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Introduction

 Boolean Algebra is used to analyze 
and simplify the digital (logic) 
circuits. 

 It uses only the binary numbers i.e. 
0 and 1. It is also called as Binary 
Algebra or logical Algebra. 

 It is a convenient way and 
systematic way of expressing and 
analyzing the operation of logic 
circuits

 Boolean algebra was invented 
by George Boole in 1854.



Introduction

 Variable used in Boolean algebra can have only two 
values. Binary 1 for HIGH and Binary 0 for LOW.

 Complement of a variable is represented by an 
overbar (-). Thus, complement of variable B is 
represented as B’ . Thus if B = 0 then  B’= 1 and if B = 
1 then  B’= 0. 

 ORing of the variables is represented by a plus (+) sign 
between them. For example ORing of A, B, C is 
represented as A + B + C.

 Logical ANDing of the two or more variable is 
represented by writing a dot between them such as 
A.B.C. Sometime the dot may be omitted like ABC.



Boolean Operations

A B A.B

0 0 0

0 1 0

1 0 0

1 1 1

A B A+B

0 0 0

0 1 1

1 0 1

1 1 1

A A’

0 1

1 0

AND OR Not



Laws in Boolean Algebra

 Commutative Law
A.B = B.A 
A+B = B+A
 Associative Law
(A.B).C = A.(B.C)
(A+B) + C = A+ (B+C)
 Distributive Law
A.(B+C)=A.B+A.C
A+(B.C)=(A+B).(A+C)
 Absorption
A+ (A.B)=A
A.(A+B)=A

 AND Law
A.0 = 0
A.1 =A
A.A = A
A.A’ =0
 OR law
A+0 = A
A+1=1
A+A=A
A+A’ = 1
 Inversion 

Law(Involution)
A’’ = A

 DeMorgan’s 
Theorm

(x.y)’ = x’ + y’
(x+y)’ = x’ . y’

A+AB = A
A+A’B =A+B
(A+B)(A+C) = A+BC

Idempotent  Law

Complement Law



Operator Presedence

 The operator Precedence for evaluating Boolean 
expression is: 
 1. Parentheses 
 2. NOT 
 3. AND 
 4. OR 



Example

 Using the Theorems and Laws of Boolean algebra, 
Prove the following.
(A+B) .(A+A’B’).C + (A’.(B+C’))’ + A’.B + A.B.C = A+B+C



Boolean Algebric Function

 A Boolean function can be expressed algebraically with binary variables, the logic 
operation symbols, parentheses and equal sign. 

 For a given combination of values of the variables, the Boolean function can be 
either 1 or 0.

 Consider for example, the Boolean Function:
F1 = x + y’z 
The Function F1 is equal to 1 if x is 1 or if both y' and z are equal to 1; F1 is equal to 

0 otherwise.

 The relationship between a function and its binary variables can be represented in 
a truth table. To represent a function in a truth table we need a list of 
the 2n combinations of the n binary variables.

 A Boolean function can be transformed from an algebraic expression into a logic 
diagram composed of different Gates



Boolean Algebric Function

 Consider the following Boolean 
function: 

F1= x’y’z+xy’z’+xy’z+xyz’+xyz
After Simplification

F1 = x + y’z 
 A Boolean function can be 

represented in a truth table.

x y z F1

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

Truth Table

y
z
x F1
Realization of Boolean Function using Gates

Canonical Form

Non Canonical 
Form



 The purpose of Boolean algebra is to facilitate the analysis 
and design of digital circuits. It provides a convenient tool 
to:
 Express in algebraic form a truth table relationship between 

binary variables.
 Express in algebraic form the input-output relationship of logic 

diagrams.
 Find simpler circuits for the same function.

 A Boolean function specified by a truth table can be 
expressed algebraically in many different ways. Two ways 
of forming Boolean expressions are Canonical and Non-
Canonical forms.



Canonical Forms For Boolean Function

 SOP Form: The canonical SoP form for Boolean 
function of truth table are obtained by ORing the 
ANDed terms corresponding to the 1’s in the output 
column of the truth table

 The product terms also known as minterms are 
formed by ANDing the complemented and un-
complemented variables in such a way that the 0 in 
the truth table is represented by a complement of 
variable 1 in the truth table is represented by a 
variable itself.



