
BOOLEAN ALGEBRA

Compiled By: Afaq Alam Khan

Index

 Introduction
 Boolean Algebra Laws
 Boolean functions
 Operation Precedence
 Boolean Algebra Function
 Canonical Forms

 SOP
 POS

 Simplification of Boolean Functions
 Algebric simplification
 K-Map
 Quine –McCluskey Method (Tabular Method)

Introduction

 Boolean Algebra is used to analyze
and simplify the digital (logic)
circuits.

 It uses only the binary numbers i.e.
0 and 1. It is also called as Binary
Algebra or logical Algebra.

 It is a convenient way and
systematic way of expressing and
analyzing the operation of logic
circuits

 Boolean algebra was invented
by George Boole in 1854.

Introduction

 Variable used in Boolean algebra can have only two
values. Binary 1 for HIGH and Binary 0 for LOW.

 Complement of a variable is represented by an
overbar (-). Thus, complement of variable B is
represented as B’ . Thus if B = 0 then B’= 1 and if B =
1 then B’= 0.

 ORing of the variables is represented by a plus (+) sign
between them. For example ORing of A, B, C is
represented as A + B + C.

 Logical ANDing of the two or more variable is
represented by writing a dot between them such as
A.B.C. Sometime the dot may be omitted like ABC.

Boolean Operations

A B A.B

0 0 0

0 1 0

1 0 0

1 1 1

A B A+B

0 0 0

0 1 1

1 0 1

1 1 1

A A’

0 1

1 0

AND OR Not

Laws in Boolean Algebra

 Commutative Law
A.B = B.A
A+B = B+A
 Associative Law
(A.B).C = A.(B.C)
(A+B) + C = A+ (B+C)
 Distributive Law
A.(B+C)=A.B+A.C
A+(B.C)=(A+B).(A+C)
 Absorption
A+ (A.B)=A
A.(A+B)=A

 AND Law
A.0 = 0
A.1 =A
A.A = A
A.A’ =0
 OR law
A+0 = A
A+1=1
A+A=A
A+A’ = 1
 Inversion

Law(Involution)
A’’ = A

 DeMorgan’s
Theorm

(x.y)’ = x’ + y’
(x+y)’ = x’ . y’

A+AB = A
A+A’B =A+B
(A+B)(A+C) = A+BC

Idempotent Law

Complement Law

Operator Presedence

 The operator Precedence for evaluating Boolean
expression is:
 1. Parentheses
 2. NOT
 3. AND
 4. OR

Example

 Using the Theorems and Laws of Boolean algebra,
Prove the following.
(A+B) .(A+A’B’).C + (A’.(B+C’))’ + A’.B + A.B.C = A+B+C

Boolean Algebric Function

 A Boolean function can be expressed algebraically with binary variables, the logic
operation symbols, parentheses and equal sign.

 For a given combination of values of the variables, the Boolean function can be
either 1 or 0.

 Consider for example, the Boolean Function:
F1 = x + y’z
The Function F1 is equal to 1 if x is 1 or if both y' and z are equal to 1; F1 is equal to

0 otherwise.

 The relationship between a function and its binary variables can be represented in
a truth table. To represent a function in a truth table we need a list of
the 2n combinations of the n binary variables.

 A Boolean function can be transformed from an algebraic expression into a logic
diagram composed of different Gates

Boolean Algebric Function

 Consider the following Boolean
function:

F1= x’y’z+xy’z’+xy’z+xyz’+xyz
After Simplification

F1 = x + y’z
 A Boolean function can be

represented in a truth table.

x y z F1

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

Truth Table

y
z
x F1
Realization of Boolean Function using Gates

Canonical Form

Non Canonical
Form

 The purpose of Boolean algebra is to facilitate the analysis
and design of digital circuits. It provides a convenient tool
to:
 Express in algebraic form a truth table relationship between

binary variables.
 Express in algebraic form the input-output relationship of logic

diagrams.
 Find simpler circuits for the same function.

 A Boolean function specified by a truth table can be
expressed algebraically in many different ways. Two ways
of forming Boolean expressions are Canonical and Non-
Canonical forms.

Canonical Forms For Boolean Function

 SOP Form: The canonical SoP form for Boolean
function of truth table are obtained by ORing the
ANDed terms corresponding to the 1’s in the output
column of the truth table

 The product terms also known as minterms are
formed by ANDing the complemented and un-
complemented variables in such a way that the 0 in
the truth table is represented by a complement of
variable 1 in the truth table is represented by a
variable itself.

