4 Real functions

4.1 Preliminaries

Definition 4.1. A function is a relation f between two sets E and F such that, every element $x \in E$ has at most a relation with an element $y \in F$ denoted by $f(x)$ and we write

$$
\begin{aligned}
f: E & \longrightarrow F \\
x & \longmapsto y:=f(x)
\end{aligned}
$$

The domain of definition of f is the set defined by

$$
D_{f}:=\{x \in E: f(x) \text { exists }\} .
$$

4.2 Limits

Definition 4.2. Let I be an open interval, $x_{0} \in I, \ell \in \mathbb{R}$ and $f: I \longrightarrow \mathbb{R}$ be a function.

1. We say the function f has a left limit ℓ at x_{0} and we write $\lim _{x \rightarrow x_{0}^{-}} f(x)=\ell$, if

$$
\forall \varepsilon>0, \exists \delta>0, \forall x \in I:-\delta<x-x_{0}<0 \Longrightarrow|f(x)-\ell| \leq \varepsilon .
$$

2. We say the function f has a right limit ℓ at x_{0} and we write $\lim _{x \rightarrow x_{0}^{+}} f(x)=\ell$, if

$$
\forall \varepsilon>0, \exists \delta>0, \forall x \in I: 0<x-x_{0}<\delta \Longrightarrow|f(x)-\ell| \leq \varepsilon .
$$

3. We say the function f has a limit ℓ at x_{0} and we write $\lim _{x \rightarrow x_{0}} f(x)=\ell$, if

$$
\forall \varepsilon>0, \exists \delta>0, \forall x \in I: 0<\left|x-x_{0}\right|<\delta \Longrightarrow|f(x)-\ell| \leq \varepsilon .
$$

Or equivalently (prove it), if $\lim _{x \rightarrow x_{0}^{-}} f(x)=\lim _{x \rightarrow x_{0}^{+}} f(x)=\ell$.
〔98 Remark 4.1. - We also denote the limit by "arrow" notation $f(x) \rightarrow \ell$ as $x \rightarrow x_{0}$ and say $f(x)$ goes to ℓ as x goes to x_{0}.

- It follows directly from the above definition that

$$
\lim _{x \rightarrow x_{0}} f(x)=\ell \Longleftrightarrow \lim _{x \rightarrow x_{0}}|f(x)-\ell|=0
$$

${ }^{4 \rightarrow 8)}$ Example 4.1. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a function.

1. If $f(x)=2 x$. Show that $\lim _{x \rightarrow 1} f(x)=2$.
2. If $f(x)=x \sin \frac{1}{x}$. Show that $\lim _{x \rightarrow 0} f(x)=0$
3.

although the corresponding limit does not exist.
4. If $f(x)=\sin \frac{1}{x}$. Show that $\lim _{x \rightarrow 0} f(x)$ does not exist

Definition 4.3 (Limits as $x \rightarrow \pm \infty$). Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a function well defined for all $x<-M$ and $x>M$ for certain $M>0$ and $\ell \in \mathbb{R}$. We say the limit of f equal to ℓ at $+\infty$ (resp. $-\infty$) and we write $\lim _{x \rightarrow+\infty} f(x)=\ell$ (resp. $\lim _{x \rightarrow-\infty} f(x)=\ell$ if

$$
\forall \varepsilon>0, \exists A>0, \forall x \in, I: x>A \Longrightarrow|f(x)-\ell| \leq \varepsilon
$$

$$
\text { (resp. } \forall \varepsilon>0, \exists B<0, \forall x \in, I: x<B \Longrightarrow|f(x)-\ell| \leq \varepsilon
$$

Proposition 4.1 (Algebraic properties). Let $f, g, h: I \longrightarrow \mathbb{R}$ be functions and $x_{0} \in I$. Suppose that

$$
\lim _{x \rightarrow x_{0}} f(x)=L, \quad \lim _{x \rightarrow x_{0}} g(x)=M .
$$

Then

- $\lim _{x \rightarrow x_{0}} \lambda f(x)=\lambda L$ for every $\lambda \in \mathbb{R}$.
- $\lim _{x \rightarrow x_{0}}(f(x)+g(x))=L+M$.
- $\lim _{x \rightarrow x_{0}} f(x) g(x)=L M$.
- $\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=\frac{L}{M}$ if $M \neq 0$ and $g(x) \neq 0, \forall x \in I$.

Proof. We will prove each part separately using the epsilon-delta definition of limits.
Part 1: Let $\lambda \in \mathbb{R}^{*}$ and $\varepsilon>0$. Since $\lim _{x \rightarrow x_{0}} f(x)=L$, there exists $\delta>0$ such that for all $x \in I$ with $0<\left|x-x_{0}\right|<\delta$, we have $|f(x)-L|<\frac{\varepsilon}{|\lambda|}$. Now, for such x, we have

$$
|\lambda f(x)-\lambda L|=|\lambda| \cdot|f(x)-L|<|\lambda| \cdot \frac{\varepsilon}{|\lambda|}=\varepsilon
$$