Canonical Forms For Boolean Function

 SoP form – Example
x y z F1 Minterms

0 0 0 0 x’y’z’ m0

0 0 1 0 x’y’z m1

0 1 0 1 x’yz’ m2

0 1 1 0 x’yz m3

1 0 0 0 xy’z’ m4

1 0 1 1 xy’z m5

1 1 0 1 xyz’ m6

1 1 1 1 xyz m7

F1= x’yz’ + xy’z + xyz’ + xyz

F1 = (m2+m5+m6+m7)

F1 =∑(m2,m5,m6,m7)

F1 = ∑ (2, 5,6,7)
Decimal numbers in the above 

expression indicate the subscript of 
the minterm notation



Canonical Forms For Boolean Function

 PoS Form: The canonical PoS form for Boolean 
function of truth table are obtained by ANDing the 
ORed terms corresponding to the 0’s in the output 
column of the truth table

 The product terms also known as Maxterms are 
formed by ORing the complemented and un-
complemented variables in such a way that the 1 in 
the truth table is represented by a complement of 
variable 0 in the truth table is represented by a 
variable itself.



Canonical Forms For Boolean Function

 PoS form – 
Example

x y z F2 Maxterms

0 0 0 0 x + y+z M1

0 0 1 0 x+y+z’ M2

0 1 0 1 x+y’ + z M3

0 1 1 0 x+y’+z’ M4

1 0 0 0 x’+y+z M5

1 0 1 1 x’ +y+z’ M6

1 1 0 1 x’+y’+z M7

1 1 1 1 x’+y’+z’ M8

F2=(x+y+z).(x+y+z’).(x+y’+z’).(x’+y+z)

F2 = (M1.M2.M4.M5)

F2 =∏(M1,M2,M4,M5)

F2 = ∏(1, 2,4,5)
Decimal numbers in the above expression 

indicate the subscript of the Maxterm 
notation



Canonical Forms For Boolean Function

 Example: Express the following in SoP form
F1 = x + y’z 
 Solution:
=(y+y’)x + y’z(x+x’) [because x+x’=1]
=xy + xy’ + xy’z + x’y’z
=xy(z+z’) + xy’(z+z’) + xy’z + x’y’z
=xyz + xyz’ + xy’z + xy’z’ + xy’z + x’y’z
=xyz + xyz’ + (xy’z + xy’z) + xy’z’ + x’y’z
= xyz + xyz’ + xy’z + xy’z’ + x’y’z   [because x+x =x]
= m7 + m6 +  m5 + m4 + m1
= ∑(m7, m6, m5, m4, m1)
= ∑(1,4,5,6,7)



Canonical Forms - Exercises

 Exercise 1: Express G(A,B,C)=A.B.C + A’.B + B’.C in 
SoP form.

 Exercise 2: Express F(A,B,C)=A.B’ + B’.C in PoS form



Simplification of Boolean functions

 Algebric simplification
 K-Map simplification
 Quine-McLusky  Method of simplification



Algebraic Simplification 

 Using Boolean algebra techniques, simplify this 
expression: AB + A(B + C) + B(B + C)

 Solution
=AB + AB + AC + BB + BC  (Distributive law)
=AB + AB + AC + B + BC  (B.B=B)
= AB + AC + B + BC (AB+AB=AB)
= AB + AC + B (B+BC =B)
=B+AC (AB+B =B)



Algebric Simplification 

 Minimize the following Boolean expression using Algebric 
Simplification

F(A,B,C)=A′B+BC′+BC+AB′C′
 Solution
=A′B+(BC′+BC′)+BC+AB′C′  [indeponent law]
= A′B+(BC′+BC)+(BC’+AB′C′) 
= A′B+B(C′+C)+C’(B+AB′) 
=A’B + B.1+ c’ (B+A)
= B(A′+1)+C′(B+A)
=B + C′(B+A)  [A’+1=1]
= B+BC′+AC′
= B(1+C′)+AC′
= B+AC′ [1+C’ = 1]



Algebric Simplification 

 Simplify: C + (BC)’
=C + (BC)’ Original Expression
=C + (B’ + C’) DeMorgan's Law.
=(C + C’) + B’ Commutative, Associative Laws.
=1 + B’ Complement Law.
=1 Identity Law.



Algebric Simplification 

 Exercise 3: Using the theorems and laws of Boolean 
Algebra, reduce the following functions

 F1(A,B,C,D) = ∑(0,1,2,3,6,7,14,15)
 Solution: 
= A’B’C’D’ + A’B’C’D + A’B’CD’ + A’B’CD +A’BCD’ + A’BCD + ABCD’ + ABCD
= ? 

 Exercise 4: Using the theorems and laws of Boolean 
Algebra, reduce the following functions

 F1(X,Y,Z) = ∏(0,1,4,5,7)
 Solution: 
=(X+Y+Z) (X+Y+Z’) (X’+Y+Z) (X’+Y+Z’) (X’+Y’+Z’) 
=  ?



Simplification Using K-Map

 Karnaugh Maps
 The Karnaugh map (K–map), introduced 

by Maurice Karnaugh in 1953, is a grid-
like representation of a truth table which 
is used to simplify boolean algebra 
expressions. 

 A Karnaugh map has zero and one 
entries at different positions. It provides 
grouping together Boolean expressions 
with common factors and eliminates 
unwanted variables from the expression. 

