Tutorial (TD): Series of Exercises n°4

Exercise 1:

1. Prove the following equality by truth table:

$$\overline{AB} + A\overline{B} = (A + B) (\overline{A} + \overline{B})$$

2. Demonstrate the following equalities using the properties (laws) of Boole algebra : AB + A(B + C) + B(B + C) = B + AC

$$(\overline{AB}(C + BD) + \overline{A}\overline{B})C = \overline{B}C \qquad \qquad \overline{(AB + AC)} + \overline{AB}C = \overline{A} + \overline{BC}$$

3. Determine the complement (\overline{F}) of the following functions :

$$F1 = A + \overline{B}C$$

$$F3 = (\overline{A} + B + \overline{C})(\overline{A} + B + C)(A + B + C)$$

$$F2 = \overline{A}\overline{B}\overline{C} + \overline{A}BC + ABC$$

$$F4 = (\overline{A} + \overline{B} + \overline{C})(\overline{A} + B + C) + ABC$$

Exercise 2:

- **1.** Draw the logic diagram (logigram) of $F1(A, B, C) = (A + B)(\overline{A} + B + C)$
- 2. Determine the functions of the circuits (output F and S) and write its truth tables:

Exercise 3:

- 1. Reduce (Simplify) the following Boolean functions using Algebraic simplification :
 - $\begin{array}{ll} T1(X,Y,Z) = X + XY\overline{Z} + \overline{X}Y\overline{Z} + \overline{X}YZ & T2(X,Y,Z) = \overline{X}Y\overline{Z} + XY\overline{Z} + XYZ \\ T3(X,Y,Z) = XYZ + Z(X\overline{Y} + \overline{X}Y) & T4(X,Y,Z,W) = YW + ZW + \overline{Z}W + \overline{X}Y\overline{Z}\overline{W} + XY\overline{Z} \\ T5(X,Y,Z) = (\overline{X} + \overline{Y} + \overline{Z})(\overline{X} + Y + Z)(X + Y + Z) & T6(X,Y,Z,W) = (\overline{X} + Y)(X + Y + W)\overline{W} \\ T7(A,B,C) = \overline{A}BC + AC + A\overline{B}\overline{C} + \overline{A}\overline{B} & T9(A,B,C) = ABC + A\overline{B}C + AB\overline{C} \\ T8(A,B,C) = (A + B)(A + C) + (B + A)(B + C) + (C + A)(C + B) \\ T10(A,B,C) = AB + C + \overline{C}(\overline{A} + \overline{B}) & T11(A,B) = (A + \overline{B})(\overline{A} + B)(\overline{A} + \overline{B}) \end{array}$

2. Write the truth tables for the two functions T7 and T8.

3. Find the two canonical forms of T7.

Exercise 4:

a) Convert F1 and F2 functions to 1st canonical form, F3 and F4 to the 2nd canonical form. F1 (A, B) = $\overline{B} + A$ F2 (A, B, C) = $AB + \overline{B}C + \overline{C}$ F3 (A, B) = \overline{A} F4 (A, B, C) = $(\overline{B} + A)(A + \overline{C})$

b) Find the other numerical form for the following Boolean functions :

F1 (A,B,C) = $\sum (0, 2, 4, 7)$ F2 (A,B,C,D) = $\sum (0, 2, 6, 10, 11, 14)$ F3 (A,B,C,D) = $\prod (0, 3, 5, 6)$

					1. Find the two canonical forms of F1 and F2 and
Χ	Y	Ζ	F1	F2	$\overline{F1}$ and $\overline{F2}$.
0	0	0	1	1	2. Simplify F1 and F2 using the rules of Boole
0	0	1	0	1	algebra.
0	1	0	1	1	3. Use the Karnaugh map (Karnaugh table) to simplify
0	1	1	0	0	F1 and F2 in the form of Sum of Products (SoP)
1	0	0	1	1	and Product of Sums (PoS).
1	0	1	0	0	4. Draw the logigram (logic diagram) of F1 and F2
1	1	0	1	1	(with the minimum of logical gates).
1	1	1	0	0	5. Draw the logigram of F2 only with NAND gates.
				•	

Exercise 5: Considering the Boolean functions given by the truth table:

Exercise 6:

1. According to Karnaugh maps (tables), make the groupings and simplify the logical functions :

2. Using the Karnaugh method, simplify in the form of Sum of Products (SoP) and Product of Sums (PoS) the following functions:

T9, T7, T11, T5 et T10 from exercise 3. *F1 (A, B, C, D)* = \overline{A} + *AB* + *ABC* + *ABCD F2 (A, B, C, D)* = $\overline{A}\overline{B}\overline{D}$ + $\overline{A}\overline{C}\overline{D}$ + $\overline{A}BC\overline{D}$ + *ABD* + $\overline{B}\overline{C}\overline{D}$ + *ABC* \overline{D} *F3 (A, B, C, D)* = (*A* + \overline{B} + *C*)(*A* + \overline{B})(*A* + \overline{C} + *D*)(\overline{A} + *B* + *C* + \overline{D})(*B* + \overline{C} + \overline{D}) *F4 (A, B, C, D, E)* = $\overline{A}BE$ + *BCDE* + $B\overline{C}\overline{D}E$ + $\overline{A}\overline{B}D\overline{E}$ + $\overline{B}\overline{C}D\overline{E}$ + $\overline{B}CD\overline{E}$ G (A,B,C) = \sum (2, 3, 4, 5) H (A,B,C) = \prod (4, 6, 7) M (A,B,C,D) = \sum (4, 8, 10, 11, 12, 14, 15) N (A,B,C,D) = \prod (1, 3, 5, 7, 9, 11, 13, 15) R (A,B,C,D) = \sum (0, 1, 4, 5, 7, 12, 13) + Φ (2, 15) S (A,B,C,D) = \sum (0, 1, 3, 5, 6, 10, 15) + Φ (2, 4, 7, 11, 14) T (A,B,C,D) = \prod (6, 7, 8, 9) + Φ (10, 11, 12, 13, 14, 15)