Chapter V: Work and energy

I- Definitions

$>$ Let $\overrightarrow{\mathrm{G}}$ be a vector field: $\overrightarrow{\mathrm{G}}=G_{x} \overrightarrow{\mathrm{I}}+G_{y} \overrightarrow{\mathrm{\jmath}}+G_{z} \overrightarrow{\mathrm{k}}$
$>$ Let V be a scalar field as a function of x, y and z .
$>$ The total differential of V is defined as: $\mathrm{dV}=\frac{\partial V}{\partial x} d x+\frac{\partial V}{\partial y} d y+\frac{\partial V}{\partial z} d z$
> The nabla operator $<\vec{\nabla}$ » is defined as follows: $\vec{\nabla}=\frac{\partial}{\partial x} \overrightarrow{\mathbf{l}}+\frac{\partial}{\partial y} \vec{\jmath}+\frac{\partial}{\partial z} \overrightarrow{\mathbf{k}}$
$>\vec{\nabla}=\frac{\partial}{\partial \rho} \overrightarrow{\mathrm{u}_{\rho}}+\frac{1}{\rho} \frac{\partial}{\partial \theta} \overrightarrow{\mathrm{u}_{\theta}}+\frac{\partial}{\partial z} \overrightarrow{\mathrm{k}}$ (in cylindrical coordinates)
$>\overrightarrow{\vec{\nabla}}=\frac{\partial}{\partial r} \overrightarrow{\mathrm{u}_{\mathrm{r}}}+\frac{1}{r} \frac{\partial}{\partial \theta} \overrightarrow{\mathrm{u}_{\theta}}+\frac{1}{r \sin \theta} \frac{\partial}{\partial \varphi} \overrightarrow{\mathrm{u}_{\varphi}}$ (in spherical coordinates)
$>$ The following differential operators are defined:

- $\overrightarrow{\operatorname{grad}} V=\vec{\nabla} V=\frac{\partial V}{\partial x} \overrightarrow{1}+\frac{\partial V}{\partial y} \vec{j}+\frac{\partial V}{\partial z} \overrightarrow{\mathrm{k}}$
- $\operatorname{div} \overrightarrow{\mathrm{G}}=\vec{\nabla} \cdot \overrightarrow{\mathrm{G}}=\frac{\partial G_{x}}{\partial x}+\frac{\partial G_{y}}{\partial y}+\frac{\partial G_{z}}{\partial z} \quad$ (div= divergence)
- $\overrightarrow{\operatorname{rot}} \overrightarrow{\mathrm{G}}=\vec{\nabla} \wedge \overrightarrow{\mathrm{G}}=\left(\frac{\partial G_{z}}{\partial y}-\frac{\partial G_{y}}{\partial z}\right) \overrightarrow{\mathrm{\imath}}+\left(\frac{\partial G_{x}}{\partial z}-\frac{\partial G_{z}}{\partial x}\right) \overrightarrow{\mathrm{\jmath}}+\left(\frac{\partial G_{y}}{\partial x}-\frac{\partial G_{x}}{\partial y}\right) \overrightarrow{\mathrm{k}}$
- $\Delta=\vec{\nabla} \cdot \vec{\nabla}=\vec{\nabla}^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$ (Δ : Laplacien)
- $\Delta \mathrm{V}=\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}+\frac{\partial^{2} V}{\partial z^{2}}$
- $\Delta \overrightarrow{\mathrm{G}}=\left(\frac{\partial^{2} G_{x}}{\partial x^{2}}+\frac{\partial^{2} G_{x}}{\partial y^{2}}+\frac{\partial^{2} G_{x}}{\partial z^{2}}\right) \overrightarrow{\mathrm{l}}+\left(\frac{\partial^{2} G_{y}}{\partial x^{2}}+\frac{\partial^{2} G_{y}}{\partial y^{2}}+\frac{\partial^{2} G_{y}}{\partial z^{2}}\right) \overrightarrow{\mathrm{\jmath}}+\left(\frac{\partial^{2} G_{z}}{\partial x^{2}}+\frac{\partial^{2} G_{z}}{\partial y^{2}}+\frac{\partial^{2} G_{z}}{\partial z^{2}}\right) \overrightarrow{\mathrm{k}}$

