4 Real functions

4.1 Preliminaries

Definition 4.1. A function is a relation f between two sets E and F such that, every element $x \in E$ has at most a relation with an element $y \in F$ denoted by f(x) and we write

$$\begin{array}{rccc} f:E & \longrightarrow & F \\ x & \longmapsto & y := f(x) \end{array}$$

The domain of definition of f is the set defined by

 $D_f := \{ x \in E : f(x) \text{ exists} \}.$

4.2 Limits

Definition 4.2. Let I be an open interval, $x_0 \in I, \ell \in \mathbb{R}$ and $f: I \longrightarrow \mathbb{R}$ be a function.

1. We say the function f has a left limit ℓ at x_0 and we write $\lim_{x \to x_0^-} f(x) = \ell$, if

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x \in I : -\delta < x - x_0 < 0 \Longrightarrow |f(x) - \ell| \le \varepsilon.$$

2. We say the function f has a right limit ℓ at x_0 and we write $\lim_{x \to x_0^+} f(x) = \ell$, if

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x \in I : 0 < x - x_0 < \delta \Longrightarrow |f(x) - \ell| \le \varepsilon.$$

3. We say the function f has a limit ℓ at x_0 and we write $\lim_{x \to x_0} f(x) = \ell$, if

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x \in I : 0 < |x - x_0| < \delta \Longrightarrow |f(x) - \ell| \le \varepsilon.$$

 $x \rightarrow x_0^+$

Or equivalently (prove it), if $\lim f(x) = \lim f(x) = \ell$.

- **Remark 4.1.** We also denote the limit by "arrow" notation $f(x) \to \ell$ as $x \to x_0$ and say f(x) goes to ℓ as x goes to x_0 .
 - It follows directly from the above definition that

$$\lim_{x \to x_0} f(x) = \ell \iff \lim_{x \to x_0} |f(x) - \ell| = 0$$

Example 4.1. Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a function.

1. If
$$f(x) = 2x$$
. Show that $\lim_{x \to 1} f(x) = 2$.
2. If $f(x) = x \sin \frac{1}{x}$. Show that $\lim_{x \to 0} f(x) = 0$
3. If $f(x) = \operatorname{sgn} x := \begin{cases} +1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -1 & \text{if } x < 0 \end{cases}$, (the sign function). Show that $\lim_{x \to 0^-} f(x) = -1$, $\lim_{x \to 0^+} f(x) = +1$.

although the corresponding limit does not exist.

4. If $f(x) = \sin \frac{1}{x}$. Show that $\lim_{x \to 0} f(x)$ does not exist.

Definition 4.3 (Limits as $x \to \pm \infty$). Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a function well defined for all x < -M and x > M for certain M > 0 and $\ell \in \mathbb{R}$. We say the limit of f equal to ℓ at $+\infty$ (resp. $-\infty$) and we write $\lim_{x\to+\infty} f(x) = \ell$ (resp. $\lim_{x\to-\infty} f(x) = \ell$ if

$$\begin{aligned} \forall \varepsilon > 0, \exists A > 0, \forall x \in I : x > A \Longrightarrow |f(x) - \ell| \le \varepsilon \end{aligned}$$
 (resp.
$$\forall \varepsilon > 0, \exists B < 0, \forall x \in I : x < B \Longrightarrow |f(x) - \ell| \le \varepsilon \end{aligned}$$

Proposition 4.1 (Algebraic properties). Let $f, g, h : I \longrightarrow \mathbb{R}$ be functions and $x_0 \in I$. Suppose that

$$\lim_{x \to x_0} f(x) = L, \quad \lim_{x \to x_0} g(x) = M.$$

Then

•
$$\lim_{x \to x_0} \lambda f(x) = \lambda L$$
 for every $\lambda \in \mathbb{R}$.

- $\lim_{x \to x_0} (f(x) + g(x)) = L + M.$
- $\lim_{x \to x_0} f(x)g(x) = LM.$
- $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{L}{M}$ if $M \neq 0$ and $g(x) \neq 0, \forall x \in I$.

Proof. We will prove each part separately using the epsilon-delta definition of limits.

