5 Usual function

5.1 Definition of arcsin and aarccos Functions

Definition 5.1. 1. The arcsine function, denoted as $\arcsin (x)$ or $\sin ^{-1}(x)$, is the inverse of the sine function $\sin :[-\pi / 2, \pi / 2] \longrightarrow[-1,1]$. In other words, arcsin : $[-1,1] \longrightarrow[-\pi / 2, \pi / 2]$ such that $\forall x \in[-1,1]$, we have

$$
\arcsin (x)=\theta \quad \text { where } \quad-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} \quad \text { and } \quad \sin (\theta)=x
$$

2. The arccos function, denoted as $\arccos (x)$ or $\cos ^{-1}(x)$, is the inverse of the cosine function $\cos :[0, \pi] \longrightarrow[-1,1]$. In other words, $\arccos :[-1,1] \longrightarrow[0, \pi]$ such that $\forall x \in[-1,1]$, we have

$$
\arccos (x)=\theta \quad \text { where } \quad 0 \leq \theta \leq \pi \quad \text { and } \quad \cos \theta=x
$$

Proposition 5.1. (Properties of the Arcsine and Arccos Function).

1.

$$
\arcsin (-x)=-\arcsin (x), \arccos (-x)=\pi-\arccos x \quad \forall x \in[-1,1] .
$$

2. Derivative:

$$
\forall x \in]-1,1\left[: \arcsin ^{\prime} x=\frac{1}{\sqrt{1-x^{2}}}, \quad \arccos ^{\prime} x=-\frac{1}{\sqrt{1-x^{2}}}\right.
$$

3. Inverse of sine and cosine:

$$
\begin{gathered}
\arcsin (\sin \theta)=\theta, \quad \text { for }-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} \\
\arccos (\cos \theta)=\theta, \quad \text { for } 0 \leq \theta \leq \pi
\end{gathered}
$$

5.2 Definition of hyperbolic functions ch and ash

The hyperbolic sine and hyperbolic cosine functions are defined on \mathbb{R} as follows:

$$
\begin{aligned}
\operatorname{sh}(x) & =\frac{e^{x}-e^{-x}}{2} \\
\operatorname{ch}(x) & =\frac{e^{x}+e^{-x}}{2}
\end{aligned}
$$

Let us denote that those functions are differentiable and we have

$$
\begin{aligned}
\operatorname{sh}^{\prime}(x) & =\frac{e^{x}-+e^{-x}}{2}=\operatorname{ch} x \\
\operatorname{ch}^{\prime}(x) & =\frac{e^{x}-e^{-x}}{2}=\operatorname{sh} x
\end{aligned}
$$

Definition 5.2. 1. The arcsine function, denoted as $\operatorname{argsh}(x)$ or $\operatorname{sh}^{-1}(x)$, is the inverse of the sine function $\operatorname{sh}: \mathbb{R} \longrightarrow \mathbb{R}$. In other words, argsh : $[-1,1] \longrightarrow \mathbb{R}$ such that $\forall x \in[-1,1]$, we have

$$
\operatorname{argsh} x=y \quad \text { where } \quad \operatorname{sh} y=x .
$$

2. The \arccos function, denoted as $\operatorname{argch}(x)$ or $\mathrm{ch}^{-1}(x)$, is the inverse of the cosine function $\operatorname{ch}:[0,+\infty] \longrightarrow[1,+\infty[$. In other words, $\operatorname{argch}:[1,+\infty[\longrightarrow[0,+\infty]$ such that $\forall x \in[-1,1]$, we have

$$
\operatorname{argch}(x)=y \quad \text { where } \quad \operatorname{ch} y=x .
$$

Exercise 52. Calculate argch0, argsh0, argch1, args1
Proposition 5.2 (Derivative). The functions argch and argsh are differentiable and we have

$$
\begin{gathered}
\forall x \in \mathbb{R}: \operatorname{argsh}^{\prime} x=\frac{1}{\sqrt{x^{2}+1}} \\
\forall x \in] 1,+\infty\left[: \operatorname{argch}^{\prime} x=\frac{1}{\sqrt{x^{2}-1}}\right.
\end{gathered}
$$

5.3 Exercises

Exercise 53. Show that for all $x \in[-1,1]$, we have

$$
\sin (\arccos x)=\sqrt{1-x^{2}}=\cos (\arcsin x)
$$

Exercise 54. Let $f: D \rightarrow[-1,1]$ be the function defined by $f(x)=\sin x$ where $D=\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]$.

1. Verify that f is bijective and determine its inverse f^{-1} in terms of arcsin.
2. Same question for $f(x)=\cos x$ and $D=[2022 \pi, 2023 \pi]$.

Exercise 55. 1. Calculate $\arcsin \left(\sin \frac{\pi}{3}\right), \arccos \cos \left(\frac{\pi}{3}\right), \arccos \left(\sin \frac{\pi}{3}\right)$.
2. Calculate $\arccos \left(\cos \frac{4 \pi}{3}\right), \arccos \left(\cos \frac{7 \pi}{3}\right), \arcsin \left(\sin \frac{2 \pi}{3}\right), \arcsin \left(\sin \frac{7 \pi}{3}\right)$.