II- Work of a force

The elementary work dw of a force $\overrightarrow{\mathbf{F}}$ acting on a material point M in an elementary displacement $d \overrightarrow{\mathbf{r}}$ along the trajectory (C) is given by :

$$
\mathbf{d W}=\overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{d r}}
$$

$\mathrm{dW}=\mathrm{F} . \mathrm{dr} \cdot \cos \theta$

The unit of the work is the Joul (J)
If $\cos \theta>0(-\pi / 2<\theta<\pi / 2)$: the work is said to be driving $(\mathrm{dw}>0) \Rightarrow$ The force and displacement are in the same direction.

If $\cos \theta<0(\pi / 2<\theta<3 \pi / 2)$ the work is said to be resistive $(\mathrm{dw}<0) \Rightarrow$ The force is in the opposite direction of movement; it slows the object down.

If $\theta=\pi / 2 \Rightarrow \cos \theta=0 \Rightarrow \mathrm{dW}=0 \overrightarrow{\mathbf{F}} \perp \overrightarrow{\mathbf{d r}}$ the force perpendicular to the trajectory does not work.

$-\pi / 2<\theta<\pi / 2$
$W_{A B}(\vec{F})>0$

$\theta=\pi / 2$
$W_{A B}(\vec{F})=0$

$\pi / 2<\theta<3 \pi / 2$
$W_{A B}(\vec{F})<0$

In general, if the material point traverses an $\operatorname{arc} A B$ on the trajectory, the work along this curve will be the integral of the elementary work:

$$
\mathrm{W}_{\mathrm{A} \rightarrow \mathrm{~B}}=\int_{A}^{B} d W=\int_{A}^{B} \overrightarrow{\mathrm{~F}} \cdot \overrightarrow{\mathrm{dr}}=\int_{A}^{B} \mathrm{~F} \cdot \mathrm{dr} \cdot \cos \theta
$$

If there are several forces:

$$
\mathbf{W}_{\mathrm{A} \rightarrow \mathrm{~B}}==\sum W_{i}=\int_{A}^{B} d W=\int_{A}^{B} \sum \overrightarrow{\boldsymbol{F}_{\imath}}, \overrightarrow{\mathbf{d r}} \quad(\mathrm{i}=1, .
$$

\qquad

Analytical expression of work

a- Using Cartesian coordinates:

$$
\begin{gathered}
\overrightarrow{\mathrm{F}}=F_{x} \overrightarrow{\mathrm{1}}+F_{y} \overrightarrow{\mathrm{\jmath}}+F_{z} \overrightarrow{\mathrm{k}} \\
\overrightarrow{\mathrm{dr}}=d x \overrightarrow{\mathrm{i}}+d y \overrightarrow{\mathrm{\jmath}}+d z \overrightarrow{\mathrm{k}} \\
\mathbf{W}_{\mathrm{A} \rightarrow \mathrm{~B}}=\int_{x_{1}}^{x_{2}} \boldsymbol{F}_{\boldsymbol{x}} \boldsymbol{d} \boldsymbol{x}+\int_{y_{1}}^{y_{2}} \boldsymbol{F}_{\boldsymbol{y}} \boldsymbol{d} \boldsymbol{y}+\int_{z_{1}}^{z_{2}} \boldsymbol{F}_{z} \boldsymbol{d} \boldsymbol{z}
\end{gathered}
$$

b- Using polar coordinates:

