Université de M'sila

Faculté de : Technologie

Socle commun

Série de TD N° 01

Exercice 01:

Dans une base orthonormée $(\vec{\imath},\vec{\jmath},\vec{k})$, on donne les vecteurs \vec{V}_1 et \vec{V}_2 tel que :

$$\vec{V}_1 = \vec{\iota} + 2\vec{\jmath}$$

$$\vec{V}_2 = 2\vec{\iota} - \vec{J}$$

1°/Déterminer le vecteur somme : $\vec{S} = \vec{V}_1 + \vec{V}_2$, graphiquement et analytiquement.

2°/Déterminer le vecteur différence : $\vec{D} = \vec{V}_1 - \vec{V}_2$, graphiquement et analytiquement.

3%/Les vecteurs \vec{V}_1 et \vec{V}_2 forment un parallélogramme. Que représentent les vecteurs somme $|\vec{S}|$ et vecteur différence $|\vec{D}|$ graphiquement dans ce parallélogramme ?

4% Déterminer les modules des vecteurs : \vec{V}_1 , \vec{V}_2 , \vec{S} et \vec{D} .

Questions supplémentaires : $Si \vec{A} + \vec{B} = 5\vec{i} - \vec{j}$ et $\vec{B} - \vec{A} = \vec{i} + \vec{j}$

5°/Que vaut les modules des vecteurs : $|\vec{A}|$, $|\vec{B}|$, $|\vec{A} + \vec{B}|$ et $|\vec{B} - \vec{A}|$?

6% Quels sont les angles formés entre : $(\vec{A} \text{ et } \vec{B})$; $(\vec{A} + \vec{B} \text{ et } \vec{A})$; $(\vec{B} - \vec{A} \text{ et } \vec{B})$; $(\vec{A} + \vec{B} \text{ et } \vec{B} - \vec{A})$?

7°/ Donner les composantes de \vec{n} la normale au plan formé par les vecteurs \vec{A} et \vec{B}

8°/ Quelles sont les composantes de \vec{A} et \vec{B} le long des directions $\vec{u} = \vec{i} + \vec{j}$ et $\vec{v} = \vec{i} - \vec{j}$?

Exercice 02:

Dans une base orthonormée $(\vec{i}, \vec{j}, \vec{k})$, on donne les vecteurs \vec{a} et \vec{b} tel que :

$$\vec{a} = 3\vec{i} - 5\vec{j} + \vec{k}$$

$$\vec{b} = 2\vec{i} + 3\vec{j} - 4\vec{k}$$

1°/ Calculer le produit scalaire entre \vec{a} et \vec{b} .

2°/ Quel est l'angle formé entre \vec{a} et \vec{b} . Déterminer $|\vec{a} + \vec{b}|$ et $|\vec{a} - \vec{b}|$ de deux manières.

3 $^{\prime}$ Déterminer la projection de \vec{a} le long de la direction de \vec{b}

Si ces vecteurs dont les composantes sont données en fonction des paramètres α et β telle

que :
$$\vec{a} = \alpha \vec{i} - 2\vec{j} + \vec{k}$$
 et $\vec{b} = \beta \vec{i} + \vec{j} + \vec{k}$

4% Quelle est la relation entre α et β pour que \vec{a} et \vec{b} soient toujours perpendiculaires ?

Exercice 03:

Dans une base orthonormée $(\vec{i}, \vec{j}, \vec{k})$, on donne les vecteurs \vec{A} et \vec{B} tel que :

$$\vec{A} = 2\vec{\imath} - 3\vec{\jmath} + 4\vec{k}$$

$$\vec{A} = \vec{\iota} + 5\vec{\jmath} + 2\vec{k}$$

1 '/ Calculer le produit vectoriel entre \vec{A} et \vec{B} .

2°/ Quel est l'angle formé entre \vec{A} et \vec{B} .

3°/Quelle est l'aire formée par les vecteurs \vec{A} et \vec{B} .Quelle est la direction de cette surface?

Si ces vecteurs dont les composantes sont données en fonction des paramètres γ et δ telle

que
$$: \vec{A} = \gamma \vec{i} - 3\vec{j} + 4\vec{k}$$
 et $\vec{B} = 5\vec{i} + \delta \vec{j} + 2\vec{k}$

4% Que valent γ et δ pour que \vec{A} et \vec{B} soient toujours colinéaires ?

Exercice 04:

Dans une base orthonormée $(\vec{l}, \vec{j}, \vec{k})$, on donne les vecteurs :

$$\vec{A}(t) = 2t\vec{i} + (t+1)\vec{j}$$
 et $\vec{B}(t) = 4t\vec{i} - 3t\vec{j} + 2\vec{k}$

$$\vec{B}(t) = 4t\vec{i} - 3t\vec{j} + 2\vec{k}$$

1°/Calculer les dérivées $\frac{d\vec{A}}{dt}$, $\frac{d\vec{B}}{dt}$ des vecteurs \vec{A} et \vec{B} .

2°/ Calculer les dérivées $\frac{d(\vec{A} \circ \vec{B})}{dt}$ et $\frac{d(\vec{A} \wedge \vec{B})}{dt}$ de deux manières.

QCU:

1% Soient les vecteurs $\overrightarrow{A} = 3\overrightarrow{i} + 4\overrightarrow{j} + \overrightarrow{k} = 7\overrightarrow{i} - 24\overrightarrow{j}$. Le vecteur ayant le même module que \overrightarrow{B} et le même sens et direction que \vec{A} est :

$$a/5\vec{i}+20\vec{j}$$

$$b/ 15\vec{i} + 10\vec{j}$$

$$c/20\vec{i}+15\vec{j}$$

$$b/$$
 15 \vec{i} + 10 \vec{j} $c/$ 20 \vec{i} + 15 \vec{j} $d/$ 15 \vec{i} + 20 \vec{j}

2°/ Soit le vecteur $\vec{A} = 2\vec{\imath} + 3\vec{\jmath}$. L'angle entre \vec{A} et l'axe \vec{oy} est :

$$a/ \arctan \left[\frac{3}{2}\right]$$

b/
$$arctg\left[\frac{2}{3}\right]$$

b/
$$arctg\left[\frac{2}{3}\right]$$
 $c/arcsin\left[\frac{3}{2}\right]$ $d/arcos\left[\frac{3}{2}\right]$

$$d/ arcos \left[\frac{3}{2}\right]$$

3°/5 forces égales à '10N' chacune, appliquées au même point et sont coplanaires et les angles entre chaque deux forces consécutives sont les mêmes. La résultante est :

a/ Zéro

b/ 10N

c/ 20N

 $d/10\sqrt{2}N$