Part 1: Let $\lambda \in \mathbb{R}^*$ and $\varepsilon > 0$. Since $\lim_{x \to x_0} f(x) = L$, there exists $\delta > 0$ such that for all $x \in I$ with $0 < |x - x_0| < \delta$, we have $|f(x) - L| < \frac{\varepsilon}{|\lambda|}$. Now, for such x, we have

$$|\lambda f(x) - \lambda L| = |\lambda| \cdot |f(x) - L| < |\lambda| \cdot \frac{\varepsilon}{|\lambda|} = \varepsilon.$$

This shows that $\lim_{x\to x_0} \lambda f(x) = \lambda L$.

Part 2: Let $\varepsilon > 0$. Since $\lim_{x \to x_0} f(x) = L$ and $\lim_{x \to x_0} g(x) = M$, there exist $\delta_1 > 0$ and $\delta_2 > 0$ such that for all $x \in I$ we have

$$0 < |x - x_0| < \delta_1 \Longrightarrow |f(x) - L| < \frac{\varepsilon}{2}$$
$$0 < |x - x_0| < \delta_2 \Longrightarrow |g(x) - M| < \frac{\varepsilon}{2}$$

Let $\delta = \min(\delta_1, \delta_2)$. For all $x \in I$ with $0 < |x - x_0| < \delta$, we have

$$|f(x) + g(x) - (L+M)| \le |f(x) - L| + |g(x) - M| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

This shows that $\lim_{x\to x_0} (f(x)+g(x)) = L+M$. Part 3: Let $\varepsilon > 0$. Since $\lim_{x\to x_0} f(x) = L$ and $\lim_{x\to x_0} g(x) = M$, there exist $\delta_1 > 0$ and $\delta_2 > 0$ such that for all $x \in I$ we have

$$0 < |x - x_0| < \delta_1 \Longrightarrow |f(x) - L| < \epsilon$$
$$0 < |x - x_0| < \delta_2 \Longrightarrow |g(x) - M| < \epsilon$$

where $\epsilon > 0$ will be chosen later. Let $\delta = \min(\delta_1, \delta_2)$. For all $x \in I$ with $0 < |x - x_0| < \delta$, we have

$$\begin{aligned} |f(x)g(x) - LM| &= |f(x)g(x) - f(x)M + f(x)M - LM| \\ &\leq |f(x)||g(x) - M| + |M||f(x) - L| \\ &\leq (|L| + \epsilon)\epsilon + |M|\epsilon = \epsilon^2 + (|L| + |M|)\epsilon. \end{aligned}$$

We can make the expression smaller than ε by appropriately choosing ϵ . **Part 4:** Let $\varepsilon > 0$. Since $M \neq 0$, there exists $\delta_1 > 0$ such that for all $x \in I$ with $0 < |x - x_0| < \delta_1$, we have $|g(x) - M| < \frac{|M|}{2}$.

Additionally, since $\lim_{x\to x_0} f(x) = L$, there exists $\delta_2 > 0$ such that for all $x \in I$ with $0 < |x - x_0| < \delta_2$, we have $|f(x) - L| < \frac{\varepsilon |M|}{2}$.

Let $\delta = \min(\delta_1, \delta_2)$. For all $x \in I$ with $0 < |x - x_0| < \delta$, we have

$$\left|\frac{f(x)}{g(x)} - \frac{L}{M}\right| = \frac{|f(x)M - g(x)L|}{|g(x)M|} \le \frac{|f(x) - L| \cdot |M| + |g(x) - M| \cdot |L|}{|g(x)| \cdot |M|} < \frac{\frac{\varepsilon|M|}{2} \cdot |M| + \frac{|M|}{2} \cdot |L|}{\frac{|M|}{2} \cdot |M|}$$

Since |M| is not zero, we can choose δ small enough such that the expression becomes smaller than ε .

4.3 Continuity

In this paragraph, I is an open interval, $x_0 \in I, f: I \longrightarrow \mathbb{R}$ is a function well defined for all $x \in I$.

Definition 4.4 (Continuity). 1. We say that f is continuous at x_0 if $\lim_{x \to x_0} f(x) = f(x_0)$, that is,

 $\forall \varepsilon > 0, \exists \delta > 0, \forall x \in I : |x - x_0| < \delta \Longrightarrow |f(x) - f(x_0)| \le \varepsilon.$

- 2. We say f is continuous (on I) if it is continuous at every point $x_0 \in I$.
- 3. We say that f is continuous from the left at x_0 if $\lim_{x \to x_0^-} f(x) = f(x_0)$, that is

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x \in I : -\delta < x - x_0 \le 0 \Longrightarrow |f(x) - f(x_0)| \le \varepsilon.$$