$$
\begin{gathered}
\overrightarrow{\mathrm{F}}=F_{\rho} \overrightarrow{u_{\rho}}+F_{\boldsymbol{\theta}} \overrightarrow{u_{\boldsymbol{\theta}}} \\
\overrightarrow{\mathrm{dr}}=d \rho \overrightarrow{u_{\rho}}+\rho d \boldsymbol{\theta} \overrightarrow{u_{\boldsymbol{\theta}}} \\
\mathbf{W}_{\mathrm{A} \rightarrow \mathrm{~B}}=\int_{\boldsymbol{\rho}_{\mathbf{1}}}^{\boldsymbol{\rho}_{\boldsymbol{2}}} \boldsymbol{F}_{\boldsymbol{\rho}} \boldsymbol{d} \boldsymbol{\rho}+\int_{\boldsymbol{\theta}_{\mathbf{1}}}^{\boldsymbol{\theta}_{\boldsymbol{2}}} \boldsymbol{F}_{\boldsymbol{\theta}} \boldsymbol{\rho} \boldsymbol{d} \boldsymbol{\theta}
\end{gathered}
$$

c- Using cylindrical coordinates:

$$
\begin{gathered}
\overrightarrow{\mathrm{F}}=F_{\rho} \overrightarrow{u_{\rho}}+F_{\boldsymbol{\theta}} \overrightarrow{u_{\boldsymbol{\theta}}}+\mathrm{F}_{\mathrm{z}} \overrightarrow{\mathrm{k}} \\
\overrightarrow{\mathrm{dr}}=d \rho \overrightarrow{u_{\rho}}+\rho d \boldsymbol{\theta} \overrightarrow{u_{\boldsymbol{\theta}}}+\mathrm{dz} \overrightarrow{\mathrm{k}} \\
\mathbf{W}_{\mathrm{A} \rightarrow \mathrm{~B}}=\int_{\boldsymbol{\rho}_{\mathbf{1}}}^{\boldsymbol{\rho}_{\mathbf{1}}} \boldsymbol{F}_{\boldsymbol{\rho}} \boldsymbol{d} \boldsymbol{\rho}+\int_{\boldsymbol{\theta}_{\mathbf{1}}}^{\boldsymbol{\theta}_{\mathbf{2}}} \boldsymbol{F}_{\boldsymbol{\theta}} \boldsymbol{\rho} \boldsymbol{d} \boldsymbol{\theta}+\int_{\mathbf{z}_{\mathbf{1}}}^{\mathrm{z}_{2}} \boldsymbol{F}_{\mathbf{z}} \boldsymbol{d} \mathbf{z}
\end{gathered}
$$

d- Using intrinsic coordinates:

$$
\begin{gathered}
\overrightarrow{\mathrm{F}}=F_{T} \overrightarrow{u_{T}}+F_{\mathrm{N}} \overrightarrow{u_{\mathbf{N}}} \\
\overrightarrow{\mathrm{dr}}=d r \overrightarrow{u_{T}} \\
\mathbf{W}_{\mathrm{A} \rightarrow \mathrm{~B}}=\int_{r_{1}}^{r_{2}} \boldsymbol{F}_{T} \boldsymbol{d r}
\end{gathered}
$$

d- Using spherical coordinates:

$$
\begin{gathered}
\overrightarrow{\mathrm{F}}=F_{r} \overrightarrow{u_{r}}+F_{\boldsymbol{\theta}} \overrightarrow{u_{\boldsymbol{\theta}}}++F_{\boldsymbol{\varphi}} \overrightarrow{u_{\boldsymbol{\varphi}}} \\
\overrightarrow{\mathrm{dr}}=d r \vec{u}_{r}+r \mathrm{~d} \theta \vec{u}_{\theta}+r \sin \theta \mathrm{~d} \Phi \vec{u}_{\Phi} \\
\mathbf{W}_{\mathbf{A} \rightarrow \mathbf{B}}=\int_{\boldsymbol{r}_{\mathbf{1}}}^{r_{2}} \boldsymbol{F}_{r} \boldsymbol{d r}+\int_{\boldsymbol{\theta}_{\mathbf{1}}}^{\boldsymbol{\theta}_{2}} \boldsymbol{r} \boldsymbol{F}_{\boldsymbol{\theta}} \boldsymbol{d} \boldsymbol{\theta}+\int_{\boldsymbol{\varphi}_{1}}^{\boldsymbol{\varphi}_{2}} r \boldsymbol{F}_{\boldsymbol{\varphi}} \sin \theta \boldsymbol{d} \boldsymbol{\varphi}
\end{gathered}
$$