 In a K-map, crossing a vertical or 
horizontal cell boundary is always a 
change of only one variable.



K-Map Simplification

 A Karnaugh map provides a systematic method for 
simplifying Boolean expressions and, if properly used, will 
produce the simplest expression possible, known as the 
minimum expression. 

 Karnaugh maps can be used for expressions with two, three, 
four. and five variables. Another method, called the Quine-
McClusky method can be used for higher numbers of 
variables. 

 The number of cells in a Karnaugh map is equal to the total 
number of possible input variable combinations as is the 
number of rows in a truth table. For three variables, the 
number of cells is 23 = 8. For four variables, the number of 
cells is 24 = 16. 



K-Map Simplification

 The 4-Variable Karnaugh Map 
 The 4-variable Karnaugh map is an array of sixteen 

cells,
 Binary values of A and B are along the left side and 

the values of C and D are across the top.
  The value of a given cell is the binary values of A and 

B at the left in the same row combined with the binary 
values of C and D at the top in the same column.

  For example, the cell in the upper right corner has a 
binary value of 0010 and the cell in the lower right 
corner has a binary value of 1010. 



The 4-Variable Karnaugh Map 

Figure shows the standard product terms that are represented by each cell
 in the 4-variable Karnaugh map. 



K-Map



The 3-Variable Karnaugh Map 

 A 3-variable Karnaugh map showing product terms



K-Map Simplification

 Procedure
 After forming the K-Map, enter 1s for the min terms that 

correspond to 1 in the truth table (or enter 1s for the min terms of 
the given function to be simplified). Enter 0s for the remaining 
minterms.

 Encircle octets, quads and pairs taking in use adjecency, 
overlapping and rolling. Try to form the groups of maximum 
number of 1s

 If any such 1s occur which are not used in any of the encircled 
groups, then these isolated 1s are encircled separately.

 Review all the encircled groups and remove the redundant 
groups, if any.

 Write the terms for each encircled group.
 The final minimal Boolean expression corresponding to the K-Map 

will be obtained by ORing all the terms obtained above



K-Map Simplification – Example 1

 Simplify 

F=A’B’C’D’ + A’B’C’D + A’BC’D’ + A’BC’D + A’BCD’ + A’BCD + AB’C’D

 + AB’CD 

Solution:

Step  1: Draw the K-Map and label Properly

Step 2: Fill up the cells by 1s as per the given function which you want to 
simplify

Step 3: Encircle adjacent 1s making groups of 16, 8, 4 ,2 and single 1’s 
starting from big to small 

Step 4: write the terms representing the groups

Step 5: The final minimal Boolean expression corresponding to the K-
Map will be obtained bu Oring all the terms obtained above



Simplify 
F=A’B’C’D’ + A’B’C’D + A’BC’D’ + A’BC’D + A’BCD’ + A’BCD + AB’C’D
 + AB’CD 

Step 4 

Step 1 Step 2 Step 3

Step 5: 

F = A’C’ + A’B + AB’D



K-Map Example 2

 Simplify   F=

 Solution
The given expression is obviously not in standard form because 

each product term does not have four variables.

 Map each of the resulting binary values by placing a 1 in the appropriate 
cell of the 4- variable Karnaugh map.



Simplify: F= 

Step 1,2 Step 3,4

Step 5

F= AB’ + AC’ + B’C’



K-Map 

 For a 4-variable map:
  1-cell group yields a 4-variable product term 
  2-cell group yields a 3-variable product term 
 4-cell group yields a 2-variable product term 
 8-cell group yields a 1-variable term 
 16-cell group yields a value of 1 for the expression

 For a 3-variable map:
 l-cell group yields a 3-variable product term
 2-cell group yields a 2-variable product term
 4-cell group yields a 1-variable term
 8-cell group yields a value of 1 for the expression 



K-Map Example 3

 Simplify the following three variable function
F = A’ + AB’ + ABC’
Solution:
The given function is not in standard SoP form, so the 

standard form will be 

F= ∑(0,1,2,3,4,5,6)

F = A’ + B’ + C’



K-Map Simplification - Exercise

 Minimize the following function using K-Map
i)   P(A,B,C,D) = ∑(0,1,2,5,8,10,11,14,15)

ii)  F(x,y,z)=x’y’z’ + x’y’z + xyz’ + xyz

iii) S(a,b,c,d) = a’b’c’ + b’cd’ + a’bc’d +ab’c’d’ + ab’cd + acbd’ + abcd 



Quine- McCluskey Method

 K-Map Method is a useful tool for the simplification of 
Boolean function up to four variables. Although this 
method can be used for 5 or 6 variables but it is not 
simple to use.

 Another method developed by Quine and improved by 
McCluskey was found to be good for simplification of 
Boolean functions of any number of variables.

Self Study



Thankyou