Exercise 56. 1. Show that $\arctan a+\arctan b=\arctan \frac{a+b}{1-a b}$, with $a b<1$
2. Calculate $\arctan (1 / 2)+\arctan (1 / 3)$

Exercise 57. 1. Calculate

$$
C=\sum_{k=0}^{n} \operatorname{ch}(k x), \quad S=\sum_{k=0}^{n} \operatorname{sh}(k x)
$$

2. Linearize $\operatorname{sh} x \cdot \operatorname{ch}(2 x), \operatorname{ch} x \cdot \operatorname{ch}^{2} x$
3. Verify that $\operatorname{sh}(2 x)=2 \operatorname{sh} x \operatorname{ch} x$ and then calculate

$$
P=\operatorname{ch} x \cdot \operatorname{ch}\left(\frac{x}{2}\right) \cdot \operatorname{ch}\left(\frac{x}{2^{2}}\right) \ldots \ldots . \operatorname{ch}\left(\frac{x}{2^{n}}\right) .
$$

Exercise 58. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $f(x)=\operatorname{argch} \sqrt{1+x^{2}}$.

1. Determine the domain of definition of f.
2. Calculate $\operatorname{argch}(\operatorname{ch} t)$, for all $t \in \mathbb{R}$
3. Show that $\forall x \in \mathbb{R}: f(x)=\operatorname{argsh}|x|$.
4. Calculate $f^{\prime}(x)$, for all $x \in \mathbb{R}^{*}$.
5. Is f differentiable at 0 ?.

Exercise 59. (Assignment)

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function defined by

$$
f(x)=\left\{\begin{array}{lll}
\arctan \frac{1}{x^{2}} & \text { if } & x \neq 0 \\
\ell & \text { if } & x=0
\end{array}\right.
$$

1. Determine ℓ.
2. Show that f is differentiable on \mathbb{R}^{*} and calculate f^{\prime}.
3. Show that f is differentiable at 0 and calculate $f^{\prime}(0)$ (Apply MVT between 0 and x).
4. Deduce that f is \mathcal{C}^{∞}.
5. Calculate g^{\prime} where g is the function defined on \mathbb{R} by $g(x)=\arctan x^{2}$.
6. Calculate $\arctan x^{2}+\arctan \frac{1}{x^{2}}, \forall x \in \mathbb{R}^{*}$ and deduce $\arctan x+\arctan \frac{1}{x}, \forall x \in \mathbb{R}^{*}$.
7. Show that $g:\left[0,+\infty\left[\rightarrow\left[0, \pi / 2\left[\right.\right.\right.\right.$ is bijective and calculate g^{-1}.
8. Calculate $\left(g^{-1}\right)^{\prime}$ in two ways.

Reminder

$$
\begin{array}{ll}
\cos (a+b)=\cos a \cos b-\sin a \sin b, & \cos (a-b)=\cos a \cos b+\sin a \sin b \\
\sin (a+b)=\sin a \cos b+\cos a \sin b, & \sin (a-b)=\sin a \cos b-\cos a \sin b
\end{array}
$$

$$
\cos (2 x)=\cos ^{2} x-\sin ^{2} x, \quad \sin (2 x)=2 \sin x \cos x
$$

$$
\arccos :[-1,1] \rightarrow[0, \pi], \quad \arcsin :[-1,1] \rightarrow[-\pi / 2, \pi / 2]
$$

$$
\arccos ^{\prime} x=\frac{-1}{\sqrt{1-x^{2}}}, \quad \arcsin ^{\prime} x=\frac{1}{\sqrt{1-x^{2}}}
$$

$$
\arctan : \mathbb{R} \rightarrow]-\pi / 2, \pi / 2\left[, \quad \arctan ^{\prime} x=\frac{1}{1+x^{2}}\right.
$$

$$
\operatorname{ch} x=\frac{e^{x}+e^{-x}}{2}, \operatorname{sh} x=\frac{e^{x}-e^{-1}}{2}, \quad \operatorname{ch} x+\operatorname{sh} x=e^{x}
$$

$$
\operatorname{ch}^{\prime} x=\operatorname{sh} x, \quad \operatorname{sh}^{\prime} x=\operatorname{ch} x, \quad \operatorname{ch}^{2} x-\operatorname{sh}^{2} x=1
$$

$$
\operatorname{ch}(a+b)=\operatorname{ch} a \operatorname{ch} b+\operatorname{sh} a \operatorname{sh} b, \quad \operatorname{ch}(a-b)=\operatorname{ch} a \operatorname{ch} b-\operatorname{sh} a \operatorname{sh} b
$$

$$
\operatorname{sh}(a+b)=\operatorname{sh} a \operatorname{ch} b+\operatorname{ch} a \operatorname{sh} b, \quad \operatorname{sh}(a-b)=\operatorname{sh} a \operatorname{ch} b-\operatorname{ch} a \operatorname{sh} b
$$

$$
\operatorname{ch}(2 x)=\operatorname{ch}^{2} x+\operatorname{sh}^{2} x, \quad \operatorname{sh}(2 x)=2 \operatorname{sh} x \operatorname{ch} x
$$

$$
\operatorname{argch}:[1,+\infty[\rightarrow[0,+\infty], \quad \operatorname{argsh}: \mathbb{R} \rightarrow \mathbb{R}
$$

$$
\begin{gathered}
\operatorname{argch}^{\prime} x=\frac{1}{\sqrt{x^{2}-1}}, \quad \operatorname{argsh}^{\prime} x=\frac{1}{\sqrt{1+x^{2}}} \\
\operatorname{argth}:[-1,+1] \rightarrow \mathbb{R}, \quad \operatorname{argth}^{\prime} x=\frac{1}{x^{2}-1}
\end{gathered}
$$

