1 Chapter 1: Diagonalization of matrices

1.1 Definitions

Let E be an n—dimensional space vector over a field K, where K = R or C.

dimFE = n, B a basis of E. Let f: F — FE a linear application (endomorphism of
E), A the square matrix (n x n) associated with f: A =Mp(f) = (ai;).

1.1.1 Definition 1. Characteristic Polynomial of a Matrix

If A is an n X n matrix, the characteristic polynomial P()\) of A is defined by:

P(\) = det(A — \,)

1.1.2 Definition 2. Eigenvalues and Eigenvectors

If A is n X n matrix, a number A is called an eigenvalue of A if there is V' € E such

that:
AV = \V

In this case, V is called an eigenvector of A corresponding to the eigenvalue .

3 5 5 20 5
1 _1} and V = L} then AV = {4} :4[1] =4V

So A =4 is an eigenvalue of A with corresponding eigenvector V.

Example. If A = {

Theorem. Let A be an n X n matrix.

1. The eigenvalues A of A are the roots of the characteristic polynomial P(\) of

A
P(\) =0

2. The A— eigenvectors X are the nonzero solutions to the homogeneous system

(A-ADX =0

1.1.3 Definition 3.
Let A be n X n matrix and A\ an eigenvalue of the matrix A. The set
E\) ={V e E AV = \V}

is called the eigenspace of A associated to the eigenvalue A in which E()) is vector
sub-space of E. Its dimension (dimE())) is called the the geometric multiplicity of
A.



1.1.4 Definition 4. Similarity and Diagonalization

If A, B are two n x n matrices, then they are similar if and only if there exists an

invertible matrix P such that:
A=P'BP

1.1.5 Definition 5. Trace of a matrix

If A= (a;;)is an n x n matrix, then the trace of A is

trace(A) =tr(A) = Z a;;
i=1

Lemma. Properties of a trace For n x n matrices A and B, and any k € R,
1. tr(A+ B) =tr(A) +tr(B)

2. tr(kA) = k.tr(A)

3. tr(AB) = tr(BA)

Theorem. Properties of similar matrices If A and B are n x n matrices and
A, B are similar, then

1. det(A) = det(B)

2. rank(A) = rank(B)

3. tr(A) =tr(B)

4. Pa(N) = Pg())

5. A and B have the same eigenvalues.

Proof. 1. We have B = P~'AP, then det(B) = det(P~'AP) = det(A)

4. Py(\) = det(B — L) = det(P-'AP — P-'AP) = det[P~\(A — AL,)P] =
det(P™1) x det(A — \I,,) x det(P)
[



1.1.6 Definition 6. Digonalizable

Let A be an n x n matrix. Then A is said to be diagonalizable if there exists an
invetible matrix P such that
P'AP =D

where D is a diagonal matrix.

Proposition. Let \; and Ay be two distinct eigenvalues (A; # Ag) of A, then
E(A) N E(A) =A{0}
Proof. If V€ E(A\1) N E(A2), then AV =MV = XAV ie. (A — )V =0.
Since \; # Ao, then we have V =0 O

1.1.7 Definition 7. Diagonalization

A square n X n matrix A is diagonalizable if A is similar to a diagonal matrix, i.e.
A=pPDpP
for a diagonal matrix D and an invertible matrix P.

Proposition. Let A be an n x n matrix. We suppose that P(\) have k distinct
roots Ap, Ag, .o, