BOOLEAN ALGEBRA

Index

\square Introduction
\square Boolean Algebra Laws
\square Boolean functions
\square Operation Precedence
\square Boolean Algebra Function
\square Canonical Forms
\square SOP
\square POS
\square Simplification of Boolean Functions
\square Algebric simplification
\square K-Map
\square Quine -McCluskey Method (Tabular Method)

Introduction

\square Boolean Algebra is used to analyze and simplify the digital (logic) circuits.
\square It uses only the binary numbers i.e. 0 and 1 . It is also called as Binary Algebra or logical Algebra.
\square It is a convenient way and systematic way of expressing and analyzing the operation of logic circuits
\square Boolean algebra was invented by George Boole in 1854.

Introduction

\square Variable used in Boolean algebra can have only two values. Binary 1 for HIGH and Binary 0 for LOW.
\square Complement of a variable is represented by an overbar (-). Thus, complement of variable B is represented as B^{\prime}. Thus if $B=0$ then $B^{\prime}=1$ and if $B=$ 1 then $B^{\prime}=0$.
\square ORing of the variables is represented by a plus $(+)$ sign between them. For example ORing of A, B, C is represented as $A+B+C$.
\square Logical ANDing of the two or more variable is represented by writing a dot between them such as A.B.C. Sometime the dot may be omitted like ABC.

Boolean Operations

AND			OR			Not	
A	B	A.B	A	B	A+B	A	A'
0	0	0	0	0	0	0	1
0	1	0	0	1	1	1	0
1	0	0	1	0	1		
1	1	1	1	1	1		

Laws in Boolean Algebra

\square Commutative Law
$\mathrm{A} . \mathrm{B}=\mathrm{B} . \mathrm{A}$
$A+B=B+A$
\square Associative Law
(A.B). $C=A .(B \cdot C)$
$(A+B)+C=A+(B+C)$
\square Distributive Law
$A .(B+C)=A . B+A . C$
$A+(B . C)=(A+B) \cdot(A+C)$
\square Absorption
$A+(A . B)=A$
$A .(A+B)=A$

$$
\begin{aligned}
& A+A B=A \\
& A+A^{\prime} B=A+B \\
& (A+B)(A+C)=A+B C
\end{aligned}
$$

AND Law
A. $0=0$
A. $1=A$
A. $\mathrm{A}=\mathrm{A}$
A. $A^{\prime}=0$
\square OR law
$\mathrm{A}+0=\mathrm{A}$
$\mathrm{A}+1=1$
$A+A=A$
$A+A^{\prime}=1$
\square Inversion
Complement Law

Law(Involution)
$A^{\prime \prime}=A$

Operator Presedence

\square The operator Precedence for evaluating Boolean expression is:
\square 1. Parentheses
\square 2. NOT
\square 3. AND
$\square 4.0 R$

Example

\square Using the Theorems and Laws of Boolean algebra, Prove the following.
$(A+B) \cdot\left(A+A^{\prime} B^{\prime}\right) \cdot C+\left(A^{\prime} \cdot\left(B+C^{\prime}\right)\right)^{\prime}+A^{\prime} \cdot B+A \cdot B \cdot C=A+B+C$

Boolean Algebric Function

\square A Boolean function can be expressed algebraically with binary variables, the logic operation symbols, parentheses and equal sign.
\square For a given combination of values of the variables, the Boolean function can be either 1 or 0.
\square Consider for example, the Boolean Function:
F1 = $x+y^{\prime} z$
The Function F 1 is equal to 1 if x is 1 or if both y^{\prime} and z are equal to $1 ; \mathrm{F}$ is equal to 0 otherwise.
\square The relationship between a function and its binary variables can be represented in a truth table. To represent a function in a truth table we need a list of the 2^{n} combinations of the n binary variables.
\square A Boolean function can be transformed from an algebraic expression into a logic diagram composed of different Gates

Boolean Algebric Function

\square Consider the following Boolean function:

Canonical Form

Fl $=x^{\prime} y^{\prime} z+x y^{\prime} z^{\prime}+x y^{\prime} z+x y z^{\prime}+x y z$
After Simplification

F1 = x $+y^{\prime} z$
\square A Boolean function can be represented in a truth table.