Canonical Forms For Boolean Function

 SoP form – Example
x y z F1 Minterms

0 0 0 0 x’y’z’ m0

0 0 1 0 x’y’z m1

0 1 0 1 x’yz’ m2

0 1 1 0 x’yz m3

1 0 0 0 xy’z’ m4

1 0 1 1 xy’z m5

1 1 0 1 xyz’ m6

1 1 1 1 xyz m7

F1= x’yz’ + xy’z + xyz’ + xyz

F1 = (m2+m5+m6+m7)

F1 =∑(m2,m5,m6,m7)

F1 = ∑ (2, 5,6,7)
Decimal numbers in the above

expression indicate the subscript of
the minterm notation

Canonical Forms For Boolean Function

 PoS Form: The canonical PoS form for Boolean
function of truth table are obtained by ANDing the
ORed terms corresponding to the 0’s in the output
column of the truth table

 The product terms also known as Maxterms are
formed by ORing the complemented and un-
complemented variables in such a way that the 1 in
the truth table is represented by a complement of
variable 0 in the truth table is represented by a
variable itself.

Canonical Forms For Boolean Function

 PoS form –
Example

x y z F2 Maxterms

0 0 0 0 x + y+z M1

0 0 1 0 x+y+z’ M2

0 1 0 1 x+y’ + z M3

0 1 1 0 x+y’+z’ M4

1 0 0 0 x’+y+z M5

1 0 1 1 x’ +y+z’ M6

1 1 0 1 x’+y’+z M7

1 1 1 1 x’+y’+z’ M8

F2=(x+y+z).(x+y+z’).(x+y’+z’).(x’+y+z)

F2 = (M1.M2.M4.M5)

F2 =∏(M1,M2,M4,M5)

F2 = ∏(1, 2,4,5)
Decimal numbers in the above expression

indicate the subscript of the Maxterm
notation

Canonical Forms For Boolean Function

 Example: Express the following in SoP form
F1 = x + y’z
 Solution:
=(y+y’)x + y’z(x+x’) [because x+x’=1]
=xy + xy’ + xy’z + x’y’z
=xy(z+z’) + xy’(z+z’) + xy’z + x’y’z
=xyz + xyz’ + xy’z + xy’z’ + xy’z + x’y’z
=xyz + xyz’ + (xy’z + xy’z) + xy’z’ + x’y’z
= xyz + xyz’ + xy’z + xy’z’ + x’y’z [because x+x =x]
= m7 + m6 + m5 + m4 + m1
= ∑(m7, m6, m5, m4, m1)
= ∑(1,4,5,6,7)

Canonical Forms - Exercises

 Exercise 1: Express G(A,B,C)=A.B.C + A’.B + B’.C in
SoP form.

 Exercise 2: Express F(A,B,C)=A.B’ + B’.C in PoS form

Simplification of Boolean functions

 Algebric simplification
 K-Map simplification
 Quine-McLusky Method of simplification

Algebraic Simplification

 Using Boolean algebra techniques, simplify this
expression: AB + A(B + C) + B(B + C)

 Solution
=AB + AB + AC + BB + BC (Distributive law)
=AB + AB + AC + B + BC (B.B=B)
= AB + AC + B + BC (AB+AB=AB)
= AB + AC + B (B+BC =B)
=B+AC (AB+B =B)

Algebric Simplification

 Minimize the following Boolean expression using Algebric
Simplification

F(A,B,C)=A′B+BC′+BC+AB′C′
 Solution
=A′B+(BC′+BC′)+BC+AB′C′ [indeponent law]
= A′B+(BC′+BC)+(BC’+AB′C′)
= A′B+B(C′+C)+C’(B+AB′)
=A’B + B.1+ c’ (B+A)
= B(A′+1)+C′(B+A)
=B + C′(B+A) [A’+1=1]
= B+BC′+AC′
= B(1+C′)+AC′
= B+AC′ [1+C’ = 1]

Algebric Simplification

 Simplify: C + (BC)’
=C + (BC)’ Original Expression
=C + (B’ + C’) DeMorgan's Law.
=(C + C’) + B’ Commutative, Associative Laws.
=1 + B’ Complement Law.
=1 Identity Law.

Algebric Simplification

 Exercise 3: Using the theorems and laws of Boolean
Algebra, reduce the following functions

 F1(A,B,C,D) = ∑(0,1,2,3,6,7,14,15)
 Solution:
= A’B’C’D’ + A’B’C’D + A’B’CD’ + A’B’CD +A’BCD’ + A’BCD + ABCD’ + ABCD
= ?

 Exercise 4: Using the theorems and laws of Boolean
Algebra, reduce the following functions

 F1(X,Y,Z) = ∏(0,1,4,5,7)
 Solution:
=(X+Y+Z) (X+Y+Z’) (X’+Y+Z) (X’+Y+Z’) (X’+Y’+Z’)
= ?

Simplification Using K-Map

 Karnaugh Maps
 The Karnaugh map (K–map), introduced

by Maurice Karnaugh in 1953, is a grid-
like representation of a truth table which
is used to simplify boolean algebra
expressions.