This shows that $\lim _{x \rightarrow x_{0}} \lambda f(x)=\lambda L$.
Part 2: Let $\varepsilon>0$. Since $\lim _{x \rightarrow x_{0}} f(x)=L$ and $\lim _{x \rightarrow x_{0}} g(x)=M$, there exist $\delta_{1}>0$ and $\delta_{2}>0$ such that for all $x \in I$ we have

$$
\begin{gathered}
0<\left|x-x_{0}\right|<\delta_{1} \Longrightarrow|f(x)-L|<\frac{\varepsilon}{2} \\
0<\left|x-x_{0}\right|<\delta_{2} \Longrightarrow|g(x)-M|<\frac{\varepsilon}{2}
\end{gathered}
$$

Let $\delta=\min \left(\delta_{1}, \delta_{2}\right)$. For all $x \in I$ with $0<\left|x-x_{0}\right|<\delta$, we have

$$
|f(x)+g(x)-(L+M)| \leq|f(x)-L|+|g(x)-M|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
$$

This shows that $\lim _{x \rightarrow x_{0}}(f(x)+g(x))=L+M$. Part 3: Let $\varepsilon>0$. Since $\lim _{x \rightarrow x_{0}} f(x)=L$ and $\lim _{x \rightarrow x_{0}} g(x)=M$, there exist $\delta_{1}>0$ and $\delta_{2}>0$ such that for all $x \in I$ we have

$$
\begin{aligned}
& 0<\left|x-x_{0}\right|<\delta_{1} \Longrightarrow|f(x)-L|<\epsilon \\
& 0<\left|x-x_{0}\right|<\delta_{2} \Longrightarrow|g(x)-M|<\epsilon
\end{aligned}
$$

where $\epsilon>0$ will be chosen later. Let $\delta=\min \left(\delta_{1}, \delta_{2}\right)$. For all $x \in I$ with $0<\left|x-x_{0}\right|<\delta$, we have

$$
\begin{aligned}
|f(x) g(x)-L M| & =|f(x) g(x)-f(x) M+f(x) M-L M| \\
& \leq|f(x)||g(x)-M|+|M||f(x)-L| \\
& \leq(|L|+\epsilon) \epsilon+|M| \epsilon=\epsilon^{2}+(|L|+|M|) \epsilon
\end{aligned}
$$

We can make the expression smaller than ε by appropriately choosing ϵ. Part 4: Let $\varepsilon>0$. Since $M \neq 0$, there exists $\delta_{1}>0$ such that for all $x \in I$ with $0<\left|x-x_{0}\right|<\delta_{1}$, we have $|g(x)-M|<\frac{|M|}{2}$.

Additionally, since $\lim _{x \rightarrow x_{0}} f(x)=L$, there exists $\delta_{2}>0$ such that for all $x \in I$ with $0<\left|x-x_{0}\right|<\delta_{2}$, we have $|f(x)-L|<\frac{\varepsilon|M|}{2}$.

Let $\delta=\min \left(\delta_{1}, \delta_{2}\right)$. For all $x \in I$ with $0<\left|x-x_{0}\right|<\delta$, we have

$$
\left|\frac{f(x)}{g(x)}-\frac{L}{M}\right|=\frac{|f(x) M-g(x) L|}{|g(x) M|} \leq \frac{|f(x)-L| \cdot|M|+|g(x)-M| \cdot|L|}{|g(x)| \cdot|M|}<\frac{\frac{\varepsilon|M|}{2} \cdot|M|+\frac{|M|}{2} \cdot|L|}{\frac{|M|}{2} \cdot|M|} .
$$

Since $|M|$ is not zero, we can choose δ small enough such that the expression becomes smaller than ε.

4.3 Continuity

In this paragraph, I is an open interval, $x_{0} \in I, f: I \longrightarrow \mathbb{R}$ is a function well defined for all $x \in I$.

Definition 4.4 (Continuity). 1. We say that f is continuous at x_{0} if $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$, that is,

$$
\forall \varepsilon>0, \exists \delta>0, \forall x \in I:\left|x-x_{0}\right|<\delta \Longrightarrow\left|f(x)-f\left(x_{0}\right)\right| \leq \varepsilon
$$

2. We say f is continuous (on I) if it is continuous at every point $x_{0} \in I$.
3. We say that f is continuous from the left at x_{0} if $\lim _{x \rightarrow x_{0}^{-}} f(x)=f\left(x_{0}\right)$, that is

$$
\forall \varepsilon>0, \exists \delta>0, \forall x \in I:-\delta<x-x_{0} \leq 0 \Longrightarrow\left|f(x)-f\left(x_{0}\right)\right| \leq \varepsilon
$$

4. We say that f is continuous from the left at x_{0} if $\lim _{x \rightarrow x_{0}^{+}} f(x)=f\left(x_{0}\right)$, that is

$$
\forall \varepsilon>0, \exists \delta>0, \forall x \in I: 0 \leq x-x_{0}<+\delta \Longrightarrow\left|f(x)-f\left(x_{0}\right)\right| \leq \varepsilon
$$

4 Remark 4.2. - It follows from the above definition that f is continuous at x_{0} if and only if

$$
\lim _{x \rightarrow x_{0}^{-}} f(x)=\lim _{x \rightarrow x_{0}^{+}} f(x)=f\left(x_{0}\right) .
$$