4. We say that f is continuous from the left at x_0 if $\lim_{x \to x_0^+} f(x) = f(x_0)$, that is

 $\forall \varepsilon > 0, \exists \delta > 0, \forall x \in I : 0 \le x - x_0 < +\delta \Longrightarrow |f(x) - f(x_0)| \le \varepsilon.$

Remark 4.2. • It follows from the above definition that f is continuous at x_0 if and only if

$$\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = f(x_0).$$

- **Example 4.2.** 1. The function $f(x) = x^2$ is continuous at all points in \mathbb{R} . Indeed
 - 2. The function $f(x) = \begin{cases} x \ln x & \text{if } x > 0 \\ 0 & \text{if } x = 0 \end{cases}$ is continuous at 0^+
 - 3. The sign function $f(x) = \operatorname{sgn} x := \begin{cases} +1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -1 & \text{if } x < 0 \end{cases}$ is not continuous at 0 since $\lim_{x \to x_0} f(x)$ does not exist.
 - 4. The function $f(x) = \begin{cases} x^2 & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases}$ is not continuous at 0, since $\lim_{x \to x_0} f(x) = 0 \neq 1 := f(0).$
 - 5. Study the continuity of the following function

$f(x) = \bigg\{$	x^2	if	x < 1
	$x^1 + 1$	if	$x \ge 1$

Theorem 4.2. If f and g are continuous functions at x_0 , then so are λf , f + g and fg. If in addition $g(x_0) \neq 0$, then f/g is continuous at x_0 .

Proof. Exercise

Theorem 4.3. Let $f : [a,b] \longrightarrow \mathbb{R}$ be a continuous function such that $f(a)f(b) \leq 0$. Then, there exists $c \in [a,b]$ such that f(c) = 0.

Proof. Let $f : [a, b] \to \mathbb{R}$ be a continuous function such that $f(a)f(b) \leq 0$. We aim to show that there exists $c \in [a, b]$ such that f(c) = 0. Without loss of generality, assume $f(a) \leq f(b)$. If f(a) = 0 or f(b) = 0, we are done, so let's consider the case where f(a) < 0 and f(b) > 0. Define the set

$$S = \{ x \in [a, b] \mid f(x) \le 0 \}.$$

Notice that $a \in S$ since $f(a) \leq 0$, and $b \notin S$ since f(b) > 0. Therefore, S is nonempty and bounded above by b, so $\sup S$ exists.

Let $c = \sup S$. We will show that f(c) = 0.

Since c is the supremum of S, for any $\varepsilon > 0$, there exists $x \in S$ such that $c - \varepsilon < x \le c$. This implies $f(x) \le 0$.

Because f is continuous, as ε approaches 0, f(x) approaches f(c). Since $f(x) \le 0$ for all $x \in S$, we have $f(c) \le 0$.

Suppose, for the sake of contradiction, that f(c) < 0. Then by continuity of f, there exists $\delta > 0$ such that for all x with $|x - c| < \delta$, we have f(x) < 0. This contradicts the fact that $c = \sup S$.

Hence, we must have $f(c) \ge 0$.

Since we've shown both $f(c) \leq 0$ and $f(c) \geq 0$, it follows that f(c) = 0.

Thus, in all cases, there exists $c \in [a, b]$ such that f(c) = 0, completing the proof of the Intermediate Value Theorem.

Theorem 4.4 ((Weierstrass extreme value)). If $f : [a, b] \longrightarrow \mathbb{R}$ is continuous on the closed and bounded interval [a, b]. Then f is bounded on [a, b] and attains its maximum and minimum values on [a, b]. That is

$$\exists c_1, c_2 \in [a, b] : f(c_1) = \min_{x \in [a, b]} f(x), \ f(c_2) = \max_{x \in [a, b]} f(x)$$

4.4 Uniform continuity

Definition 4.5. Let $f: I \longrightarrow \mathbb{R}$ be a function. We say f is uniformly continuous if

$$|\forall \varepsilon > 0, \exists \delta > 0, \forall x, y \in I : |x - y| \le \delta \Longrightarrow |f(x) - f(y)| \le \varepsilon.$$

Remark 4.3. In other words, f is uniformly continuous if $f(x) - f(y) \to 0$ as $x - y \to 0$.

