5 Usual function

5.1 Definition of arcsin and aarccos Functions

Definition 5.1. 1. The arcsine function, denoted as $\arcsin(x)$ or $\sin^{-1}(x)$, is the inverse of the sine function $\sin: [-\pi/2, \pi/2] \longrightarrow [-1, 1]$. In other words, $\arcsin: [-1, 1] \longrightarrow [-\pi/2, \pi/2]$ such that $\forall x \in [-1, 1]$, we have

$$\operatorname{arcsin}(x) = \theta$$
 where $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$ and $\sin(\theta) = x$.

2. The arccos function, denoted as $\arccos(x)$ or $\cos^{-1}(x)$, is the inverse of the cosine function $\cos: [0, \pi] \longrightarrow [-1, 1]$. In other words, $\arccos: [-1, 1] \longrightarrow [0, \pi]$ such that $\forall x \in [-1, 1]$, we have

$$\arccos(x) = \theta$$
 where $0 \le \theta \le \pi$ and $\cos \theta = x$

Proposition 5.1. (Properties of the Arcsine and Arccos Function).

- 1. $\operatorname{arcsin}(-x) = -\operatorname{arcsin}(x), \operatorname{arccos}(-x) = \pi \operatorname{arccos} x \quad \forall x \in [-1, 1].$
- 2. Derivative:

$$\forall x \in]-1, 1[: \arcsin' x = \frac{1}{\sqrt{1-x^2}}, \quad \arccos' x = -\frac{1}{\sqrt{1-x^2}}$$

3. Inverse of sine and cosine:

$$\operatorname{arcsin}(\sin \theta) = \theta, \quad \text{for } -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$$
$$\operatorname{arccos}(\cos \theta) = \theta, \quad \text{for } 0 \le \theta \le \pi$$

5.2 Definition of hyperbolic functions ch and ash

The hyperbolic sine and hyperbolic cosine functions are defined on \mathbb{R} as follows:

$$\operatorname{sh}(x) = \frac{e^x - e^{-x}}{2}$$
$$\operatorname{ch}(x) = \frac{e^x + e^{-x}}{2}$$

Let us denote that those functions are differentiable and we have

$$sh'(x) = \frac{e^x - +e^{-x}}{2} = chx$$

 $ch'(x) = \frac{e^x - e^{-x}}{2} = shx$

Definition 5.2. 1. The arcsine function, denoted as $\operatorname{argsh}(x)$ or $\operatorname{sh}^{-1}(x)$, is the inverse of the sine function $\operatorname{sh}: \mathbb{R} \longrightarrow \mathbb{R}$. In other words, $\operatorname{argsh}: [-1, 1] \longrightarrow \mathbb{R}$ such that $\forall x \in [-1, 1]$, we have

 $\operatorname{argsh} x = y$ where $\operatorname{sh} y = x$.

2. The arccos function, denoted as $\operatorname{argch}(x)$ or $\operatorname{ch}^{-1}(x)$, is the inverse of the cosine function $\operatorname{ch}: [0, +\infty] \longrightarrow [1, +\infty[$. In other words, $\operatorname{argch}: [1, +\infty[\longrightarrow [0, +\infty]$ such that $\forall x \in [-1, 1]$, we have

 $\operatorname{argch}(x) = y$ where $\operatorname{ch} y = x$.

Exercise 52. Calculate argch0, argsh0, argch1, args1

Proposition 5.2 (Derivative). The functions argch and argsh are differentiable and we have

5.3 Exercises

Exercise 53. Show that for all $x \in [-1, 1]$, we have

 $\sin(\arccos x) = \sqrt{1 - x^2} = \cos(\arcsin x)$

Exercise 54. Let $f : D \to [-1,1]$ be the function defined by $f(x) = \sin x$ where $D = [\frac{\pi}{2}, \frac{3\pi}{2}]$.

1. Verify that f is bijective and determine its inverse f^{-1} in terms of arcsin.

2. Same question for $f(x) = \cos x$ and $D = [2022\pi, 2023\pi]$.

Exercise 55. 1. Calculate $\arcsin(\sin\frac{\pi}{3})$, $\arccos\cos(\frac{\pi}{3})$, $\arccos(\sin\frac{\pi}{3})$.

2. Calculate $\arccos(\cos\frac{4\pi}{3})$, $\arccos(\cos\frac{7\pi}{3})$, $\arcsin(\sin\frac{2\pi}{3})$, $\arcsin(\sin\frac{7\pi}{3})$.

Exercise 56. 1. Show that $\arctan a + \arctan b = \arctan \frac{a+b}{1-ab}$, with ab < 1

2. Calculate $\arctan(1/2) + \arctan(1/3)$

Exercise 57. 1. Calculate

 $C = \sum_{k=0}^{n} \operatorname{ch}(kx), \quad S = \sum_{k=0}^{n} \operatorname{sh}(kx)$

- 2. Linearize $\operatorname{sh} x.\operatorname{ch}(2x)$, $\operatorname{ch} x.\operatorname{ch}^2 x$
- 3. Verify that sh(2x) = 2shxchx and then calculate

 $P = \operatorname{ch} x.\operatorname{ch}(\frac{x}{2}).\operatorname{ch}(\frac{x}{2^2}).....\operatorname{ch}(\frac{x}{2^n}).$

Exercise 58. Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined by $f(x) = \operatorname{argch} \sqrt{1 + x^2}$.

- 1. Determine the domain of definition of f.
- 2. Calculate $\operatorname{argch}(\operatorname{ch} t)$, for all $t \in \mathbb{R}$
- 3. Show that $\forall x \in \mathbb{R} : f(x) = \operatorname{argsh}|x|$.
- 4. Calculate f'(x), for all $x \in \mathbb{R}^*$.
- 5. Is f differentiable at 0?.

Exercise 59. (Assignment)

Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function defined by

$$f(x) = \begin{cases} \arctan \frac{1}{x^2} & \text{if } x \neq 0\\ \ell & \text{if } x = 0 \end{cases}$$

- 1. Determine ℓ .
- 2. Show that f is differentiable on \mathbb{R}^* and calculate f'.
- 3. Show that f is differentiable at 0 and calculate f'(0) (Apply MVT between 0 and x).
- 4. Deduce that f is \mathcal{C}^{∞} .
- 5. Calculate g' where g is the function defined on \mathbb{R} by $g(x) = \arctan x^2$.
- 6. Calculate $\arctan x^2 + \arctan \frac{1}{x^2}, \forall x \in \mathbb{R}^*$ and deduce $\arctan x + \arctan \frac{1}{x}, \forall x \in \mathbb{R}^*$.
- 7. Show that $g: [0, +\infty[\rightarrow [0, \pi/2[$ is bijective and calculate g^{-1} .
- 8. Calculate $(g^{-1})'$ in two ways.

Reminder

$$\cos(a+b) = \cos a \cos b - \sin a \sin b, \quad \cos(a-b) = \cos a \cos b + \sin a \sin b$$
$$\sin(a+b) = \sin a \cos b + \cos a \sin b, \quad \sin(a-b) = \sin a \cos b - \cos a \sin b$$
$$\cos(2x) = \cos^2 x - \sin^2 x, \quad \sin(2x) = 2\sin x \cos x$$
$$\arccos : [-1,1] \rightarrow [0,\pi], \quad \arcsin : [-1,1] \rightarrow [-\pi/2,\pi/2]$$
$$\arccos' x = \frac{-1}{\sqrt{1-x^2}}, \quad \arcsin' x = \frac{1}{\sqrt{1-x^2}}$$