Realization of Boolean Function using Gates

Truth Table

\mathbf{x}	\mathbf{y}	\mathbf{z}	$\mathbf{F 1}$
$\mathbf{0}$	$\mathbf{0}$	0	0
$\mathbf{0}$	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
$\mathbf{1}$	$\mathbf{1}$	1	1

\square The purpose of Boolean algebra is to facilitate the analysis and design of digital circuits. It provides a convenient tool to:

- Express in algebraic form a truth table relationship between binary variables.
\square Express in algebraic form the input-output relationship of logic diagrams.
\square Find simpler circuits for the same function.
\square A Boolean function specified by a truth table can be expressed algebraically in many different ways. Two ways of forming Boolean expressions are Canonical and NonCanonical forms.

Canonical Forms For Boolean Function

\square SOP Form: The canonical SoP form for Boolean function of truth table are obtained by ORing the ANDed terms corresponding to the 1 's in the output column of the truth table
\square The product terms also known as minterms are formed by ANDing the complemented and uncomplemented variables in such a way that the 0 in the truth table is represented by a complement of variable 1 in the truth table is represented by a variable itself.

Canonical Forms For Boolean Function

\square SoP form - Example

$$
\text { F1 = x'yz' }+x y^{\prime} z+x y z^{\prime}+x y z
$$

$\mathrm{F} 1=(\mathrm{m} 2+\mathrm{m} 5+\mathrm{m} 6+\mathrm{m} 7)$
$\mathrm{F} 1=\sum(\mathrm{m} 2, \mathrm{~m} 5, \mathrm{~m} 6, \mathrm{~m} 7)$
$\mathrm{F} 1=\sum(2,5,6,7)$

x	y	z	F1	Minterms	
0	0	0	0	$x^{\prime} y^{\prime} z^{\prime}$	m0
0	0	1	0	$x^{\prime} y^{\prime} z$	m1
0	1	0	1	$x^{\prime} y z^{\prime}$	m2
0	1	1	0	$x^{\prime} y z$	m3
1	0	0	0	$x^{\prime} y^{\prime}{ }^{\prime}$	m4
1	0	1	1	$x y^{\prime} z$	m5
1	1	0	1	xyz'	m6
1	1	1	1	xyz	m7

Decimal numbers in the above expression indicate the subscript of the minterm notation

Canonical Forms For Boolean Function

\square PoS Form: The canonical PoS form for Boolean function of truth table are obtained by ANDing the ORed terms corresponding to the 0 's in the output column of the truth table
\square The product terms also known as Maxterms are formed by ORing the complemented and uncomplemented variables in such a way that the 1 in the truth table is represented by a complement of variable 0 in the truth table is represented by a variable itself.

Canonical Forms For Boolean Function

\square PoS form -

Example

F2 $=(x+y+z) \cdot\left(x+y+z^{\prime}\right) \cdot\left(x+y^{\prime}+z^{\prime}\right) \cdot\left(x^{\prime}+y+z\right)$
$F 2=(M 1 . M 2 . M 4 . M 5)$
$F 2=\Pi(M 1, M 2, M 4, M 5)$

F2 $=\Pi(1,2,4,5)$
Decimal numbers in the above expression indicate the subscript of the Maxterm notation

x	y	z	F2	Maxterms	
0	0	0	0	$x+y+z$	M1
0	0	1	0	$x+y+z^{\prime}$	M2
0	1	0	1	$x+y^{\prime}+z$	M3
0	1	1	0	$x+y^{\prime}+z^{\prime}$	M4
1	0	0	0	$x^{\prime}+y+z$	M5
1	0	1	1	$x^{\prime}+y+z^{\prime}$	M6
1	1	0	1	$x^{\prime}+y^{\prime}+z$	M7
1	1	1	1	$x^{\prime}+y^{\prime}+z^{\prime}$	M8