Example 4.3. 1. $f: [0,1] \longrightarrow \mathbb{R}$ defined by $f(x) = x^2$ is uniformly continuous Indeed, given $\varepsilon > 0$. We have

$$|f(x) - f(y)| = |x^2 - y^2| = |x + y||x - y| \le 2|x - y|.$$

Taking $\delta = \varepsilon/2$, so

$$|x-y| \le \delta \Longrightarrow 2|x-y| \le \varepsilon \Longrightarrow |f(x) - f(y)| \le \varepsilon.$$

2. $f: \mathbb{R} \longrightarrow \mathbb{R}$ defined by $f(x) = x^2$ is not uniformly continuous. Indeed, for $\varepsilon = 2$, taking $x_n = n + 1/n$, $y_n = n$. Then $\forall \delta > 0$, there exists $n \in \mathbb{N}^*$ such that $|x_n - y_n| = 1/n \le \delta$ and

$$|f(x_n) - f(y_n)| = |(n+1/n)^2 - n^2| = 2 + 1/n^2 \ge 2 = \varepsilon.$$

3. $f: \mathbb{R}^* \longrightarrow \mathbb{R}$ defined by f(x) = 1/x is not uniformly continuous. Indeed, for $\varepsilon = 1$, taking $x_n = 1/n$, $y_n = \frac{1}{n+1}$. Then $\forall \delta > 0$, there exists $n \in \mathbb{N}^*$ such that $|x_n - y_n| \le 1/n \le \delta$ and

$$|f(x_n) - f(y_n)| = |(n+1) - n| = 1 \ge 1 = \varepsilon.$$

Proposition 4.5. Every uniformly continuous function is continuous

Proof. Let $f: I \longrightarrow \mathbb{R}$ be uniformly continuous function. Given any $x_0 \in I$, then **Theorem 4.6.** Let f:]a, b[be a continuous function such that $\lim_{x \to a_+} f(x), \lim_{x \to b_-} f(x)$ exist and finite. Then f is uniformly continuous.

Proof. Let $\varepsilon > 0$ be given. We need to show that there exists a $\delta > 0$ such that for all $x, y \in]a, b[$ with $|x - y| < \delta$, we have $|f(x) - f(y)| < \varepsilon$.

Since $\lim_{x\to a+} f(x)$ exists, there exists a $\delta_1 > 0$ such that if $a < x < x + \delta_1 < b$, then $|f(x+\delta_1) - f(x)| < \varepsilon/2$. Similarly, since $\lim_{x\to b^-} f(x)$ exists, there exists a $\delta_2 > 0$ such that if $a < x - \delta_2 < x < b$, then $|f(x) - f(x-\delta_2)| < \varepsilon/2$.

Now, choose $\delta = \min(\delta_1, \delta_2)$. Let $x, y \in]a, b[$ such that $|x - y| < \delta$. Without loss of generality, assume x < y. Then, we have $|x - (x - \delta_2)| = \delta_2$, and $|(x + \delta_1) - y| = \delta_1$. Therefore, by the triangle inequality, we get

$$|f(x) - f(y)| \le |f(x) - f(x - \delta_2)| + |f(x + \delta_1) - f(y)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Thus, for any $x, y \in]a, b[$ with $|x - y| < \delta$, we have $|f(x) - f(y)| < \varepsilon$, which shows that f is uniformly continuous.

4.5 Differentiable functions

I is an open interval, $x_0 \in I$, $f: I \longrightarrow \mathbb{R}$ is a function well defined at all points of *I* **Definition 4.6.** 1. We say that *f* is differentiable at x_0 if

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$
 exists and finite.

This limit is denoted by $f'(x_0)$ and called derivative of f at x_0 . Thus

 $f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$

If f is differentiable at all point of I, we say f is differentiable.

2. We say that f is left-differentiable at x_0 if the left limit

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$
 exists and finite.

This limit is denoted by $f'(x_0^-)$ and called left-derivative of f at x_0 .

3. We say that f is right-differentiable at x_0 if the right limit

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$
 exists and finite.

This limit is denoted by $f'(x_0^+)$ and called right-derivative of f at x_0 .

Remark 4.4. • It is sometimes convenient to let $x = x_0 + h$ and the above limit becomes

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0+h) - f(x_0)}{h}.$$

- It is easy to see that f is differentiable at x_0 if and only if it is left and right differentiable at x_0 and $f'(x_0^+) = f'(x_0^-)$.
- **Example** 4.4. Study the differentiability of the following functions
 - 1. $f(x) = C, C \in \mathbb{R}$. Given $x_0 \in \mathbb{R}$. We have

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{C - C}{x - x_0} = 0$$

Thus f is differentiable and $f'(x_0) = 0$.

