Tutorial (TD): Series of Exercises n ${ }^{\circ} 4$

Exercise 1:

1. Prove the following equality by truth table:

$$
\bar{A} B+A \bar{B}=(A+B)(\bar{A}+\bar{B})
$$

2. Demonstrate the following equalities using the properties (laws) of Boole algebra :

$$
\begin{aligned}
& \mathrm{AB}+\mathrm{A}(\mathrm{~B}+\mathrm{C})+\mathrm{B}(\mathrm{~B}+\mathrm{C})=\mathrm{B}+\mathrm{AC} \\
& (\mathrm{~A} \overline{\mathrm{~B}}(\mathrm{C}+\mathrm{BD})+\overline{\mathrm{A}} \overline{\mathrm{~B}}) \mathrm{C}=\overline{\mathrm{B}} \mathrm{C}
\end{aligned} \overline{(A B+A C)}+\bar{A} \bar{B} \mathrm{C}=\bar{A}+\bar{B} \bar{C} \overline{=} .
$$

3. Determine the complement (\bar{F}) of the following functions :

$$
\begin{array}{ll}
\mathrm{F} 1=A+\bar{B} C & \mathrm{~F} 3=(\bar{A}+B+\bar{C})(\bar{A}+B+C)(A+B+C) \\
\mathrm{F} 2=\bar{A} \bar{B} \bar{C}+\bar{A} B C+A B C & \mathrm{~F} 4=(\bar{A}+\bar{B}+\bar{C})(\bar{A}+B+C)+A B C
\end{array}
$$

Exercise 2:

1. Draw the logic diagram (logigram) of $F 1(A, B, C)=(A+B)(\bar{A}+B+C)$
2. Determine the functions of the circuits (output F and S) and write its truth tables:

Exercise 3:

1. Reduce (Simplify) the following Boolean functions using Algebraic simplification :
$\mathrm{T} 1(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\mathrm{X}+\mathrm{XY} \overline{\mathrm{Z}}+\overline{\mathrm{X}} \mathrm{Y} \overline{\mathrm{Z}}+\overline{\mathrm{X}} \mathrm{YZ} \quad \mathrm{T} 2(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\overline{\mathrm{X}} \mathrm{Y} \overline{\mathrm{Z}}+\mathrm{XY} \overline{\mathrm{Z}}+\mathrm{XYZ}$
$\mathrm{T} 3(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\mathrm{XYZ}+\mathrm{Z}(\mathrm{X} \overline{\mathrm{Y}}+\overline{\mathrm{X}} \mathrm{Y}) \quad \mathrm{T} 4(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{W})=\mathrm{YW}+\mathrm{ZW}+\overline{\mathrm{Z}} \mathrm{W}+\overline{\mathrm{X}} \mathrm{Y} \overline{\mathrm{Z}} \overline{\mathrm{W}}+\mathrm{XY} \overline{\mathrm{Z}}$
$\mathrm{T} 5(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=(\overline{\mathrm{X}}+\overline{\mathrm{Y}}+\overline{\mathrm{Z}})(\overline{\mathrm{X}}+\mathrm{Y}+\mathrm{Z})(\mathrm{X}+\mathrm{Y}+\mathrm{Z}) \quad \mathrm{T} 6(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{W})=(\overline{\mathrm{X}}+\mathrm{Y})(\mathrm{X}+\mathrm{Y}+\mathrm{W}) \overline{\mathrm{W}}$
$T 7(A, B, C)=\bar{A} B C+A C+A \bar{B} \bar{C}+\bar{A} \bar{B} \quad T 9(A, B, C)=A B C+A \bar{B} C+A B \bar{C}$
$T 8(A, B, C)=(A+B)(A+C)+(B+A)(B+C)+(C+A)(C+B)$
$\mathrm{T} 10(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\mathrm{AB}+\mathrm{C}+\overline{\mathrm{C}}(\overline{\mathrm{A}}+\overline{\mathrm{B}})$
$T 11(\mathrm{~A}, \mathrm{~B})=(\mathrm{A}+\overline{\mathrm{B}})(\overline{\mathrm{A}}+\mathrm{B})(\overline{\mathrm{A}}+\overline{\mathrm{B}})$
2. Write the truth tables for the two functions T 7 and T 8 .
3. Find the two canonical forms of T 7 .

Exercise 4:

a) Convert F 1 and F 2 functions to 1st canonical form, F 3 and F 4 to the 2nd canonical form.
$\mathrm{F} 1(\mathrm{~A}, \mathrm{~B})=\bar{B}+A$
$\mathrm{F} 2(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=A B+\bar{B} C+\bar{C}$
$\mathrm{F} 3(\mathrm{~A}, \mathrm{~B})=\bar{A}$
$\mathrm{F} 4(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=(\bar{B}+A)(A+\bar{C})$
b) Find the other numerical form for the following Boolean functions :
$\mathrm{F} 1(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\sum(0,2,4,7) \mathrm{F} 2(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum(0,2,6,10,11,14) \mathrm{F} 3(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Pi(0,3,5,6)$

Exercise 5: Considering the Boolean functions given by the truth table:

X	Y	Z	F1	F2	1. Find the two canonical forms of $F 1$ and $F 2$ and $\overline{\mathrm{F} 1}$ and $\overline{\mathrm{F} 2}$. 2. Simplify F1 and F2 using the rules of Boole algebra. 3. Use the Karnaugh map (Karnaugh table) to simplify F1 and F2 in the form of Sum of Products (SoP) and Product of Sums (PoS). 4. Draw the logigram (logic diagram) of F1 and F2 (with the minimum of logical gates). 5. Draw the logigram of F2 only with NAND gates.
0	0	0	1	1	
0	0	1	0	1	
0	1	0	1	1	
0	1	1	0	0	
1	0	0	1	1	
1	0	1	0	0	
1	1	0	1	1	
1	1	1	0	0	

Exercise 6:

1. According to Karnaugh maps (tables), make the groupings and simplify the logical functions :

2. Using the Karnaugh method, simplify in the form of Sum of Products (SoP) and Product of Sums (PoS) the following functions:

T9, T7, T11, T5 et T10 from exercise 3.
$F 1(A, B, C, D)=\bar{A}+A B+A \bar{B} C+A \bar{B} C D$
$F 2(A, B, C, D)=\bar{A} \bar{B} \bar{D}+\bar{A} \bar{C} \bar{D}+\bar{A} B C \bar{D}+A B D+\bar{B} \bar{C} \bar{D}+A \bar{B} C \bar{D}$
$F 3(A, B, C, D)=(A+\bar{B}+C)(A+\bar{B})(A+\bar{C}+D)(\bar{A}+B+C+\bar{D})(B+\bar{C}+\bar{D})$
$F 4(A, B, C, D, E)=\bar{A} B E+B C D E+B \bar{C} \bar{D} E+\bar{A} \bar{B} D \bar{E}+\bar{B} \bar{C} D \bar{E}+\bar{B} C D \bar{E}$
$\mathrm{G}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\sum(2,3,4,5)$
$\mathrm{M}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(4,8,10,11,12,14,15)$

$$
\mathrm{H}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\Pi(4,6,7)
$$

$$
\mathrm{N}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\prod(1,3,5,7,9,11,13,15)
$$

$\mathrm{R}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(0,1,4,5,7,12,13)+\Phi(2,15)$
$S(A, B, C, D)=\sum(0,1,3,5,6,10,15)+\Phi(2,4,7,11,14)$
$\mathrm{T}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Pi(6,7,8,9)+\Phi(10,11,12,13,14,15)$