III- Power

Instantaneous power is defined as work per unit of time: $\mathbf{P}=\frac{d w}{d \boldsymbol{t}}$. It is defined by the scalar product of force $\overrightarrow{\mathbf{F}}$ and velocity $\overrightarrow{\mathbf{V}}$:

$$
P=\frac{d w}{d t}=\frac{\overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{dr}}}{d t}=\overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathbf{V}}(\text { watt })
$$

IV- Kinetic energy

The elementary work of the force $\overrightarrow{\mathbf{F}}$ acting on a material point can be written as:

$$
\begin{aligned}
d w=\overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{d r}}=\mathbf{m} \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{d r}}= & \mathbf{m} \frac{\mathbf{d} \overrightarrow{\mathbf{v}}}{\mathbf{d t}} \cdot \overrightarrow{\mathbf{V}} \mathbf{d t}=\mathbf{m} \overrightarrow{\mathbf{V}} \cdot \mathbf{d} \overrightarrow{\mathbf{V}}=\mathbf{d}\left(\frac{\mathbf{m v}^{2}}{2}\right)=\mathbf{d}\left(E_{\mathbf{k}}\right) \\
& \left(\overrightarrow{\mathbf{F}}=\mathbf{m} \overrightarrow{\mathbf{a}}, \quad \overrightarrow{\mathbf{v}}=\frac{\mathbf{d} \overrightarrow{\mathbf{r}}}{\mathbf{d t}}\right)
\end{aligned}
$$

$\mathbf{E}_{\mathrm{k}}=\frac{\boldsymbol{m} \boldsymbol{v}^{2}}{2}$ is the kinetic energy of the material point.
$\mathrm{P}=\mathrm{mV} \Rightarrow \mathbf{E}_{\mathrm{k}}=\frac{P^{2}}{2 m}(\mathrm{P}:$ momentum (motion quantity))

Kinetic energy theorem

The total work of the forces exerted on a material point between two instants t_{1} and t_{2} is equal to the variation in the kinetic energy of the point between these two instants:

$$
\mathrm{W}_{\mathrm{A} \rightarrow \mathrm{~B}}=\int_{A}^{B} d W==\int_{A}^{B} \mathrm{~d}\left(\mathrm{E}_{\mathrm{k}}\right)=\mathbf{E}_{\mathrm{k}}(\mathrm{~B})-\mathbf{E}_{\mathrm{k}}(\mathrm{~A})=\frac{\mathrm{mv}_{\mathrm{B}}{ }^{2}}{2}-\frac{\mathrm{mv}_{\mathrm{A}}^{2}}{2}=\Delta \mathbf{E}_{\mathrm{k}}
$$

V- Conservative forces

A force is said to be conservative if its work does not depend on the path followed:

In other words, the total work on a closed path is zero:

$$
\mathrm{W}_{\mathrm{A} \rightarrow \mathrm{~A}}=\oint_{A}^{A} d W=\oint_{A}^{A} \overrightarrow{\mathbf{F}}, \overrightarrow{\mathbf{d r}}=0 \Rightarrow E_{k}\left(\mathrm{~A}, \mathrm{t}_{1}\right)=E_{k}\left(\mathrm{~A}, \mathrm{t}_{2}\right)=\ldots \ldots \ldots \ldots \ldots E_{k}\left(\mathrm{~A}, \mathrm{t}_{\mathrm{n}}\right)
$$