[19) Example 4.2. 1. The function $f(x)=x^{2}$ is continuous at all points in \mathbb{R}. Indeed
2. The function $f(x)=\left\{\begin{array}{rll}x \ln x & \text { if } & x>0 \\ 0 & \text { if } & x=0\end{array}\right.$ is continuous at 0^{+}
3. The sign function $f(x)=\operatorname{sgn} x:=\left\{\begin{array}{rll}+1 & \text { if } & x>0 \\ 0 & \text { if } & x=0 \\ -1 & \text { if } & x<0\end{array}\right.$ is not continuous at 0 since $\lim _{x \rightarrow x_{0}} f(x)$ does not exist.
4. The function $f(x)=\left\{\begin{array}{rll}x^{2} & \text { if } & x \neq 0 \\ 1 & \text { if } & x=0\end{array}\right.$ is not continuous at 0 , since $\lim _{x \rightarrow x_{0}} f(x)=0 \neq$ $1:=f(0)$.
5. Study the continuity of the following function

$$
f(x)=\left\{\begin{array}{rll}
x^{2} & \text { if } & x<1 \\
x^{1}+1 & \text { if } & x \geq 1
\end{array}\right.
$$

Theorem 4.2. If f and g are continuous functions at x_{0}, then so are $\lambda f, f+g$ and $f g$. If in addition $g\left(x_{0}\right) \neq 0$, then f / g is continuous at x_{0}.

Proof. Exercise

Theorem 4.3. Let $f:[a, b] \longrightarrow \mathbb{R}$ be a continuous function such that $f(a) f(b) \leq 0$. Then, there exists $c \in[a, b]$ such that $f(c)=0$.

Proof. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function such that $f(a) f(b) \leq 0$. We aim to show that there exists $c \in[a, b]$ such that $f(c)=0$. Without loss of generality, assume $f(a) \leq f(b)$. If $f(a)=0$ or $f(b)=0$, we are done, so let's consider the case where $f(a)<0$ and $f(b)>0$. Define the set

$$
S=\{x \in[a, b] \mid f(x) \leq 0\} .
$$

Notice that $a \in S$ since $f(a) \leq 0$, and $b \notin S$ since $f(b)>0$. Therefore, S is nonempty and bounded above by b, so $\sup S$ exists.

Let $c=\sup S$. We will show that $f(c)=0$.
Since c is the supremum of S, for any $\varepsilon>0$, there exists $x \in S$ such that $c-\varepsilon<x \leq c$. This implies $f(x) \leq 0$.

Because f is continuous, as ε approaches $0, f(x)$ approaches $f(c)$. Since $f(x) \leq 0$ for all $x \in S$, we have $f(c) \leq 0$.

Suppose, for the sake of contradiction, that $f(c)<0$. Then by continuity of f, there exists $\delta>0$ such that for all x with $|x-c|<\delta$, we have $f(x)<0$. This contradicts the fact that $c=\sup S$.

Hence, we must have $f(c) \geq 0$.
Since we've shown both $f(c) \leq 0$ and $f(c) \geq 0$, it follows that $f(c)=0$.
Thus, in all cases, there exists $c \in[a, b]$ such that $f(c)=0$, completing the proof of the Intermediate Value Theorem.

Theorem 4.4 ((Weierstrass extreme value)). If $f:[a, b] \longrightarrow \mathbb{R}$ is continuous on the closed and bounded interval $[a, b]$. Then f is bounded on $[a, b]$ and attains its maximum and minimum values on $[a, b]$. That is

$$
\exists c_{1}, c_{2} \in[a, b]: f\left(c_{1}\right)=\min _{x \in[a, b]} f(x), f\left(c_{2}\right)=\max _{x \in[a, b]} f(x)
$$

4.4 Uniform continuity

Definition 4.5. Let $f: I \longrightarrow \mathbb{R}$ be a function. We say f is uniformly continuous if

$$
\forall \varepsilon>0, \exists \delta>0, \forall x, y \in I:|x-y| \leq \delta \Longrightarrow|f(x)-f(y)| \leq \varepsilon
$$

[f) Remark 4.3. In other words, f is uniformly continuous if $f(x)-f(y) \rightarrow 0$ as $x-y \rightarrow 0$.
[: Example 4.3. 1. $f:[0,1] \longrightarrow \mathbb{R}$ defined by $f(x)=x^{2}$ is uniformly continuous Indeed, given $\varepsilon>0$. We have

$$
|f(x)-f(y)|=\left|x^{2}-y^{2}\right|=|x+y||x-y| \leq 2|x-y| .
$$

Taking $\delta=\varepsilon / 2$, so

$$
||x-y| \leq \delta \Longrightarrow 2| x-y|\leq \varepsilon \Longrightarrow| f(x)-f(y) \mid \leq \varepsilon
$$

2. $f: \mathbb{R} \longrightarrow \mathbb{R}$ defined by $f(x)=x^{2}$ is not uniformly continuous. Indeed, for $\varepsilon=2$, taking $x_{n}=n+1 / n, y_{n}=n$. Then $\forall \delta>0$, there exists $n \in \mathbb{N}^{*}$ such that $\left|x_{n}-y_{n}\right|=1 / n \leq \delta$ and

$$
\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|=\left|(n+1 / n)^{2}-n^{2}\right|=2+1 / n^{2} \geq 2=\varepsilon
$$