Canonical Forms For Boolean Function

\square Example: Express the following in SoP form
F1 = $x+y$ ' z
\square Solution:

$$
\begin{aligned}
& =\left(y+y^{\prime}\right) x+y^{\prime} z\left(x+x^{\prime}\right) \quad\left[\text { because } x+x^{\prime}=1\right] \\
& =x y+x y^{\prime}+x y^{\prime} z+x^{\prime} y^{\prime} z \\
& =x y\left(z+z^{\prime}\right)+x y^{\prime}\left(z+z^{\prime}\right)+x y^{\prime} z+x^{\prime} y^{\prime} z \\
& =x y z+x y z^{\prime}+x y^{\prime} z+x y^{\prime} z^{\prime}+x y^{\prime} z+x^{\prime} y^{\prime} z \\
& =x y z+x y z^{\prime}+\left(x y^{\prime} z+x y^{\prime} z\right)+x y^{\prime} z^{\prime}+x^{\prime} y^{\prime} z \\
& =x y z+x y z^{\prime}+x y^{\prime} z+x y^{\prime} z^{\prime}+x^{\prime} y^{\prime} z \quad[\text { because } x+x=x] \\
& =m 7+m 6+m 5+m 4+m 1 \\
& =\sum(m 7, m 6, m 5, m 4, m 1) \\
& =\sum(1,4,5,6,7)
\end{aligned}
$$

Canonical Forms - Exercises

\square Exercise 1: Express $G(A, B, C)=A \cdot B \cdot C+A^{\prime} \cdot B+B^{\prime} . C$ in SoP form.
\square Exercise 2: Express $F(A, B, C)=A \cdot B^{\prime}+B^{\prime} . C$ in PoS form

Simplification of Boolean functions

\square Algebric simplification
\square K-Map simplification
\square Quine-McLusky Method of simplification

Algebraic Simplification

\square Using Boolean algebra techniques, simplify this expression: $A B+A(B+C)+B(B+C)$
\square Solution
$=A B+A B+A C+B B+B C$
$=A B+A B+A C+B+B C$
$=A B+A C+B+B C$
$=A B+A C+B$
$=B+A C$
(Distributive law)
($B . B=B$)
$(A B+A B=A B)$
$(B+B C=B)$
$(A B+B=B)$

Algebric Simplification

\square Minimize the following Boolean expression using Algebric Simplification
$F(A, B, C)=A^{\prime} B+B C^{\prime}+B C+A B^{\prime} C^{\prime}$
\square Solution
$=A^{\prime} B+\left(B C^{\prime}+B C^{\prime}\right)+B C+A B^{\prime} C^{\prime}$ [indeponent law]
$=A^{\prime} B+\left(B C^{\prime}+B C\right)+\left(B C^{\prime}+A B^{\prime} C^{\prime}\right)$
$=A^{\prime} B+B\left(C^{\prime}+C\right)+C^{\prime}\left(B+A B^{\prime}\right)$
$=A^{\prime} B+B .1+c^{\prime}(B+A)$
$=B\left(A^{\prime}+1\right)+C^{\prime}(B+A)$
$=B+C^{\prime}(B+A)$
$\left[A^{\prime}+1=1\right]$
$=B+B C^{\prime}+A C^{\prime}$
$=B\left(1+C^{\prime}\right)+A C^{\prime}$
$=B+A C^{\prime}$
$\left[1+C^{\prime}=1\right]$

Algebric Simplification

\square Simplify: $C+(B C)^{\prime}$
$=C+(B C)^{\prime}$
Original Expression
$=C+\left(B^{\prime}+C^{\prime}\right) \quad$ DeMorgan's Law.
$=\left(C+C^{\prime}\right)+B^{\prime} \quad$ Commutative, Associative Laws.
$=1+B^{\prime}$
$=1$

Complement Law.
Identity Law.