VI- Potential energy

A conservative force is a force derived from a potential:

$$
\begin{gathered}
\overrightarrow{\mathbf{F}}=-\overrightarrow{\operatorname{grad}} \mathbf{E}_{\mathbf{p}} \\
\overrightarrow{\operatorname{grad}} \mathrm{E}_{\mathrm{p}}=\vec{\nabla} \mathrm{E}_{\mathrm{p}}=\frac{\partial E_{p}}{\partial x} \overrightarrow{\mathrm{I}}+\frac{\partial E_{p}}{\partial y} \overrightarrow{\mathrm{\jmath}}+\frac{\partial E_{p}}{\partial z} \overrightarrow{\mathrm{k}}
\end{gathered}
$$

E_{p} is the potential or potential energy. Potential energy is defined within one additive constant. In general, a reference 'origin' position is defined for which $\mathrm{E}_{\mathrm{p}}=0$, and the variation in potential energy is measured, not its absolute value.

Note 1

If the force $\overrightarrow{\mathrm{F}}$ is a conservative force $: \overrightarrow{\operatorname{rot}} \overrightarrow{\mathrm{F}}=\overrightarrow{0}$

$$
\overrightarrow{\operatorname{rot}} \overrightarrow{\mathrm{F}}=\vec{\nabla} \wedge \overrightarrow{\mathrm{F}}=\vec{\nabla} \wedge\left(-\overrightarrow{\operatorname{grad}} \mathrm{E}_{\mathrm{p}}\right)=-(\vec{\nabla} \wedge \vec{\nabla}) \mathrm{E}_{\mathrm{p}}=\overrightarrow{0}
$$

Note 2

We have: $\mathrm{dW}=\overrightarrow{\mathrm{F}} . \overrightarrow{\mathrm{dr}}$
For a conservative force: $\vec{F}=-\overrightarrow{\operatorname{grad}} \mathrm{E}_{\mathrm{p}} \Rightarrow \mathrm{dW}=-\overrightarrow{\operatorname{grad}} \mathrm{E}_{\mathrm{p}} \cdot \overrightarrow{\mathrm{dr}}$

$$
\begin{aligned}
& \Rightarrow \mathrm{dW}=-\left(\frac{\partial E_{p}}{\partial x} \overrightarrow{\mathrm{l}}+\frac{\partial E_{p}}{\partial y} \overrightarrow{\mathrm{\jmath}}+\frac{\partial E_{p}}{\partial z} \overrightarrow{\mathrm{k}}\right) \cdot(d x \overrightarrow{\mathrm{\imath}}+d y \overrightarrow{\mathrm{\jmath}}+d z \overrightarrow{\mathrm{k}}) \\
& \Rightarrow \mathrm{dW}=-\left(\frac{\partial E_{p}}{\partial x} d x+\frac{\partial E_{p}}{\partial y} d y+\frac{\partial E_{p}}{\partial z} d z\right) \\
& \Rightarrow \mathbf{d W}=-\mathbf{d} \mathbf{E}_{\mathbf{p}} \Rightarrow \mathbf{W}_{1 \rightarrow 2}=-\Delta \mathbf{E}_{\mathrm{p}}=\mathbf{E}_{\mathbf{p} 1}-\mathbf{E}_{\mathrm{p} 2}
\end{aligned}
$$

VII- Examples of conservative forces and potential energies

1- Potential energy of a body in a uniform gravity field

$$
\begin{gathered}
\overrightarrow{\mathrm{F}}=\overrightarrow{\mathrm{P}}=-m g \overrightarrow{\mathrm{\jmath}} \\
\overrightarrow{\mathrm{dr}}=d y \overrightarrow{\mathrm{\jmath}}
\end{gathered}
$$

$$
\mathrm{W}_{\mathrm{y} 1 \rightarrow \mathrm{y} 2}=-\int_{y_{1}}^{y_{2}} m g d y=-\operatorname{mg}\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)
$$