3. $f: \mathbb{R}^{*} \longrightarrow \mathbb{R}$ defined by $f(x)=1 / x$ is not uniformly continuous. Indeed, for $\varepsilon=1$, taking $x_{n}=1 / n, y_{n}=\frac{1}{n+1}$. Then $\forall \delta>0$, there exists $n \in \mathbb{N}^{*}$ such that $\left|x_{n}-y_{n}\right| \leq$ $1 / n \leq \delta$ and

$$
\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|=|(n+1)-n|=1 \geq 1=\varepsilon .
$$

Proposition 4.5. Every uniformly continuous function is continuous
Proof. Let $f: I \longrightarrow \mathbb{R}$ be uniformly continuous function. Given any $x_{0} \in I$, then
Theorem 4.6. Let $f:] a, b\left[\right.$ be a continuous function such that $\lim _{x \rightarrow a+} f(x), \lim _{x \rightarrow b-} f(x)$ exist and finite. Then f is uniformly continuous.

Proof. Let $\varepsilon>0$ be given. We need to show that there exists a $\delta>0$ such that for all $x, y \in] a, b[$ with $|x-y|<\delta$, we have $|f(x)-f(y)|<\varepsilon$.

Since $\lim _{x \rightarrow a+} f(x)$ exists, there exists a $\delta_{1}>0$ such that if $a<x<x+\delta_{1}<b$, then $\left|f\left(x+\delta_{1}\right)-f(x)\right|<\varepsilon / 2$. Similarly, since $\lim _{x \rightarrow b-} f(x)$ exists, there exists a $\delta_{2}>0$ such that if $a<x-\delta_{2}<x<b$, then $\left|f(x)-f\left(x-\delta_{2}\right)\right|<\varepsilon / 2$.

Now, choose $\delta=\min \left(\delta_{1}, \delta_{2}\right)$. Let $\left.x, y \in\right] a, b[$ such that $|x-y|<\delta$. Without loss of generality, assume $x<y$. Then, we have $\left|x-\left(x-\delta_{2}\right)\right|=\delta_{2}$, and $\left|\left(x+\delta_{1}\right)-y\right|=\delta_{1}$. Therefore, by the triangle inequality, we get

$$
|f(x)-f(y)| \leq\left|f(x)-f\left(x-\delta_{2}\right)\right|+\left|f\left(x+\delta_{1}\right)-f(y)\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
$$

Thus, for any $x, y \in] a, b[$ with $|x-y|<\delta$, we have $|f(x)-f(y)|<\varepsilon$, which shows that f is uniformly continuous.

4.5 Differentiable functions

I is an open interval, $x_{0} \in I, f: I \longrightarrow \mathbb{R}$ is a function well defined at all points of I
Definition 4.6. 1. We say that f is differentiable at x_{0} if

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \text { exists and finite. }
$$

This limit is denoted by $f^{\prime}\left(x_{0}\right)$ and called derivative of f at x_{0}. Thus

$$
f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} .
$$

If f is differentiable at all point of I, we say f is differentiable.
2. We say that f is left-differentiable at x_{0} if the left limit

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \text { exists and finite. }
$$

This limit is denoted by $f^{\prime}\left(x_{0}^{-}\right)$and called left-derivative of f at x_{0}.
3. We say that f is right-differentiable at x_{0} if the right limit

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \text { exists and finite. }
$$

This limit is denoted by $f^{\prime}\left(x_{0}^{+}\right)$and called right-derivative of f at x_{0}.
昭 Remark 4.4. - It is sometimes convenient to let $x=x_{0}+h$ and the above limit becomes

$$
f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} .
$$

- It is easy to see that f is differentiable at x_{0} if and only if it is left and right differentiable at x_{0} and $f^{\prime}\left(x_{0}^{+}\right)=f^{\prime}\left(x_{0}^{-}\right)$.
[49 Example 4.4. Study the differentiability of the following functions

1. $f(x)=C, C \in \mathbb{R}$. Given $x_{0} \in \mathbb{R}$. We have

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=\lim _{x \rightarrow x_{0}} \frac{C-C}{x-x_{0}}=0
$$

Thus f is differentiable and $f^{\prime}\left(x_{0}\right)=0$.
2. $f: \mathbb{R} \longrightarrow \mathbb{R}$ defined by $f(x)=x^{2}$. Given $x_{0} \in \mathbb{R}$. We have

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=\lim _{x \rightarrow x_{0}} \frac{x^{2}-x_{0}^{2}}{x-x_{0}}=\lim _{x \rightarrow x_{0}}\left(x+x_{0}\right)=2 x_{0}
$$

Thus f is differentiable and $f^{\prime}\left(x_{0}\right)=2 x_{0}$.
3. $f(x)=x^{n}, n \in \mathbb{N}^{*}$. Given $x_{0} \in \mathbb{R}$. We have

$$
\begin{aligned}
\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} & :=\lim _{x \rightarrow x_{0}} \frac{x^{n}-x_{0}^{n}}{x-x_{0}} \\
& =\lim _{x \rightarrow x_{0}} \frac{\left(x-x_{0}\right) \sum_{k=0}^{n-1} x^{n-1-k} x_{0}^{k}}{x-x_{0}} \\
& =\lim _{x \rightarrow x_{0}}\left(\sum_{k=0}^{n-1} x^{n-1-k} x_{0}^{k}\right) \\
& =n x_{0}^{n-1}
\end{aligned}
$$

Thus, f is differentiable at x_{0} and $f^{\prime}\left(x_{0}\right)=n x_{0}^{n-1}$. Since this holds for every $x_{0} \in \mathbb{R}$, then f is differentiable and $f^{\prime}(x)=n^{n-1}$.
4. $f: \mathbb{R}^{*} \longrightarrow \mathbb{R}$ defined by $f(x)=\frac{1}{x}$.

