4 Real functions

4.1 Preliminaries

‘Definition| 4.1. A function is a relation f between two sets E and F such that, every
element x € E has at most a relation with an element y € F' denoted by f(x) and we write

f:E — F
r — y:= f(x)

The domain of definition of f is the set defined by

Dy :={x € E: f(z) exists}.

4.2 Limits
Definition| 4.2. Let I be an open interval, 2o € I, £ € R and f : I — R be a function.

1. We say the function f has ¢ at xy and we write lim f(z) = ¢, if

z—)xo

Ve>0,30>0,Veel: —d<z—20<0=|f(z)—{| <e.

2. We say the function f has { at xo and we write lim+ flz)=1¢, if

(L‘—>$0

Ve>0,30>0,Vzel:0<z—x0<0=|f(x) (| <e.

3. We say the function f has [N 2t o and we write lim f(z) = ¢, if

Tr—T0

Ve>0,30>0,Ve el :0<|z—a9| <d=|f(z) -4 <e.

Or equivalently (prove it), if _

= [RENan 4.1 e We also denote the limit by "arrow" notation f(x) — ¢ as
x — xo and say f(x) goes to £ as x goes to x.

e [t follows directly from the above definition that

lim f(z) =€<:>a}i_>1£:1 |f(z) =4 =0

T—rx0

5" Example 4.1. Let f : R — R be a function.

37



Show that

lim f(z) =-1, lim f(z) = +1.

z—0— z—0t

although the corresponding limit does not exist.

L

Definition| 4.3 (Limits as © — +00). Let f : R — R be a function well defined for
all r < —M and x > M for certain M > 0 and ¢ € R. We say the limit of f equal to ¢ at
+00 (resp. —o0) and we write liril f(z) =1¢ (resp. lim f(z)="/if

z—+00 T——00

Ve>0,3A>0Ve €, l: 2> A= |f(z) - (| <¢

(resp. Ve > 0,3B<0,Vz €,] :2 < B=|f(x) —{| <¢

4.1 (Algebraic properties). Let f,g,h : I — R be functions and z( € I.
Suppose that

lim f(x) =L, lim g(x)= M.

T—rx0 T—rx0

Then

e | lim Af(z) = AL for every A € R|.

Tr—>T0

o | lim (f(z)+g(z)) =L+ M.

T—rT0

e | lim f(z)g(x) = LM.

T—rT0

. lim%z%ifM;éOandg(x)#O,Vxel.

z—xzg 9
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Proof. We will prove each part separately using the epsilon-delta definition of limits.
Part 1: Let A € R* and ¢ > 0. Since lim,_,,, f(z) = L, there exists § > 0 such that

for all z € I with 0 < |z — x| < J, we have |f(z) — L] < i~ Now, for such z, we have

€

E.
Al

[Af(z) = ALl = |A] - [f(z) = L] < [A]-
This shows that lim,_,,, Af(x) = AL.
Part 2: Let £ > 0. Since lim,_,,, f(z) = L and lim,_,,, g(x) = M, there exist §; > 0
and d, > 0 such that for all x € I we have

0<|v—mx| <é = |f(z) - L| < §

0<|z—20| < b= |g(x) — M| < $

Let 6 = min(dy,d3). For all x € I with 0 < |x — x| < §, we have

€

2:8.

F@)+ g(@) = (L+ M) < () = L + lg(w) = M| < 5 +

This shows that lim,_,, (f(x)+g(z)) = L+ M. Part 3: Let € > 0. Since lim,_,,, f(z) = L
and lim,_,,, g(z) = M, there exist 6, > 0 and do > 0 such that for all x € I we have

0<|z—mo| <o = |f(z) — L| <e

0<|z—m| <= |g(x) — M| <e

where € > 0 will be chosen later. Let § = min(dy,dy). For all z € I with 0 < |z — x| < 6,
we have

|f(x)g(x) — LM| = |f(z)g(z) — f(x)M + f(z)M — LM|
< [f(@)llg(z) — M|+ [M]|f(x) — L]
< (|L| + €)e + |Mle = € + (|L| + | M])e.