If $\mathbf{y}_{\mathbf{1}}=\mathbf{y}_{\mathbf{2}} \Rightarrow \mathbf{W}_{\mathbf{y} 1 \rightarrow \mathbf{y} 1}=\mathbf{- m g}\left(\mathbf{y}_{\mathbf{1}}-\mathbf{y}_{\mathbf{1}}\right)=\mathbf{0} \Rightarrow \overrightarrow{\mathrm{P}}$ is a conservative force. Therefore:

$$
\overrightarrow{\mathbf{P}}=-\overrightarrow{\operatorname{grad}} \mathbf{E}_{\mathbf{p}}
$$

$-m g \overrightarrow{\mathrm{j}}=-\left(\frac{\partial E_{p}}{\partial x} \overrightarrow{\mathrm{l}}+\frac{\partial E_{p}}{\partial y} \overrightarrow{\mathrm{j}}+\frac{\partial E_{p}}{\partial z} \overrightarrow{\mathrm{k}}\right) \Rightarrow \mathrm{mg}=\frac{\partial E_{p}}{\partial y} \Rightarrow \mathrm{dE}_{\mathrm{p}}=\mathrm{mg} \mathrm{dy} \Rightarrow \mathrm{E}_{\mathrm{p}}=\mathrm{mg} \mathbf{y}+\mathrm{C}^{\text {ste }}$

To determine the constant, we choose a Reference position for which Ep is zero. Therefore:

$$
\mathbf{E}_{\mathrm{p}}=\mathbf{m g} \mathbf{y}
$$

y : the vertical position y (or the height) of the particle relative to the reference position $y=0$

2- Potential energy from the gravitational attraction of two material points

$$
\begin{gathered}
\vec{F}=-G \frac{m_{1} m_{2}}{r^{2}} \overrightarrow{U_{r}} \quad, \quad \overrightarrow{\mathrm{dr}}=\mathrm{dr} \overrightarrow{U_{r}} \\
\mathrm{dW}=-\mathrm{d} E_{p} \\
-\mathrm{d} E_{p}=\mathrm{dW}=\overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{dr}} \\
E_{p}=-\int \overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{dr}} \\
E_{p}=\int G \frac{m_{1} m_{2}}{r^{2}} \mathrm{dr} \\
E_{p}=-G \frac{m_{1} m_{2}}{r}+C^{\text {ste }}
\end{gathered}
$$

Or

$$
\begin{gathered}
\vec{F}=-\operatorname{grad} E_{p} \\
-G \frac{m_{1} m_{2}}{r^{2}} \overrightarrow{u_{r}}=-\left(\frac{\partial E_{p}}{\partial r} \vec{u}_{r}+\frac{1}{\mathrm{r}} \frac{\partial E_{p}}{\partial \theta} \vec{u}_{\theta}+\frac{1}{\mathrm{r} \sin \theta} \frac{\partial E_{p}}{\partial \varphi} \vec{u}_{\varphi}\right) \\
G \frac{m_{1} m_{2}}{r^{2}} \overrightarrow{u_{r}}=\frac{\partial E_{p}}{\partial r} \vec{u}_{r} \\
G \frac{m_{1} m_{2}}{r^{2}}=\frac{\mathrm{d} E_{p}}{d r} \\
\mathrm{~d} E_{p}=G \frac{m_{1} m_{2}}{r^{2}} \mathrm{dr} \\
E_{p}=-G \frac{m_{1} m_{2}}{r}+C^{s t e}
\end{gathered}
$$

Generally, we take $r=\infty$ as the reference position and $\mathrm{C}^{\mathrm{ste}}=0$; then :

$$
E_{p}=-G \frac{m_{1} m_{2}}{r}
$$

3- Elastic Potential Energy

$$
\begin{gathered}
\vec{T}=-k \cdot x \vec{\imath} \\
\vec{T}=-\operatorname{grad} E_{p} \\
-k \cdot x \vec{\imath}=-\left(\frac{\partial E_{p}}{\partial x} \vec{\imath}+\frac{\partial E_{p}}{\partial y} \vec{\jmath}+\frac{\partial E_{p}}{\partial z} \vec{k}\right) \\
k \cdot x=\frac{\mathrm{d} E_{p}}{d x} \\
\mathrm{~d} E_{p}=k \cdot x d x \\
E_{p}=\frac{1}{2} k \cdot x^{2}+C^{s t e}
\end{gathered}
$$