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} & =\lim _{h \rightarrow 0} \frac{1 /(x+h)-1 / x}{h} \\
& =\lim _{h \rightarrow 0} \frac{-1}{x(x+h)}=-\frac{1}{x^{2}} .
\end{aligned}
$$

Thus f is differentiable and $f^{\prime}(x)=-\frac{1}{x^{2}}$.
5. $f:] 0,+\infty[$ defined by $f(x)=\sqrt{x}$.

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} & =\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)-x}{h(\sqrt{x+h)}+\sqrt{x}}=\frac{1}{2 \sqrt{x}} .
\end{aligned}
$$

Thus f is differentiable and $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$.
6. $f: \mathbb{R} \longrightarrow \mathbb{R}$ defined by $f(x)=|x|$.

- If $x>0$ then given h such that $-x<h<x$. Then

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h}=\lim _{h \rightarrow 0} \frac{(x+h)-x}{h}=1 .
$$

Hence f is differentiable at x and $f^{\prime}(x)=1$.

- If $x<0$ then given h such that $-x<h<x$. Then

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h}=\lim _{h \rightarrow 0} \frac{-(x+h)+x}{h}=-1 .
$$

Hence f is differentiable at x and $f^{\prime}(x)=-1$.

- If $x=0$, then, we have

$$
\lim _{h \rightarrow 0^{+}} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{|h|}{h}=\lim _{h \rightarrow 0} \frac{h}{h}=+1 .
$$

and

$$
\lim _{h \rightarrow 0^{-}} \frac{k(0+h)-k(0)}{h}=\lim _{h \rightarrow 0} \frac{|h|}{h}=\lim _{h \rightarrow 0} \frac{-h}{h}=-1 .
$$

Therefore, the limit of difference quotient does not exist. It follows that f is not differentiable at 0 .

Proposition 4.7. If f is differentiable at x_{0}, then it is continuous at x_{0}.
Proof. We have

$$
\left|f(x)-f\left(x_{0}\right)\right|=\left|\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}\right|\left|x-x_{0}\right|
$$

passing to the limit as $x \rightarrow x_{0}$, taking into account that f is differentiable at x_{0}, we obtain $\lim _{x \rightarrow x_{0}}\left|f(x)-f\left(x_{0}\right)\right|=0$ which means that f is continuous at x_{0}.

Theorem 4.8. Let f, g be a differentiable functions at x_{0} then so are $\lambda f, f+g, f g$ and f / g if $g\left(x_{0}\right) \neq 0$.

1. $(\lambda f)^{\prime}\left(x_{0}\right)=\lambda f^{\prime}\left(x_{0}\right)$
2. $(f+g)^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)+g^{\prime}\left(x_{0}\right)$
3. $(f g)^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right) g\left(x_{0}\right)+f\left(x_{0}\right) g^{\prime}\left(x_{0}\right)$
4. If $g\left(x_{0}\right) \neq 0$ then $\left(\frac{f}{g}\right)^{\prime}\left(x_{0}\right)=\frac{f^{\prime}\left(x_{0}\right) g\left(x_{0}\right)-f\left(x_{0}\right) g^{\prime}\left(x_{0}\right)}{g\left(x_{0}\right)^{2}}$. In particular, we have

$$
\left(\frac{1}{g}\right)^{\prime}\left(x_{0}\right)=-\frac{g^{\prime}\left(x_{0}\right)}{g\left(x_{0}\right)^{2}}
$$

Proof. We will prove each part separately.

1. Let λ be a constant. By the definition of the derivative, we have

$$
(\lambda f)^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{\lambda f\left(x_{0}+h\right)-\lambda f\left(x_{0}\right)}{h} .
$$

Using the linearity of the limit, we can factor out λ and obtain

$$
(\lambda f)^{\prime}\left(x_{0}\right)=\lambda \lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=\lambda f^{\prime}\left(x_{0}\right) .
$$

2. The derivative of the sum of two functions is the sum of their derivatives:

$$
(f+g)^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)+g\left(x_{0}+h\right)-f\left(x_{0}\right)-g\left(x_{0}\right)}{h} .
$$

Using the linearity of the limit, we can separate the limit into two parts and apply the definition of the derivatives of f and g :

$$
(f+g)^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}+\lim _{h \rightarrow 0} \frac{g\left(x_{0}+h\right)-g\left(x_{0}\right)}{h}=f^{\prime}\left(x_{0}\right)+g^{\prime}\left(x_{0}\right) .
$$