We can make the expression smaller than € by appropriately choosing €. Part 4: Let
e > 0. Since M # 0, there exists 0; > 0 such that for all x € [ with 0 < |z — x| < 1, we
have |g(x) — M| < MT”

Additionally, since lim,_,,, f(z) = L, there exists d; > 0 such that for all = € I with
0 < |z — x| < 2, we have |f(z) — L| < #

Let § = min(dy,02). For all z € I with 0 < |x — 2| < 9, we have

'f(:r) _L'_If(I)M—g(I)L\ £(2) — L [M| + lg(x) = M|-|L] _ 20 |na)+ B g
o) M @M 9@~ [M] LIT VIR

Since |M| is not zero, we can choose ¢ small enough such that the expression becomes
smaller than e. L
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4.3 Continuity

In this paragraph, I is an open interval, zo € I, f : I — R is a function well defined for

all z € I.

Definition| 4.4 (Continuity). 1. We say that f is continuous at z if

lim f(z) = f(zo)

T—T0

that is,

Ve>0,30 >0,Ve €1 : |z —xo| <= |f(x) — flxo)] <e.

2. We say [ is continuous (on ) if it is continuous at every point xy € I.

3. We say that f is continuous from the left at z( if | lim f(z) = f(xo) |, that is

(L‘—>1110

Ve>0,30 >0,V el:—d<z—x0<0=|f(z) — f(zo)| <e.

4. We say that f is continuous from the left at z if lim f(z) = f(xg)|, that is

z—)xo

Ve>0,30 >0,Ve € [:0<z—129<+J = |f(z) — f(z0)] <e.

1= [REHEEE 4.2. o It follows from the above definition that f is continuous at
if and only if

lim f(z) = lim_f(x) = f(z0).

— +
$—)IE0 $—)IE0

I Example 4.2. 1. The function f(z) = 2? is continuous at all points in R. Indeed

zlnz if >0

2. The function f(x) = { is continuous at 0"

0 if =0
+1 if >0
3. The sign function f(z) = sgn = := 0 if =0 is not continuous at 0 since
-1 if z<0
lim f(x) does not exist.
T—T0
2?2 if 2 #0

4. The function f(x) =
1:= f(0).
5. Study the continuity of the following function

1 if z=0 is not continuous at 0, since Zlggo flx)=0+#
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2?2 if <1
f(x)—{ xr+1 if x>1
_ 4.2. If f and g are continuous functions at z¢, then so are A\f, f 4+ g and fg.
If in addition g(zo) # 0, then f/g is continuous at .

Proof. Exercise

RO 4.3. Let f: [a,b] — R be a continuous function such that f(a)f(b) < 0.
Then, there exists ¢ € [a, b] such that f(c) = 0.

Proof. Let f : [a,b] — R be a continuous function such that f(a)f(b) < 0. We aim to
show that there exists ¢ € [a,b] such that f(c) = 0. Without loss of generality, assume
fla) < f(b). If f(a) =0or f(b) =0, we are done, so let’s consider the case where f(a) < 0
and f(b) > 0. Define the set

S ={x€la,b]| f(x) <0}.

Notice that a € S since f(a) <0, and b ¢ S since f(b) > 0. Therefore, S is nonempty and
bounded above by b, so sup S exists.

Let ¢ = sup S. We will show that f(c) = 0.

Since c¢ is the supremum of S, for any € > 0, there exists x € S such that c—e < x < c.
This implies f(x) < 0.

Because f is continuous, as e approaches 0, f(x) approaches f(c). Since f(x) < 0 for
all z € S, we have f(c) <0.

Suppose, for the sake of contradiction, that f(c) < 0. Then by continuity of f, there
exists 0 > 0 such that for all x with |z — ¢| < J, we have f(z) < 0. This contradicts the
fact that ¢ = sup S.

Hence, we must have f(c) > 0.

Since we’ve shown both f(c¢) < 0 and f(c) > 0, it follows that f(c) = 0.

Thus, in all cases, there exists ¢ € [a, b] such that f(¢) = 0, completing the proof of
the Intermediate Value Theorem.

]

EBREOEER 1.4 ((Weierstrass extreme value)). If f : [a,b] — R is continuous on the
closed and bounded interval [a,b]. Then f is bounded on [a, b] and attains its maximum
and minimum values on [a,b]. That is

der, ¢ € [a, 0] - f(er) = min f(z), f(cz) = max f(x)

z€[a,b] z€[a,b]

4.4 Uniform continuity

Definition 4.5. Let f: I — R be a function. We say f is uniformly continuous if

Ve>0,30 >0,Ve,yel:|x—y|l <d=|f(x) = f(y)| <e.
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1= REMEEE 4.3. In other words, f is uniformly continuous if f(z) — f(y) — 0 as
x—y— 0.