VIII- Mechanical energy

The mechanical energy of a system is given by the sum of kinetic energy and potential energy.

$$
\mathbf{E}_{M}=E_{K}+E_{p}
$$

We have seen that for conservative forces:

$$
\mathbf{W}_{1 \rightarrow 2}=\Delta E_{k}=E_{k 2}-E_{k 1}
$$

$$
\begin{gathered}
W_{1 \rightarrow 2}=-\Delta E p=E_{p 1}-E_{p 2} \\
\Rightarrow E_{k 2}-E_{k 1}=E_{p 1}-E_{p 2} \\
\Rightarrow E_{k 2}+E_{p 2}=E_{k 1}+E_{p 1} \\
\Rightarrow E_{M 2}=E_{M 1} \\
\Rightarrow \Delta E_{M}=0
\end{gathered}
$$

This relationship indicates that the mechanical energy of a system subject to conservative forces remains constant - the "law of conservation of mechanical energy".

IX - Non-conservative forces

In the general case, the forces acting on a system can be divided into conservative forces (which derive from a potential) and forces $\overrightarrow{\mathrm{F}}$ which do not derive from a potential (frictional forces, for example) and can be written as :

$$
\begin{gathered}
\overrightarrow{\mathrm{F}}_{\mathrm{tot}}=\overrightarrow{\mathrm{F}}+\overrightarrow{\mathrm{F}}_{\mathrm{f}} \\
\mathbf{W}_{1 \rightarrow 2}=\int_{1}^{2}\left(\overrightarrow{\mathbf{F}}+\overrightarrow{\mathbf{F}_{\mathrm{f}}}\right) \cdot \overrightarrow{\mathbf{d r}} \\
\mathbf{W}_{1 \rightarrow 2}=\mathbf{W}_{\vec{F}}+\mathbf{W}_{\overrightarrow{\mathbf{F}}_{\mathrm{f}}}
\end{gathered}
$$

$\overrightarrow{\mathbf{F}}$ is a conservative force : $\mathbf{W}_{\vec{F}}=-\Delta \mathrm{E}_{\mathrm{p}}=\mathrm{E}_{\mathrm{p} 1}-\mathrm{E}_{\mathrm{p} 2}$

$$
\begin{gathered}
\mathrm{W}_{1 \rightarrow 2}=\Delta \mathrm{E}_{\mathrm{c}} \Rightarrow \mathrm{E}_{\mathrm{c} 2}-\mathrm{E}_{\mathrm{c} 1}=\mathrm{E}_{\mathrm{p} 1}-\mathrm{E}_{\mathrm{p} 2}+\mathrm{W}_{\overrightarrow{\mathrm{F}_{\mathrm{f}}}} \\
\Rightarrow\left(\mathrm{E}_{\mathrm{c} 2}+\mathrm{E}_{\mathrm{p} 2}\right)-\left(\mathrm{E}_{\mathrm{c} 1}+\mathrm{E}_{\mathrm{p} 1}\right)=\mathrm{W}_{\overrightarrow{\mathrm{F}_{\mathrm{f}}}} \\
\Rightarrow \mathrm{E}_{\mathrm{M} 2}-\mathrm{E}_{\mathrm{M} 1}=\mathrm{W}_{\overrightarrow{\mathrm{F}_{\mathrm{f}}}} \\
\Rightarrow \Delta \mathrm{E}_{\mathrm{M}}=\mathbf{W}_{\overrightarrow{\mathrm{F}_{\mathrm{f}}}}
\end{gathered}
$$