3. For the product rule, we consider

$$
(f g)^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right) g\left(x_{0}+h\right)-f\left(x_{0}\right) g\left(x_{0}\right)}{h} .
$$

We can rewrite the above expression as

$$
(f g)^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0}\left(f\left(x_{0}+h\right) \frac{g\left(x_{0}+h\right)-g\left(x_{0}\right)}{h}+g\left(x_{0}\right) \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}\right) .
$$

Applying the definition of derivatives and continuity, we get

$$
(f g)^{\prime}\left(x_{0}\right)=f\left(x_{0}\right) g^{\prime}\left(x_{0}\right)+g\left(x_{0}\right) f^{\prime}\left(x_{0}\right) .
$$

4. Finally, for the quotient rule, we have

$$
\begin{aligned}
\left(\frac{f}{g}\right)^{\prime}\left(x_{0}\right) & =\lim _{h \rightarrow 0} \frac{\frac{f\left(x_{0}+h\right)}{g\left(x_{0}+h\right)}-\frac{f\left(x_{0}\right)}{g\left(x_{0}\right)}}{h}=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right) g\left(x_{0}\right)-f\left(x_{0}\right) g\left(x_{0}+h\right)}{h g\left(x_{0}+h\right) g\left(x_{0}\right)} \\
& =\lim _{h \rightarrow 0} \frac{\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} g\left(x_{0}\right)-f\left(x_{0}+h\right) \frac{g\left(x_{0}+h\right)-g\left(x_{0}\right)}{h}}{g\left(x_{0}+h\right) g\left(x_{0}\right)} \\
& =\frac{f^{\prime}\left(x_{0}\right) g\left(x_{0}\right)-f\left(x_{0}\right) g^{\prime}\left(x_{0}\right)}{g\left(x_{0}\right)^{2}}
\end{aligned}
$$

This completes the proof.
Theorem 4.9. Let I, J be two open intervals, $x_{0} \in I$ and $f: I \longrightarrow J, g: J \longrightarrow \mathbb{R}$ be two functions such that $f\left(x_{0}\right) \in J$. If f is differentiable at x_{0} and g is differentiable at $f\left(x_{0}\right)$ then $g \circ f$ is differentiable at x_{0} and we have

$$
(g \circ f)^{\prime}\left(x_{0}\right)=g^{\prime}\left(f\left(x_{0}\right)\right) f^{\prime}\left(x_{0}\right)
$$

Proof. Since f is differentiable at x_{0}, by definition, there exists a derivative $f^{\prime}\left(x_{0}\right)$ given by

$$
f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

Similarly, since g is differentiable at $y_{0}=f\left(x_{0}\right)$, there exists a derivative $g^{\prime}\left(f\left(x_{0}\right)\right)$ given by

$$
g^{\prime}\left(f\left(x_{0}\right)\right)=\lim _{y \rightarrow y_{0}} \frac{g(y)-g\left(y_{0}\right)}{y-y_{0}}
$$

Now consider the composition of the two functions $g \circ f: I \rightarrow \mathbb{R}$. The derivative of this composition at x_{0} is given by

$$
(g \circ f)^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{g(f(x))-g\left(f\left(x_{0}\right)\right)}{x-x_{0}} .
$$

We set $y=f(x)$ which go to $y_{0}=f\left(x_{0}\right)$ as $x \rightarrow x_{0}$ since f is continuous. Then, we have

$$
\begin{aligned}
(g \circ f)^{\prime}\left(x_{0}\right) & =\lim _{x \rightarrow x_{0}} \frac{g(y)-g\left(y_{0}\right)}{y-y_{0}} \frac{y-y_{0}}{x-x_{0}} \\
& =\lim _{y \rightarrow y_{0}} \frac{g(y)-g\left(y_{0}\right)}{y-y_{0}} \lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \\
& =g^{\prime}\left(y_{0}\right) f^{\prime}\left(x_{0}\right)=g^{\prime}\left(f\left(x_{0}\right)\right) f^{\prime}\left(x_{0}\right),
\end{aligned}
$$

which completes the proof.
asp Example 4.5. 1. $f(x)=\sqrt{x^{2}+1}$, calculate $f^{\prime}(x)$.

$$
f^{\prime}(x)=2 x \frac{1}{2 \sqrt{x^{2}+1}}=\frac{x}{\sqrt{x^{2}+1}}
$$

2. $g(t)=f(x), x=e^{t}$. Calculate $g^{\prime}(t)$. We have

$$
g^{\prime}(t)=\left(f\left(e^{t}\right)\right)^{\prime}=e^{t} f^{\prime}\left(e^{t}\right)=x f^{\prime}(x)
$$

4.6 Mean value theorem

$[a, b]$ is a closed bounded interval with $a<b$.
Lemme 4.10. Let $f:] a, b[\longrightarrow \mathbb{R}$ be a differentiable function. Suppose that f has an extreme value at a $c \in] a, b\left[\right.$. Then $f^{\prime}(c)=0$