I Example 4.3. 1. |f:[0,1] — R defined by f(z) = 2? is uniformly continuous |.

Indeed, given € > 0. We have

|f(z) = f)] = |2* — y?| = |z + yl|lz — y| < 2|z —y].

Taking § = ¢/2, so

[z -yl <d= 2z —y|<e=|f(z) - fy)| <e

2. | f: R — R defined by f(x) = x? is not uniformly continuous. | Indeed, for ¢ = 2,

taking x, = n + 1/n, y, = n. Then V§ > 0, there exists n € N* such that
|z, —yn| = 1/n < 6 and

|f(zn) = fly)l = [(n +1/n)> —n?|=2+1/n*>2=c.

3. | f: R* — R defined by f(x) = 1/ is not uniformly continuous. | Indeed, for e = 1,

taking =, = 1/n, y, = n+r1 Then V4§ > 0, there exists n € N* such that |z, — y,| <
1/n <6 and

1f (@) — flyn)| = |(n+1) —n|=1>1=¢.

_ 4.5. Every uniformly continuous function is continuous

Proof. Let f: I — R be uniformly continuous function. Given any zy € I, then m

EBREERE 4.6. Let f :a, b] be a continuous function such that lim+f(x), liril f(z) exist
r—a r—0—

and finite. Then ‘ f is uniformly continuous ‘

Proof. Let € > 0 be given. We need to show that there exists a 9 > 0 such that for all
z,y €la,b] with |x — y| < 0, we have |f(x) — f(y)| < e.

Since lim, . f(x) exists, there exists a 6; > 0 such that if a < x < x 4+ §; < b, then
|f(x+61) — f(z)] < /2. Similarly, since lim,_,,_ f(z) exists, there exists a d; > 0 such
that if a < x — dy < < b, then |f(x) — f(z — )| < e/2.

Now, choose 0 = min(dy,ds). Let z,y €|a,b] such that |z — y| < §. Without loss of
generality, assume x < y. Then, we have |z — (z — d3)| = 09, and |(x + 6;) — y| = 6;.
Therefore, by the triangle inequality, we get

@) = FW] < @) = fla =) + [fla+6) = fly)l < 5 +5 =<

Thus, for any x,y €la, b| with |x — y| < 0, we have |f(z) — f(y)| < €, which shows that f
is uniformly continuous. [
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4.5 Differentiable functions

I is an open interval, zo € I, f : I — R is a function well defined at all points of I

_ 4.6. 1. We say that f is differentiable at z if

lim f(z) = f(xo)

T—T0 T — T

exists and finite.

This limit is denoted by f’(z() and called derivative of f at zo. Thus

f/(xO) — lim f(z)—f(xo).

T—T0 W=y

If f is differentiable at all point of I, we say f is differentiable.

2. We say that f is left-differentiable at xq if the left limit

lim f(z) = f(xo)

T—T0 T — T

exists and finite.

This limit is denoted by f'(z,) and called left-derivative of f at x.

3. We say that f is right-differentiable at z if the right limit

oo 1@) = (@)

T—T0 T — X

exists and finite.

This limit is denoted by f/(zd) and called right-derivative of f at .

1= JREMEER 4.4. o It is sometimes convenient to let © = 2 + h and the above
limit becomes

’ _ i L(@oth)—f(z0)
Flo =l

e [t is easy to see that f is differentiable at z( if and only if it is left and right
differentiable at zo and | f'(xg) = f'(zg)-

5" Example 4.4. Study the differentiability of the following functions
1. f(z)=C, C eR. Given zy € R. We have

lim {&=f(0) _
T—x( A=A
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Thus f is differentiable and f’(z() = 0.

