University of M'sila

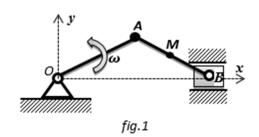
Faculty of: Technology

Common Base

Second Series of exercises

Exercise 01:

- I- A mobile travel a distance in 3 phases. The 1st is done at the speed of 25Km/h for $t_1 = 4$ minutes, the 2nd phase is done at the speed of 50km/h for $t_1 = 8$ minutes, and finally the 3rd phase is done at the speed of 20km/h for $t_3 = 2$ minutes.
 - Find the average speed of this course.
- **II-** A runner crosses, **1.5 times**, a circular track with radius $\mathbf{R} = \mathbf{20} \ \mathbf{m}$ for a duration $\mathbf{t} = \mathbf{50} \ \mathbf{s}$. What are the average speed and the average velocity vector?
- III-A particle moves in rectilinear motion whose equation of is: $x = 3(t^3 9t^2 + 15t) m$.
 - **1°/** Describe the phases of motion.
 - 2°/ What is the distance traveled during the '6 secondes'
 - **3°**/ What is the displacement for this same period


Exercise 02: (Additional)

Two motorists separated by 90 m, one starts from point A (taken as origin of times and abscissa) at the constant speed of 5 m/s, while the other at the speed of 2 m/s in the same direction.

- ${f 1}^{\circ}$ / How long does it take for him to catch up with the other motorist?
- 2°/ At what distance he catches him?
- **3°**/ What is, at that instant, the displacement of each of them?

Exercise 03:

In the orthonormal basis $(\vec{l}, \vec{j}, \vec{k})$, we give the rod-crank (or slider-crank) system where crank OA of length l which is animated by a uniform circular motion with angular velocity ω , drives a connecting rod AB of the same length l, the latter in turn drives a slide B.

- 1°/ What are the trajectories of the points A, B and M middle of AB.
- 2°/ Give expressions of the velocity of points A, B and M as well as their magnitudes.
- 3% Give the expressions of the acceleration of points A, B and M as well as their magnitudes.
- **4**% Show that the motions of the points **A** and **M** are central motions.

Exercise 04:

In a polar basis the motion of a particle obeys to the following equations:

- $\rho(t) = \alpha e^{\beta t}$ and $\theta(t) = \beta t$
- (α, β) are constants.
- **1**% Determine the trajectory equation. Represent it for $\beta > 0$ and $\beta < 0$.
- 2°/ Determine the velocity and acceleration as well as their magnitudes.

Exercise 05:

A particle moves in straight line by a constant velocity $\vec{v} = v_0 \vec{i}$, enters a medium where it will be subjected to deceleration $\vec{a} = -kv^2\vec{i}$ (k is a positive constant). By taking the moment of penetration into the medium as the origin of times and spaces

- $\mathbf{1}^{\circ}$ /Establish the law to which speed obeys $\vec{v}(t)$.
- 2° / Give the equation of motion x(t).
- 3° / Show that after a course 'x' the speed is : v = exp(-kx)

Exercise 06: (H.W)

A particle moves in the plane (xoy). Starts from the rest at point A(0,0), with a velocity that obeys the following law:

$$\vec{v} = \alpha . \vec{\iota} + \beta x . \vec{j}$$

- 1° / Find the equation of the trajectory. What is its type. Draw it?
- 2° / Give the expression of acceleration and deduce the type of motion.
- 3° / Determine the radius of curvature \mathcal{R} .

Exercise 07: (Additional)

The components of the velocity of a particle, starting from the origin, are:

$$\dot{x} = 6t$$
 and $\dot{y} = 8t$

- 1° / Determine the equation of motion S(t)
- **2°** / Determine the velocity of the particle.
- **3°** / Determine the tangential and normal accelerations.
- 3° / Deduce the radius of curvature

Exercise 08: (Additional)

The motion of a point on the periphery of a wheel of radius $\mathbf{R} = \mathbf{2} \, \mathbf{m}$, is governed by the equation $\mathbf{S}(t) = \mathbf{0} \cdot \mathbf{1} \, t^3$.

- 1°-/ Determine the normal and tangential acceleration of this point
- **2°-/** What will be its speed after one lap of the course?