Proof. Let $f:] a, b[\rightarrow \mathbb{R}$ be a differentiable function, and suppose that f has an extreme value at $c \in] a, b\left[\right.$. We aim to show that $f^{\prime}(c)=0$. Since f has an extreme value at c, it means that either $f(c)$ is a maximum or a minimum value. Without loss of generality, let's consider the case where $f(c)$ is a maximum. By the definition of a maximum, for any $x \in] a, b[$, we have $f(x) \leq f(c)$. This implies that the difference quotient

$$
\frac{f(x)-f(c)}{x-c} \geq 0, \forall x<c, \text { and } \frac{f(x)-f(c)}{x-c} \leq 0, \forall x>c
$$

Then, taking the limit as x approaches c, we have

$$
\lim _{x \rightarrow c^{-}} \frac{f(x)-f(c)}{x-c} \geq 0 \text {, and } \lim _{x \rightarrow c^{+}} \frac{f(x)-f(c)}{x-c} \leq 0 .
$$

By the differentiability of f at c, those limits can be expressed as the derivative of f at c :

$$
f^{\prime}(c) \leq 0 \text { and } f^{\prime}(c) \geq 0
$$

which implies $f^{\prime}(c)=0$.

Theorem 4.11 (Rolle's theorem). Suppose that $f:[a, b] \longrightarrow \mathbb{R}$ is continuous and differentiable on $] a, b[$ such that $f(a)=f(b)$. Then

$$
\exists c \in] a, b\left[: f^{\prime}(c)=0\right.
$$

〔9 Remark 4.5. It is absolutely necessary to suppose f differentiable at all points of $] a, b[$. Consider the function $f(x)=|x|$ on $[-1,1]$. Clearly $f(-1)=f(1)$, but there is no point c where $f^{\prime}(c)=0$.

Proof. By the Weierstrass extreme value theorem $4.4 f$ attains its global maximum and minimum values on $[a, b]$. If these are both attained at the endpoints, then f is constant, and $f^{\prime}((c)=0$ for all points $c \in] a, b[$. Otherwise, f attains at least one of its global maximum or minimum values at an interior point $c \in] a, b[$. Lemma 4.10 implies that $f^{\prime}(c)=0$.

We extend Rolle's theorem to functions that attain different values at the endpoints.
Theorem 4.12 (Mean value theorem). Let $f:[a, b] \longrightarrow \mathbb{R}$ be a continuous function differentiable on $] a, b[$. Then there exists a point $c \in] a, b[$ such that

$$
f(b)-f(a)=(b-a) f^{\prime}(c) .
$$

4 Remark 4.6. Graphically, this result says that there is $c \in] a, b[$ such that the slope of the tangent line at the point $(c, f(c))$ is equal to the slope of the chord between the endpoints $(a, f(a))$ and $(b, f(b))$.

Proof. Apply Rolle's theorem 4.11 to the function

$$
g(x)=f(x)-\left[\frac{f(b)-f(a)}{b-a}\right](x-a) .
$$

Theorem 4.13. Let $f:] a, b\left[\longrightarrow \mathbb{R}\right.$ be a differentiable function such that $f^{\prime}(x)=0$ for all $x \in] a, b[$. Then f is constant.

Proof. f is constant if $f(x)=f(y), \forall x, y \in] a, b[$. Take arbitrary $x, y \in] a, b[$ with $x<y$. As $] a, b[$ is an interval, $[x, y] \subset] a, b[$. Then f restricted to $[x, y]$ satisfies the hypotheses of the mean value theorem 4.12. Therefore, there is a $c \in] x, y[$ such that

$$
f(x)-f(y)=(x-y) f^{\prime}(c)
$$

Since $f^{\prime}(c)=0$, we have $f(x)=f(y)$. Hence, f is constant.
Proposition 4.14. Let $f:] a, b[\longrightarrow \mathbb{R}$ be a differentiable function. Then

- f is increasing if and only if $\left.f^{\prime} x\right) \geq 0$ for all $\left.x \in\right] a, b[$.
- f is decreasing if and only if $\left.f^{\prime} x\right) \leq 0$ for all $\left.x \in\right] a, b[$.

Proof. Let us denote that f is increasing (resp. decreasing) if and only if $\frac{f(x)-f(y)}{x-y} \geq 0$, (resp. ≤ 0), $\forall x \neq y$.

Let us prove the first item. Suppose f is increasing. For all $x, c \in] a, b[$ with $x \neq c$,

$$
\frac{f(x)-f(c)}{x-c} \geq 0
$$

Taking a limit as x goes to c, we see that $f^{\prime}(c) \geq 0$. For the other direction, suppose $f^{\prime}(c) \geq 0$ for all $\left.c \in\right] a, b[$. Take any $x, y \in] a, b[$ with $x<y$, and note that $[x, y] \subset] a, b[$. By the mean value theorem 4.12, there is some $c \in] x, y[$ such that

$$
f(x)-f(y)=(x-y) f^{\prime}(c)
$$

Hence

$$
\frac{f(x)-f(y)}{x-y}=f^{\prime}(c) \geq 0
$$

and so f is increasing. We leave the second item to the reader as exercise.