2. $f : \mathbb{R} \longrightarrow \mathbb{R}$ defined by $f(x) = x^2$. Given $x_0 \in \mathbb{R}$. We have

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{x^2 - x_0^2}{x - x_0} = \lim_{x \to x_0} (x + x_0) = 2x_0$$

Thus f is differentiable and $f'(x_0) = 2x_0$.

3. $f(x) = x^n, n \in \mathbb{N}^*$. Given $x_0 \in \mathbb{R}$. We have

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} := \lim_{x \to x_0} \frac{x^n - x_0^n}{x - x_0}$$
$$= \lim_{x \to x_0} \frac{(x - x_0) \sum_{k=0}^{n-1} x^{n-1-k} x_0^k}{x - x_0}$$
$$= \lim_{x \to x_0} \left(\sum_{k=0}^{n-1} x^{n-1-k} x_0^k \right)$$
$$= n x_0^{n-1}$$

Thus, f is differentiable at x_0 and $f'(x_0) = nx_0^{n-1}$. Since this holds for every $x_0 \in \mathbb{R}$, then f is differentiable and $f'(x) = n^{n-1}$.

4. $f : \mathbb{R}^* \longrightarrow \mathbb{R}$ defined by $f(x) = \frac{1}{x}$.

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{1/(x+h) - 1/x}{h}$$
$$= \lim_{h \to 0} \frac{-1}{x(x+h)} = -\frac{1}{x^2}.$$

Thus f is differentiable and $f'(x) = -\frac{1}{x^2}$.

5. $f:]0, +\infty[$ defined by $f(x) = \sqrt{x}.$

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h}$$
$$= \lim_{h \to 0} \frac{(x+h) - x}{h(\sqrt{x+h}) + \sqrt{x}} = \frac{1}{2\sqrt{x}}$$

Thus f is differentiable and $f'(x) = \frac{1}{2\sqrt{x}}$.

- 6. $f : \mathbb{R} \longrightarrow \mathbb{R}$ defined by f(x) = |x|.
 - If x > 0 then given h such that -x < h < x. Then

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{|x+h| - |x|}{h} = \lim_{h \to 0} \frac{(x+h) - x}{h} = 1.$$

Hence f is differentiable at x and f'(x) = 1.

• If x < 0 then given h such that -x < h < x. Then

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{|x+h| - |x|}{h} = \lim_{h \to 0} \frac{-(x+h) + x}{h} = -1$$

Hence f is differentiable at x and f'(x) = -1.

• If x = 0, then, we have

$$\lim_{h \to 0^+} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{|h|}{h} = \lim_{h \to 0} \frac{h}{h} = +1$$

and

$$\lim_{h \to 0^-} \frac{k(0+h) - k(0)}{h} = \lim_{h \to 0} \frac{|h|}{h} = \lim_{h \to 0} \frac{-h}{h} = -1.$$

Therefore, the limit of difference quotient does not exist. It follows that f is not differentiable at 0.

Proposition 4.7. If f is differentiable at x_0 , then it is continuous at x_0 .

Proof. We have

$$|f(x) - f(x_0)| = \left|\frac{f(x) - f(x_0)}{x - x_0}\right| |x - x_0|$$

passing to the limit as $x \to x_0$, taking into account that f is differentiable at x_0 , we obtain $\lim_{x \to x_0} |f(x) - f(x_0)| = 0$ which means that f is continuous at x_0 .

Theorem 4.8. Let f, g be a differentiable functions at x_0 then so are $\lambda f, f + g, fg$ and f/g if $g(x_0) \neq 0$.

- 1. $(\lambda f)'(x_0) = \lambda f'(x_0)$
- 2. $(f+g)'(x_0) = f'(x_0) + g'(x_0)$

3.
$$(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$$

4. If $g(x_0) \neq 0$ then $\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g(x_0)^2}$. In particular, we have

$$\left(\frac{1}{g}\right)'(x_0) = -\frac{g'(x_0)}{g(x_0)^2}$$

Proof. We will prove each part separately.