 A Karnaugh map has zero and one
entries at different positions. It provides
grouping together Boolean expressions
with common factors and eliminates
unwanted variables from the expression.

 In a K-map, crossing a vertical or
horizontal cell boundary is always a
change of only one variable.

K-Map Simplification

 A Karnaugh map provides a systematic method for
simplifying Boolean expressions and, if properly used, will
produce the simplest expression possible, known as the
minimum expression.

 Karnaugh maps can be used for expressions with two, three,
four. and five variables. Another method, called the Quine-
McClusky method can be used for higher numbers of
variables.

 The number of cells in a Karnaugh map is equal to the total
number of possible input variable combinations as is the
number of rows in a truth table. For three variables, the
number of cells is 23 = 8. For four variables, the number of
cells is 24 = 16.

K-Map Simplification

 The 4-Variable Karnaugh Map
 The 4-variable Karnaugh map is an array of sixteen

cells,
 Binary values of A and B are along the left side and

the values of C and D are across the top.
 The value of a given cell is the binary values of A and

B at the left in the same row combined with the binary
values of C and D at the top in the same column.

 For example, the cell in the upper right corner has a
binary value of 0010 and the cell in the lower right
corner has a binary value of 1010.

The 4-Variable Karnaugh Map

Figure shows the standard product terms that are represented by each cell
 in the 4-variable Karnaugh map.

K-Map

The 3-Variable Karnaugh Map

 A 3-variable Karnaugh map showing product terms

K-Map Simplification

 Procedure
 After forming the K-Map, enter 1s for the min terms that

correspond to 1 in the truth table (or enter 1s for the min terms of
the given function to be simplified). Enter 0s for the remaining
minterms.

 Encircle octets, quads and pairs taking in use adjecency,
overlapping and rolling. Try to form the groups of maximum
number of 1s

 If any such 1s occur which are not used in any of the encircled
groups, then these isolated 1s are encircled separately.

 Review all the encircled groups and remove the redundant
groups, if any.

 Write the terms for each encircled group.
 The final minimal Boolean expression corresponding to the K-Map

will be obtained by ORing all the terms obtained above

K-Map Simplification – Example 1

 Simplify

F=A’B’C’D’ + A’B’C’D + A’BC’D’ + A’BC’D + A’BCD’ + A’BCD + AB’C’D

 + AB’CD

Solution:

Step 1: Draw the K-Map and label Properly

Step 2: Fill up the cells by 1s as per the given function which you want to
simplify

Step 3: Encircle adjacent 1s making groups of 16, 8, 4 ,2 and single 1’s
starting from big to small

Step 4: write the terms representing the groups

Step 5: The final minimal Boolean expression corresponding to the K-
Map will be obtained bu Oring all the terms obtained above

Simplify
F=A’B’C’D’ + A’B’C’D + A’BC’D’ + A’BC’D + A’BCD’ + A’BCD + AB’C’D
 + AB’CD

Step 4

Step 1 Step 2 Step 3

Step 5:

F = A’C’ + A’B + AB’D

K-Map Example 2

 Simplify F=

 Solution
The given expression is obviously not in standard form because

each product term does not have four variables.

 Map each of the resulting binary values by placing a 1 in the appropriate
cell of the 4- variable Karnaugh map.

Simplify: F=

Step 1,2 Step 3,4

Step 5

F= AB’ + AC’ + B’C’

K-Map

 For a 4-variable map:
 1-cell group yields a 4-variable product term
 2-cell group yields a 3-variable product term
 4-cell group yields a 2-variable product term
 8-cell group yields a 1-variable term
 16-cell group yields a value of 1 for the expression

 For a 3-variable map:
 l-cell group yields a 3-variable product term
 2-cell group yields a 2-variable product term
 4-cell group yields a 1-variable term
 8-cell group yields a value of 1 for the expression

K-Map Example 3

 Simplify the following three variable function
F = A’ + AB’ + ABC’
Solution:
The given function is not in standard SoP form, so the

standard form will be

F= ∑(0,1,2,3,4,5,6)

F = A’ + B’ + C’

K-Map Simplification - Exercise

 Minimize the following function using K-Map
i) P(A,B,C,D) = ∑(0,1,2,5,8,10,11,14,15)

ii) F(x,y,z)=x’y’z’ + x’y’z + xyz’ + xyz

iii) S(a,b,c,d) = a’b’c’ + b’cd’ + a’bc’d +ab’c’d’ + ab’cd + acbd’ + abcd

Quine- McCluskey Method

 K-Map Method is a useful tool for the simplification of
Boolean function up to four variables. Although this
method can be used for 5 or 6 variables but it is not
simple to use.

 Another method developed by Quine and improved by
McCluskey was found to be good for simplification of
Boolean functions of any number of variables.

Self Study

Thankyou