4.7 Exercises

Exercise 37. Find the domain of definition of the following functions

$$
f(x)=\sqrt{x^{2}+3 x-4}, \quad g(x)=\ln \left(x^{2}+3 x-4\right), \quad h(x)=\frac{\ln (x+1)}{\sqrt{1-x^{2}}}, \quad k(x)=\frac{1}{[x]-2022} .
$$

Exercise 38. Calculate the following limits

$$
\begin{aligned}
& \lim _{x \rightarrow+\infty}\left(\sqrt[3]{x^{3}+1}-x\right), \quad \lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{\sqrt{x+8}-3}, \quad \lim _{x \rightarrow 1} \frac{\sqrt[4]{x}-1}{\sqrt{x}-1}, \quad \lim _{x \rightarrow 1} \frac{\sqrt[3]{x}-1}{\sqrt{x}-1} \\
& \lim _{x \rightarrow+\infty} \frac{e^{x}}{x^{6}}, \lim _{x \rightarrow+\infty} \frac{\ln \left(1+x^{2}\right)}{x}, \quad \lim _{x \rightarrow 0} \frac{\|x\|}{x^{10}}, \lim _{x \rightarrow+\infty} \frac{1-\cos x}{x^{2}}, \quad \lim _{x \rightarrow \pi} \frac{\sin x}{x-\pi} .
\end{aligned}
$$

Exercise 39. 1. Using the definition of the derivative, calculate the following limits

$$
\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}, \quad \lim _{x \rightarrow 0} \frac{e^{x}-1}{x}
$$

2. Deduce the following limits

$$
\lim _{x \rightarrow+\infty}\left(1+\frac{k}{x}\right)^{x}, k \in \mathbb{R}, \quad \lim _{x \rightarrow 0} \frac{a^{x}-b^{x}}{x}, a, b>0 .
$$

Exercise 40. 1. Show that

$$
\forall x, y \geq 0:|\sqrt{x}-\sqrt{y}| \leq \sqrt{|x-y|}
$$

2. Deduce that the function $x \mapsto \sqrt{x}$ is uniformly continuous on \mathbb{R}_{+}.
3. Show that the function $x \mapsto \frac{1}{x}$ is not uniformly continuous on $(0, \infty)$ (Choose $\left.x=\frac{1}{n}, y=\frac{1}{2 n}\right)$.

Exercise 41. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be the function defined by

$$
f(x)=\left\{\begin{array}{lll}
x^{3}+\frac{a}{x^{2}} & \text { if } & x \neq 0 \\
0 & \text { if } & x=0
\end{array}\right.
$$

1. Calculate $\lim _{x \rightarrow 0} f(x)$
2. Deduce the value of a for which f is continuous.

Exercise 42. Study the continuity of the function defined on \mathbb{R} by $f(x)=[x]$ (consider the two cases: $x \in \mathbb{Z}$ and $x \notin \mathbb{Z}$).

Exercise 43. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a continuous function such that $f(x)=0$ for all $x \in \mathbb{Q}$. Show that $f(x)=0$ for all $x \in \mathbb{R}$.

Exercise 44. 1. Let $f:[0,1] \longrightarrow[0,1]$ be a continuous function. Show that f has a fixed point.
2. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a continuous and decreasing function. Show that f has a unique fixed point.

Exercise 45. 1. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a continuous and periodic function such that $\lim _{x \rightarrow+\infty} f(x)$ exists. Show that f is constant.
2. Deduce that $x \mapsto \sin x$ and $x \mapsto \cos x$ do not have limits at $+\infty$ and $-\infty$.

Exercise 46. Calculate the derivatives of the following functions: $\sqrt{\frac{1+x^{2}}{x-1}}, \quad \ln \left(1+\cos \left(x^{2}-\right.\right.$ $x+1)$)

Exercise 47. 1. Using the definition of the derivative, calculate the following limits

$$
\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}, \quad \lim _{x \rightarrow 0} \frac{e^{x}-1}{x}
$$

2. Deduce the following limits

$$
\lim _{x \rightarrow+\infty}\left(1+\frac{k}{x}\right)^{x}, k \in \mathbb{R}, \quad \lim _{x \rightarrow 0} \frac{a^{x}-b^{x}}{x}, a, b>0 .
$$

Exercise 48. Let f be the function defined on \mathbb{R}^{*} by $f(x)=x^{2} \sin \frac{1}{x^{2}}$.

1. Show that f can be extended to be continuous on \mathbb{R} and give its extension \tilde{f}.
2. Study the differentiability of \tilde{f} and calculate its derivative $\tilde{f^{\prime}}$
3. Is \tilde{f} of class $\mathcal{C}^{1}(\mathbb{R})$?

Exercise 49. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a function such that

$$
\forall x, y \in \mathbb{R}:|f(x)-f(y)| \leq|x-y|^{2} .
$$

1. Show that f is differentiable and calculate its derivative.
2. Deduce the value of f.

Exercise 50. Show the following inequalities

$$
\begin{array}{r}
\forall x>-1: \frac{x}{1+x} \leq \ln (1+x) \leq x, \\
\forall x \in] 0,1\left[: 1+x \leq e^{x} \leq \frac{1}{1-x}\right.
\end{array}
$$

(Apply the Mean Value Theorem to the functions: $\left.e^{x}-x-1,(1-x) e^{x}-1\right)$.
Exercise 51. Calculate the n th-order derivatives for $n \in \mathbb{N}$ of the following functions

$$
\left(x^{2}+x+1\right) e^{x}, \quad \frac{e^{x}}{1-x}, \quad \frac{e^{-x}}{1+x} .
$$