1. Let λ be a constant. By the definition of the derivative, we have

$$(\lambda f)'(x_0) = \lim_{h \to 0} \frac{\lambda f(x_0 + h) - \lambda f(x_0)}{h}.$$

Using the linearity of the limit, we can factor out λ and obtain

$$(\lambda f)'(x_0) = \lambda \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lambda f'(x_0).$$

2. The derivative of the sum of two functions is the sum of their derivatives:

$$(f+g)'(x_0) = \lim_{h \to 0} \frac{f(x_0+h) + g(x_0+h) - f(x_0) - g(x_0)}{h}$$

Using the linearity of the limit, we can separate the limit into two parts and apply the definition of the derivatives of f and g:

$$(f+g)'(x_0) = \lim_{h \to 0} \frac{f(x_0+h) - f(x_0)}{h} + \lim_{h \to 0} \frac{g(x_0+h) - g(x_0)}{h} = f'(x_0) + g'(x_0).$$

3. For the product rule, we consider

$$(fg)'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h)g(x_0 + h) - f(x_0)g(x_0)}{h}$$

We can rewrite the above expression as

$$(fg)'(x_0) = \lim_{h \to 0} \left(f(x_0 + h) \frac{g(x_0 + h) - g(x_0)}{h} + g(x_0) \frac{f(x_0 + h) - f(x_0)}{h} \right).$$

Applying the definition of derivatives and continuity, we get

$$(fg)'(x_0) = f(x_0)g'(x_0) + g(x_0)f'(x_0).$$

4. Finally, for the quotient rule, we have

$$\begin{pmatrix} \frac{f}{g} \end{pmatrix}'(x_0) = \lim_{h \to 0} \frac{\frac{f(x_0+h)}{g(x_0+h)} - \frac{f(x_0)}{g(x_0)}}{h} = \lim_{h \to 0} \frac{f(x_0+h)g(x_0) - f(x_0)g(x_0+h)}{hg(x_0+h)g(x_0)}$$

$$= \lim_{h \to 0} \frac{\frac{f(x_0+h) - f(x_0)}{h}g(x_0) - f(x_0+h)\frac{g(x_0+h) - g(x_0)}{h}}{g(x_0+h)g(x_0)}$$

$$= \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g(x_0)^2}$$

This completes the proof.

Theorem 4.9. Let I, J be two open intervals, $x_0 \in I$ and $f: I \longrightarrow J, g: J \longrightarrow \mathbb{R}$ be two functions such that $f(x_0) \in J$. If f is differentiable at x_0 and g is differentiable at $f(x_0)$ then $g \circ f$ is differentiable at x_0 and we have

$$(g \circ f)'(x_0) = g'(f(x_0))f'(x_0).$$

Proof. Since f is differentiable at x_0 , by definition, there exists a derivative $f'(x_0)$ given by

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Similarly, since g is differentiable at $y_0 = f(x_0)$, there exists a derivative $g'(f(x_0))$ given by

$$g'(f(x_0)) = \lim_{y \to y_0} \frac{g(y) - g(y_0)}{y - y_0}$$

Now consider the composition of the two functions $g \circ f : I \to \mathbb{R}$. The derivative of this composition at x_0 is given by

$$(g \circ f)'(x_0) = \lim_{x \to x_0} \frac{g(f(x)) - g(f(x_0))}{x - x_0}$$

We set y = f(x) which go to $y_0 = f(x_0)$ as $x \to x_0$ since f is continuous. Then, we have

$$(g \circ f)'(x_0) = \lim_{x \to x_0} \frac{g(y) - g(y_0)}{y - y_0} \frac{y - y_0}{x - x_0}$$
$$= \lim_{y \to y_0} \frac{g(y) - g(y_0)}{y - y_0} \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$
$$= g'(y_0)f'(x_0) = g'(f(x_0))f'(x_0),$$

which completes the proof.

Example 4.5. 1. $f(x) = \sqrt{x^2 + 1}$, calculate f'(x).

$$f'(x) = 2x \frac{1}{2\sqrt{x^2+1}} = \frac{x}{\sqrt{x^2+1}}$$

2. $g(t) = f(x), x = e^t$. Calculate g'(t). We have

$$g'(t)=(f(e^t))'=e^tf'(e^t)=xf'(x)$$

4.6 Mean value theorem

[a, b] is a closed bounded interval with a < b.