Algebric Simplification

\square Exercise 3: Using the theorems and laws of Boolean Algebra, reduce the following functions

$$
F 1(A, B, C, D)=\sum(0,1,2,3,6,7,14,15)
$$

\square Solution:
$=A^{\prime} B^{\prime} C^{\prime} D^{\prime}+A^{\prime} B^{\prime} C^{\prime} D+A^{\prime} B^{\prime} C D^{\prime}+A^{\prime} B^{\prime} C D+A^{\prime} B C D^{\prime}+A^{\prime} B C D+A B C D^{\prime}+A B C D$
$=$?
\square Exercise 4: Using the theorems and laws of Boolean Algebra, reduce the following functions
$\mathrm{Fl}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\rceil(0,1,4,5,7)$
\square Solution:
$=(X+Y+Z)\left(X+Y+Z^{\prime}\right)\left(X^{\prime}+Y+Z\right)\left(X^{\prime}+Y+Z^{\prime}\right)\left(X^{\prime}+Y^{\prime}+Z^{\prime}\right)$
$=$?

Simplification Using K-Map

\square Karnaugh Maps
\square The Karnaugh map (K-map), introduced by Maurice Karnaugh in 1953, is a gridlike representation of a truth table which is used to simplify boolean algebra expressions.
\square A Karnaugh map has zero and one entries at different positions. It provides grouping together Boolean expressions with common factors and eliminates unwanted variables from the expression.

\square In a K-map, crossing a vertical or horizontal cell boundary is always a change of only one variable.

K-Map Simplification

\square A Karnaugh map provides a systematic method for simplifying Boolean expressions and, if properly used, will produce the simplest expression possible, known as the minimum expression.
\square Karnaugh maps can be used for expressions with two, three, four. and five variables. Another method, called the QuineMcClusky method can be used for higher numbers of variables.
\square The number of cells in a Karnaugh map is equal to the total number of possible input variable combinations as is the number of rows in a truth table. For three variables, the number of cells is $2^{3}=8$. For four variables, the number of cells is $2^{4}=16$.

K-Map Simplification

\square The 4-Variable Karnaugh Map
\square The 4-variable Karnaugh map is an array of sixteen cells,
\square Binary values of A and B are along the left side and the values of C and D are across the top.
\square The value of a given cell is the binary values of A and B at the left in the same row combined with the binary values of C and D at the top in the same column.
\square For example, the cell in the upper right corner has a binary value of 0010 and the cell in the lower right corner has a binary value of 1010.

The 4-Variable Karnaugh Map

Figure shows the standard product terms that are represented by each cell in the 4 -variable Karnaugh map.

K-Map

The 3-Variable Karnaugh Map

\square A 3-variable Karnaugh map showing product terms

K-Map Simplification

\square Procedure

- After forming the K-Map, enter 1 s for the min terms that correspond to 1 in the truth table (or enter 1 s for the min terms of the given function to be simplified). Enter Os for the remaining minterms.
\square Encircle octets, quads and pairs taking in use adjecency, overlapping and rolling. Try to form the groups of maximum number of 1 s
\square If any such 1 s occur which are not used in any of the encircled groups, then these isolated 1 s are encircled separately.
\square Review all the encircled groups and remove the redundant groups, if any.
\square Write the terms for each encircled group.
\square The final minimal Boolean expression corresponding to the K-Map will be obtained by ORing all the terms obtained above

K-Map Simplification - Example 1

\square Simplify
$F=A^{\prime} B^{\prime} C^{\prime} D^{\prime}+A^{\prime} B^{\prime} C^{\prime} D+A^{\prime} B C^{\prime} D^{\prime}+A^{\prime} B C^{\prime} D+A^{\prime} B C D^{\prime}+A^{\prime} B C D+A B^{\prime} C^{\prime} D$
$+A B^{\prime} C D$

