

ARMA (2, 2) -6.79935* 

 

ARMA (3, 1) -6.69935 

 

ARMA (3, 2) -6.59935 

*Optimal Set by AIC Criterion 
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Figure 3.17 Ain Defla Simulated Acceleration  

 

 

 

 

 

 

 

 

 

 

 
  