2

2. f:R — R defined by f(z) = 2*. Given 2y € R. We have
lim L@=/@0) — Jipy 2228 — iy (2 4 20) = 210
T—TQ =4 z—xg TTT0 T—xQ
Thus f is differentiable and f'(zg) = 2.
3. f(z) =2a™, n € N*. Given xy € R. We have
lim M — im "%
T—x0 Tr — I‘O x—x0 T — I‘O
n—1
(z — o) > o™kl
= lim h=0
T—2x0 r — 2o

Thus, f is differentiable at z¢ and f'(zo)

lim
Tr—xQ

E:L,nlkk

k=0

)

= na{~'. Since this holds for every z € R,

n—1

ng

then f is differentiable and f'(z) = n™"'.

4. f:R* — R defined by f(z) = =
i @) = f@) o (@t h) — 1)z
h—0 h h—0 h
T
- hlg(l) CL’(ZL’ =+ h) x2’
Thus f is differentiable and f'(x) = —m%
5. f:]0,4o0[ defined by f(z) = \/x.
1imf($+h)—f($) — lim vl'-i- \/_
h—0 h h—0
(x —i— h) —z 1

Thus f is differentiable and f'(z) =

6. f: R — R defined by f(x) =

|z
e If z > 0 then given h such that —z

flz+h) - fz)

lim p lim

h—0

Hence f is differentiable at x and f'(z) =

44
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i

h—0

< h < z. Then

|z + h| — |x| (x+h)—=x

== 1.
1m 3

h—0

1.



o [f z < 0 then given h such that —x < h < x. Then

lim flat+h) - flx) _ lim [z + Rl — |z _ lim —(z+h)+z Y
h—0 h h—0 h h—0 h
Hence f is differentiable at z and f'(z) = —1.
o If x =0, then, we have
i L0 2SO M A
h—0+ h h—0 h  h=0h
and
. k(0O+h)—Fk0O) . || .. —h
Tk R i

Therefore, the limit of difference quotient does not exist. It follows that f is
not differentiable at 0.

_ 4.7. If f is differentiable at xo, then it is continuous at z.
Proof. We have

|z — x|

|f(x) = f(zo)| = \M

passing to the limit as x — g, taking into account that f is differentiable at xq, we obtain
lim |f(z) — f(x0)| = 0 which means that f is continuous at x. O
Tr—xTQ

EBREBEER 1.5. Let £, g be a differentiable functions at xy then so are Af, f +g, fg and
/g it g(wo) # 0.

L [ (Af) (o) = Af'(x0)

2. |(f + 9)(z0) = f'(w0) + g'(x0)

3. [ (f9) (zo) = f'(20)g(x0) + f(20)g' (z0)

/ ! !
4. |1f g(xo) # 0 then (5) (zo) =L ‘“)g(z;();(jé”(”g @) | In particular, we have

G
g 0 g(z0)2

Proof. We will prove each part separately.
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1. Let A be a constant. By the definition of the derivative, we have

M(zo+ h) — Af(xo)
h

Using the linearity of the limit, we can factor out A and obtain

/ . flao+h) = f(x0)
(MY (x0) = A lim .

(AF) (o) = lim

= \f'(xo).

2. The derivative of the sum of two functions is the sum of their derivatives:

f(xo+h)+g(xe+h) — f(x0) — g(w0)

(f +9)' (o) = lim . .

Using the linearity of the limit, we can separate the limit into two parts and apply
the definition of the derivatives of f and g:

f(zo+h) — f(xo) 4 lim g(xo + h) — g(wo)

) li 0022 = /'(z0) + ¢ (o).

(f +9) (o) = lim

3. For the product rule, we consider

f(zo+h)g(xo + h) — f(fﬂo)g(i’fo)'

(f9) (o) = lim

h
We can rewrite the above expression as
. xo+h)—g(x o+ h)— flx
(Fa) ) = Jim (oo + T T B Z I 4 g L0 2B = I0)),

Applying the definition of derivatives and continuity, we get
(f9) (o) = f(0)g'(z0) + g(0) f'(20)

4. Finally, for the quotient rule, we have

f(zot+h) _ flzo)
(i)/ (zo) = lim swoth) ~ glao) ~ lim f(zo + h)g(xo) — f(x0)g(x0 + h)

h—0 h h—0 hg(zo + h)g(zo)

f(a:o—&—h})L—f(a:O)g(mO) — Flxo + h)g(mo+h})b—g(zo)

= lim
h—0 g(xo + h)g(xo)

f'(w0)g(z0) — f(20)g' (20)
g(wo)?