Solution:

Step 1: Draw the K-Map and label Properly
Step 2: Fill up the cells by 1 s as per the given function which you want to simplify
Step 3: Encircle adjacent 1 s making groups of $16,8,4,2$ and single 1 's starting from big to small

Step 4: write the terms representing the groups
Step 5: The final minimal Boolean expression corresponding to the KMap will be obtained bu Oring all the terms obtained above

Simplify
$F=A^{\prime} B^{\prime} C^{\prime} D^{\prime}+A^{\prime} B^{\prime} C^{\prime} D+A^{\prime} B C^{\prime} D^{\prime}+A^{\prime} B C^{\prime} D+A^{\prime} B C D^{\prime}+A^{\prime} B C D+A B^{\prime} C^{\prime} D$
$+A B^{\prime} C D$

Step 1

Step 2

Step 4

K-Map Example 2

\square Simplify $\mathrm{F}=\bar{B} \bar{C}+A \bar{B}+A B \bar{C}+A \bar{B} C \bar{D}+\bar{A} \bar{B} \bar{C} D+A \bar{B} C D$

\square Solution

The given expression is obviously not in standard form because each product term does not have four variables.

```
B}\overline{C}\quadA\overline{B}+AB\overline{C}+A\overline{B}C\overline{D}+\overline{A}\overline{B}\overline{C}D+A\overline{B}C
0000 1000 1100 1010 0001 1011
0001 1001 1101
1000 1010
1001 1011
```

\square Map each of the resulting binary values by placing a 1 in the appropriate cell of the 4-variable Karnaugh map.

Simplify: $F=\bar{B} \bar{C}+A \bar{B}+A B \bar{C}+A \bar{B} C \bar{D}+\bar{A} \bar{B} \bar{C} D+A \bar{B} C D$

Step 1,2

Step 3,4

Step 5

$$
F=A B^{\prime}+A C^{\prime}+B^{\prime} C^{\prime}
$$

K-Map

\square For a 4-variable map:

- 1-cell group yields a 4-variable product term
- 2-cell group yields a 3-variable product term
- 4-cell group yields a 2 -variable product term
- 8-cell group yields a 1 -variable term
- 16-cell group yields a value of 1 for the expression
\square For a 3-variable map:
- l-cell group yields a 3-variable product term
- 2-cell group yields a 2-variable product term
- 4-cell group yields a 1 -variable term
\square - - cell group yields a value of 1 for the expression

K-Map Example 3

\square Simplify the following three variable function $F=A^{\prime}+A B^{\prime}+A B C^{\prime}$
Solution:
The given function is not in standard SoP form, so the standard form will be

$F=\sum(0,1,2,3,4,5,6)$

$$
F=A^{\prime}+B^{\prime}+C^{\prime}
$$

K-Map Simplification - Exercise

\square Minimize the following function using K-Map
i) $P(A, B, C, D)=\sum(0,1,2,5,8,10,11,14,15)$
ii) $F(x, y, z)=x^{\prime} y^{\prime} z^{\prime}+x^{\prime} y^{\prime} z+x y z^{\prime}+x y z$
iii) $S(a, b, c, d)=a b^{\prime} b^{\prime}+b^{\prime} c d$ ' $+a^{\prime} b c^{\prime} d+a b{ }^{\prime} c^{\prime} d$ ' $+a b{ }^{\prime} c d+a c b d$ ' $+a b c d$

Quine- McCluskey Method

\square K-Map Method is a useful tool for the simplification of Boolean function up to four variables. Although this method can be used for 5 or 6 variables but it is not simple to use.
\square Another method developed by Quine and improved by McCluskey was found to be good for simplification of Boolean functions of any number of variables.

Thankyou