Lemme 4.10. Let $f :]a, b[\longrightarrow \mathbb{R}$ be a differentiable function. Suppose that f has an extreme value at a $c \in]a, b[$. Then f'(c) = 0

Proof. Let $f :]a, b[\to \mathbb{R}$ be a differentiable function, and suppose that f has an extreme value at $c \in]a, b[$. We aim to show that f'(c) = 0. Since f has an extreme value at c, it means that either f(c) is a maximum or a minimum value. Without loss of generality, let's consider the case where f(c) is a maximum. By the definition of a maximum, for any $x \in]a, b[$, we have $f(x) \leq f(c)$. This implies that the difference quotient

$$\boxed{\frac{f(x) - f(c)}{x - c} \ge 0, \ \forall x < c}, \text{ and } \boxed{\frac{f(x) - f(c)}{x - c} \le 0, \ \forall x > c}.$$

Then, taking the limit as x approaches c, we have

$$\lim_{x \to c^{-}} \frac{f(x) - f(c)}{x - c} \ge 0, \text{ and } \lim_{x \to c^{+}} \frac{f(x) - f(c)}{x - c} \le 0$$

By the differentiability of f at c, those limits can be expressed as the derivative of f at c:

$$f'(c) \le 0$$
 and $f'(c) \ge 0$

which implies f'(c) = 0.

Theorem 4.11 (Rolle's theorem). Suppose that $f : [a, b] \longrightarrow \mathbb{R}$ is continuous and differentiable on]a, b[such that f(a) = f(b). Then

 $\exists c \in]a, b[: f'(c) = 0$

Remark 4.5. It is absolutely necessary to suppose f differentiable at all points of [a, b[. Consider the function f(x) = |x| on [-1, 1]. Clearly f(-1) = f(1), but there is no point c where f'(c) = 0.

Proof. By the Weierstrass extreme value theorem 4.4 f attains its global maximum and minimum values on [a, b]. If these are both attained at the endpoints, then f is constant, and f'((c) = 0 for all points $c \in]a, b[$. Otherwise, f attains at least one of its global maximum or minimum values at an interior point $c \in]a, b[$. Lemma 4.10 implies that f'(c) = 0.

We extend Rolle's theorem to functions that attain different values at the endpoints.

Theorem 4.12 (Mean value theorem). Let $f : [a, b] \longrightarrow \mathbb{R}$ be a continuous function differentiable on [a, b]. Then there exists a point $c \in [a, b]$ such that

$$f(b) - f(a) = (b - a)f'(c).$$

Remark 4.6. Graphically, this result says that there is $c \in]a, b[$ such that the slope of the tangent line at the point (c, f(c)) is equal to the slope of the chord between the endpoints (a, f(a)) and (b, f(b)).

Proof. Apply Rolle's theorem 4.11 to the function

$$g(x) = f(x) - \left[\frac{f(b) - f(a)}{b - a}\right](x - a).$$

Theorem 4.13. Let $f :]a, b[\longrightarrow \mathbb{R}$ be a differentiable function such that f'(x) = 0 for all $x \in]a, b[$. Then f is constant.

Proof. f is constant if $f(x) = f(y), \forall x, y \in]a, b[$. Take arbitrary $x, y \in]a, b[$ with x < y. As]a, b[is an interval, $[x, y] \subset]a, b[$. Then f restricted to [x, y] satisfies the hypotheses of the mean value theorem 4.12. Therefore, there is a $c \in]x, y[$ such that

$$f(x) - f(y) = (x - y)f'(c).$$

Since f'(c) = 0, we have f(x) = f(y). Hence, f is constant.

Proposition 4.14. Let $f :]a, b[\longrightarrow \mathbb{R}$ be a differentiable function. Then

- f is increasing if and only if $f'x \ge 0$ for all $x \in]a, b[$.
- f is decreasing if and only if $f'x \le 0$ for all $x \in]a, b[$.

Proof. Let us denote that f is increasing (resp. decreasing) if and only if $\frac{f(x)-f(y)}{x-y} \ge 0$, (resp. ≤ 0), $\forall x \ne y$.

Let us prove the first item. Suppose f is increasing. For all $x, c \in]a, b$ [with $x \neq c$,

 $\frac{f(x) - f(c)}{x - c} \ge 0$

Taking a limit as x goes to c, we see that $f'(c) \ge 0$. For the other direction, suppose $f'(c) \ge 0$ for all $c \in]a, b[$. Take any $x, y \in]a, b[$ with x < y, and note that $[x, y] \subset]a, b[$. By the mean value theorem 4.12, there is some $c \in]x, y[$ such that

$$f(x) - f(y) = (x - y)f'(c).$$

Hence

$$\frac{f(x) - f(y)}{x - y} = f'(c) \ge 0$$

and so f is increasing. We leave the second item to the reader as exercise.