This completes the proof. n

EBREERE 1.9. Let I, J be two open intervals, 2o € I and f: I — J, g: J — R be
two functions such that f(xy) € J. If f is differentiable at zo and g is differentiable at
f(zo) then g o f is differentiable at xy and we have
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(g0 .f) (wo) = g'(f(x0)) [ (w0) |

Proof. Since f is differentiable at z, by definition, there exists a derivative f'(x) given

by
T—T0 T — Xg
Similarly, since ¢ is differentiable at yo = f(z0), there exists a derivative ¢'(f(zo)) given by
9(y) — 9(%o)

g (f(x0)) = g}g;lo TR

Now consider the composition of the two functions go f : I — R. The derivative of this
composition at x( is given by

(f(2) = 9(f (x0))

T—x0 xXr — SEO

We set y = f(x) which go to yo = f(x0) as © — x since f is continuous. Then, we have

’ sswe Yy —Yo T — T

— i W) —9(w) (. f(2) = o)
Y=y Y — Yo Tom0 T — T

= ¢'(y)f'(x0) = ¢'(f(20)) f'(20),
which completes the proof. O]
I Example 4.5. 1. f(z) = V22 + 1, calculate f'(z).

/ _ 1 _ T
fi(@) = 2a72\/z2+1 T Va4l

2. g(t) = f(x), x = €'. Calculate ¢'(t). We have

gt) = (f(e") =e'f(e') = zf'(x)

4.6 Mean value theorem

[a,b] is a closed bounded interval with a < b.

B 2.10. Let f :)a,b|— R be a differentiable function. Suppose that f has an
extreme value at a ¢ €]a,b. Then f'(c) =0
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Proof. Let f :]a,b[— R be a differentiable function, and suppose that f has an extreme
value at ¢ €a,b]. We aim to show that f'(c) = 0. Since f has an extreme value at ¢, it
means that either f(c) is a maximum or a minimum value. Without loss of generality,
let’s consider the case where f(c) is a maximum. By the definition of a maximum, for any
x €la, b, we have f(x) < f(c). This implies that the difference quotient

F@ =1 - o yr = o] ana [ =

r —cC r—cC

<0, Vz > c|

Then, taking the limit as x approaches ¢, we have

lim MZO, and | lim MS
T—c™ T —cC z—ct r—cC

0l

By the differentiability of f at ¢, those limits can be expressed as the derivative of f at c:
f'(e)<0and f'(c) >0

which implies f'(¢) = 0.
[l

RS 4.11 (Rolle’s theorem). Suppose that f : [a,5] — R is continuous and
differentiable on |a, b such that f(a) = f(b). Then

Je €]a,b: f'(c) =0

1> RGIEEE 4.5. It is absolutely necessary to suppose f differentiable at all points of
la,b[. Consider the function f(z) = |z| on [—1,1]. Clearly f(—1) = f(1), but there is no
point ¢ where f'(c) = 0.

Proof. By the Weierstrass extreme value theorem f attains its global maximum and
minimum values on [a, b]. If these are both attained at the endpoints, then f is constant,
and f'((¢) = 0 for all points ¢ €]a,b[. Otherwise, f attains at least one of its global
maximum or minimum values at an interior point ¢ €]a,b[. Lemma implies that
f'(e)=0. O

We extend Rolle’s theorem to functions that attain different values at the endpoints.

EBREBEE +.12 (Mean value theorem). Let f : [a,5] — R be a continuous function
differentiable on |a, b] . Then there exists a point ¢ €]a, b] such that

f(b) = fa) = (b—a)f'(0).

= _ 4.6. Graphically, this result says that there is ¢ €]a, b[ such that the slope
of the tangent line at the point (¢, f(c)) is equal to the slope of the chord between the
endpoints (a, f(a)) and (b, f(b)).

Proof. Apply Rolle’s theorem [4.11] to the function
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]

EBREERE +.13. Let f :]a, )[— R be a differentiable function such that f'(z) = 0 for
all z €]a,b]. Then f is constant.

