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Exercise 01

Prove (this means give e — N proof) that
10

1. ——0asn—
n

m2 +1 2
— —asn — 00
In?+5 9
1-2n —2
— — asn — 00
3n+5 3
ncos(n3+1)

5n2 +1

—r0asn — o

Exercise 02

Determine whether each sequence converges or diverges. If the sequence converges, find its limit
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Exercise 03

Determine the limits of the following sequences (a,),, .y Whose nt" term a,, is given below.
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Exercise 04

Show that if (a,) is a sequence of real numbers which converge to L then the sequence (M,,) whose n'* term
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also converges to L

Exercise 05

Which of the following assertions are true? Justify correct ones and give a counter example for each incorrect
assertion.

(a) If a sequence is monotone and bounded, then it converges.

(b) If a sequence converges, then it is monotone and bounded.

(c) If a sequence is not bounded, then it is not convergent.

(d) If a sequence is not monotone, then it is not convergent.

(e) If a sequence has exactly one accumulation point, then it converges.
(f) If a sequence converges, then it has exactly one accumulation point.

Exercise 06

Let the sequence (a,) be given by a starting value ag € [0;2] and the recursion

an (a,% + 3)

n = s :0,1,2,...
It = 732 T "
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1. Show that n —1= L =0,1,2,...
Ap+1 3@2_’_1 ) n y Ly 4y

2. Prove the following two statements:

0<ay<l= 0<a,<1 forallneN;
l1<gqy<2=— 1<a,<2 forallneN.

3. Show that the sequence is strictly montonically increasing for 0 < ag < 1 and strictly monotonically
decreasing for 1 < ag < 2.

4. For which ag € [0;2] does the sequence converge? If so, determine the limit.
Exercice 07
Show that the sequences (z,,) whose n'* term is z,, is unbounded
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Exercice 08

n
1
1. Given that k! > 281 for all k > 1, show that the sequence (a,) whose nt" term is a, = ZE is
k=1""
bounded above by 3.

2. Explain why you can deduce that (a,) converge



Exercice 09

"1
1. Given that k¥ > 2% for all k > 2, show that the sequence (a,,) whose nt" term is a,, = Zﬁ is bounded
k=1

above by %

2. Explain why you can deduce that (a,) converge

Exercise 10

1 k n n
Let akzﬁ, by, = ka, Sn:;ak and tn:;bk

1. Find the limit of the sequence (ak“) and (5124-1)
Qg K

1 _
2. Given that a; < o8 < br and b < (%)k 2, k > 3. Explain why (S,,) and (¢,,) both converge with

lim S5, <1< lim t,<4
n—-oo n—oo

Exercice 11

Given that (14 1/n)" — e = 2.718-- as n — oo and for ¢ > 0, ¢v — 1 as n — o0
show the following.

1. (1+#)—>1asn—>oo

2. The sequence (a,,) defined by

is unbounded

an:<1+;ﬁ>”
p

3. If r = = € Q is a rational number and assuming that the sequence (¢,) defined by ¢, = (1+ %)n
q

converges, then the subsequence (t,,) = (tp, tap, ...) converges to e’.

Exercise 12
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Let (s,,) be th i by Sp, = ——
et (sp) be the sequence given by ]

1. Show that the sequence is increasing. Does it converges?

k+1

1 1 1 1 1
2. By noting that 0 < / Edm— 1 < Pl Show that 0 <In2 -5, < o and explain why you

k
can deduce that (S,,) converge.



