University of M'sila. 2023/2024
Faculty of Technology
Domaine: Engineering
Level: First year
Analysis 1

Tutorial Series 03(Real Functions)

Exercise 01

1. Find the domain of definition of the following functions

$$
f(x)=\sqrt{x^{2}+3 x-4}, \quad g(x)=\ln \left(x^{2}+3 x-4\right), \quad h(x)=\frac{\ln (1+x)}{\sqrt{1-x^{2}}}, \quad k(x)=\frac{1}{[x]-2023}
$$

2. Evaluate the following limits

$$
\begin{array}{ll}
\text { (a) } \lim _{x \rightarrow \infty} \frac{x+\sqrt{x^{4}-x^{2}+1}}{2 x^{2}+1+\sqrt{x^{4}+1}} ; & \text { (b) } \lim _{x \rightarrow 0}\left(\frac{\sin p x}{\sin q x}\right) ; \\
& (c) \lim _{x \rightarrow \pi}\left(\frac{\sin (x)}{x-\pi}\right) ; \\
\text { (e) } \lim _{x \rightarrow 0}\left(\frac{\ln (1+x)}{x}\right) & \text { (f) } \lim _{x \rightarrow 0}\left(x\left[\frac{1}{x}\right]\right)
\end{array}
$$

3. Evaluate the limit $\left(\lim _{x \rightarrow \infty} \frac{n}{2} r^{2} \sin \frac{2 \pi}{n}\right)$, where r is a constant. Interpret this limit geometrically.

Exercise 02

1. Sketch the graph of the following function on $[0,2]$

$$
f(x)=\left\{\begin{array}{lll}
\sqrt{1-x^{2}} & \text { for } & 0 \leq x<1 \\
1 & \text { for } & 1 \leq x<2 \\
2 & \text { for } & x=2
\end{array}\right.
$$

2. For what values of c in the domain does $\lim _{x \rightarrow c} f(x)$ exist?
3. At what points does only the left-hand limit exist?
4. At what points does only the right-hand limit exist?

Exercise 03

Given the function $y=f(x)$ defined as follows

$$
f(x)=\left\{\begin{array}{lll}
0 & \text { if } & x^{2}=1 \\
1 & & \text { otherwise }
\end{array}\right.
$$

Sketch the function. At what points is the function f discontinuous? Explain

Exercise04

Let f be the function defined on \mathbb{R}^{*} by $f(x)=x^{2} \sin \left(\frac{1}{x^{2}}\right)$

1. Show that f can be extended to be continuous on \mathbb{R} and give its extention \tilde{f}
2. Study the differentiability of \widetilde{f} and calculate its derivative \tilde{f}^{\prime}
3. Is \tilde{f} of class $C^{1}(\mathbb{R})$

Exercise 05

Given $f(x)= \begin{cases}\frac{1}{2}\left(x^{2}-4\right) & \text { for } 0<x<2 \\ 0 & \text { for } x=2 \\ \frac{2}{x^{2}}\left(x^{2}-4\right) & \text { for } x>2\end{cases}$
Show that f is differentiable at $x=2$.

Exercise 06

Discuss the continuity and the differentiabilty of the following functions:

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{ll}
x^{3} \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\
0 & \text { if } x=0
\end{array}, g(x)=\left\{\begin{array}{ll}
x+1 & \text { if } x \leq 0 \\
\cos ^{2}\left(\frac{\pi x}{2}\right) & \text { if } x>0
\end{array},\right.\right. \\
& h(x)= \begin{cases}1-\left(\frac{1}{x}+1\right) e^{-\frac{1}{x}} & \text { if } x \neq 0 \\
0 & \text { if } x=0\end{cases}
\end{aligned}
$$

Exercise 07

Let f the function defined by $f(x)=\left\{\begin{array}{ll}\frac{x+1}{2} & \text { si } 0 \leq x \leq 1 \\ \alpha x+2 & \text { si } 1<x \leq 2\end{array}\right.$ where α is a real parameter

1. Find the value of α for which f is continuous.
2. Discuss the differentiability of f (with the found value of α)