Proof. f is constant if f(z) = f(y), Vz,y €la,b]. Take arbitrary z,y €|a, b with x < y.
As ]a,b[ is an interval, [z, y] Cla,b]. Then f restricted to [z, y] satisfies the hypotheses of
the mean value theorem m . Therefore, there is a ¢ €]z, y[ such that

f@) = fly) = (@ =y)f'(0).
Since f'(c¢) =0, we have f(z) = f(y). Hence, f is constant. ]

Proposition 4.14. Let f :]a,b[— R be a differentiable function. Then
e f is increasing if and only if f'z) > 0 for all z €]a, b].
e f is decreasing if and only if f'z) <0 for all z €]a, b].
Proof. Let us denote that f is increasing (resp. decreasing) if and only if ! (m) f W >,

(resp. <0), Vo # y.
Let us prove the first item. Suppose f is increasing. For all z, ¢ €]a, b[with = # ¢,

@1 » g

Taking a limit as = goes to ¢, we see that f’(¢) > 0. For the other direction, suppose
f'(¢) > 0 for all ¢ €]a, b|. Take any x,y €la, b| with x < y, and note that [z,y] Cla,b[. B
the mean value theorem |4.12] there is some ¢ €]z, y[ such that

f(@) = f(y) = (z —y)f (o)

Hence

f(:ci:?J;(y) _ fI(C) >0

and so f is increasing. We leave the second item to the reader as exercise. O]
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4.7 Exercises

Exercise 37. Find the domain of definition of the following functions

fl@)=Va?+3r =4, g(&)=ln(2>+3z—4), h(x)="723, k)= g

1—=22’

Exercise 38. Calculate the following limits

. . -1 s a1 . Yx—1
lim (V2 +1—2), lim & lim lim
x—H—oo( ), 1 VE+8=37  py Va-17 Ty Va1
. x 0 In(1 2 o 0 — . i
lim S, lim 20 gy Lol gy locgsz oy sine
z—+oco ¥ z—+o0 L z—0 & z—+oco L x—m T
Exercise 39. 1. Using the definition of the derivative, calculate the following limits
. In(1 . T _
lim 2O+2) iy =L
z—0 z z—0 &

2. Deduce the following limits

lim (1+5)% keR, lLm*=" a,b>0.

T—+00 z—0

Exercise 40. 1. Show that

Vr,y > 0: Ve — iyl < Ve —yl

2. Deduce that the function x + /z is uniformly continuous on R, .

3. Show that the function z +— 1 is not uniformly continuous on (0,00) (Choose

m:%,y:ﬁ).

Exercise 41. Let f : R — R be the function defined by

[P+ 0 2 #£0
f(x)_{o if =0

1. Calculate lim, o f(x)
2. Deduce the value of a for which f is continuous.

Exercise 42. Study the continuity of the function defined on R by f(z) = [z] (consider
the two cases: © € Z and x € Z).

Exercise 43. Let f : R — R be a continuous function such that f(x) =0 for all z € Q.
Show that f(xz) =0 for all x € R.
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Exercise 44. 1. Let f:[0,1] — [0, 1] be a continuous function. Show that f has a
fixed point.

2. Let f: R — R be a continuous and decreasing function. Show that f has a unique
fixed point.

Exercise 45. 1. Let f : R — R be a continuous and periodic function such that
lim, ;o f(2) exists. Show that f is constant.

2. Deduce that z — sinx and x — cosz do not have limits at +o0o0 and —oo.

Exercise 46. Calculate the derivatives of the following functions: 1;_”12 , In(1+cos(z?—
r+1))

Exercise 47. 1. Using the definition of the derivative, calculate the following limits
lim 20+2) -y €1
z—0 & ’ z—0 %

2. Deduce the following limits

lim (1+%)", k€R, lim==E, a,b>0.
T—

T—>+00

Exercise 48. Let f be the function defined on R* by f(z) = z?%sin x%
1. Show that f can be extended to be continuous on R and give its extension f.
2. Study the differentiability of f and calculate its derivative f’
3. Is f of class C*(R)?

Exercise 49. Let f : R — R be a function such that

Vo,y eR:|f(z) — f)| < |z —yl*.

1. Show that f is differentiable and calculate its derivative.

2. Deduce the value of f.

Exercise 50. Show the following inequalities

Vz>—1:75 <In(l+z)<uw,

Vo €01 1+z <e* <

(Apply the Mean Value Theorem to the functions: e* —x — 1, (1 —x)e” — 1).

Exercise 51. Calculate the nth-order derivatives for n € N of the following functions

2 T e e ”
(z +z+1)e*, =, -
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