4.7 Exercises

Exercise 37. Find the domain of definition of the following functions

$$f(x) = \sqrt{x^2 + 3x - 4}, \quad g(x) = \ln(x^2 + 3x - 4), \quad h(x) = \frac{\ln(x+1)}{\sqrt{1 - x^2}}, \quad k(x) = \frac{1}{[x] - 2022}.$$

Exercise 38. Calculate the following limits

Exercise 39. 1. Using the definition of the derivative, calculate the following limits

$\lim_{x \to 0} \frac{\ln(1+x)}{x},$	$\lim_{x \to 0} \frac{e^x - 1}{x}$
--------------------------------------	------------------------------------

2. Deduce the following limits

$$\lim_{x \to +\infty} \left(1 + \frac{k}{x}\right)^x, \ k \in \mathbb{R}, \quad \lim_{x \to 0} \frac{a^x - b^x}{x}, \ a, b > 0.$$

Exercise 40. 1. Show that

 $\forall x, y \ge 0 : |\sqrt{x} - \sqrt{y}| \le \sqrt{|x - y|}$

- 2. Deduce that the function $x \mapsto \sqrt{x}$ is uniformly continuous on \mathbb{R}_+ .
- 3. Show that the function $x \mapsto \frac{1}{x}$ is not uniformly continuous on $(0, \infty)$ (Choose $x = \frac{1}{n}, y = \frac{1}{2n}$).

Exercise 41. Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be the function defined by

$$f(x) = \begin{cases} x^3 + \frac{a}{x^2} & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

- 1. Calculate $\lim_{x\to 0} f(x)$
- 2. Deduce the value of a for which f is continuous.

Exercise 42. Study the continuity of the function defined on \mathbb{R} by f(x) = [x] (consider the two cases: $x \in \mathbb{Z}$ and $x \notin \mathbb{Z}$).

Exercise 43. Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a continuous function such that f(x) = 0 for all $x \in \mathbb{Q}$. Show that f(x) = 0 for all $x \in \mathbb{R}$.

- **Exercise 44.** 1. Let $f : [0,1] \longrightarrow [0,1]$ be a continuous function. Show that f has a fixed point.
 - 2. Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a continuous and decreasing function. Show that f has a unique fixed point.
- **Exercise 45.** 1. Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a continuous and periodic function such that $\lim_{x\to+\infty} f(x)$ exists. Show that f is constant.
 - 2. Deduce that $x \mapsto \sin x$ and $x \mapsto \cos x$ do not have limits at $+\infty$ and $-\infty$.

Exercise 46. Calculate the derivatives of the following functions: $\sqrt{\frac{1+x^2}{x-1}}$, $\ln(1+\cos(x^2-x+1))$

Exercise 47. 1. Using the definition of the derivative, calculate the following limits

$$\lim_{x \to 0} \frac{\ln(1+x)}{x}, \quad \lim_{x \to 0} \frac{e^x - 1}{x}$$

2. Deduce the following limits

$$\lim_{x \to +\infty} \left(1 + \frac{k}{x} \right)^x, \ k \in \mathbb{R}, \quad \lim_{x \to 0} \frac{a^x - b^x}{x}, \ a, b > 0.$$

Exercise 48. Let f be the function defined on \mathbb{R}^* by $f(x) = x^2 \sin \frac{1}{x^2}$.

- 1. Show that f can be extended to be continuous on \mathbb{R} and give its extension \hat{f} .
- 2. Study the differentiability of \tilde{f} and calculate its derivative \tilde{f}'
- 3. Is \tilde{f} of class $\mathcal{C}^1(\mathbb{R})$?

Exercise 49. Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a function such that

 $\forall x, y \in \mathbb{R} : |f(x) - f(y)| \le |x - y|^2.$

- 1. Show that f is differentiable and calculate its derivative.
- 2. Deduce the value of f.

Exercise 50. Show the following inequalities

(Apply the Mean Value Theorem to the functions: $e^x - x - 1$, $(1 - x)e^x - 1$).

Exercise 51. Calculate the *n*th-order derivatives for $n \in \mathbb{N}$ of the following functions

$$(x^2 + x + 1)e^x$$
, $\frac{e^x}{1-x}$, $\frac{e^{-x}}{1+x}$.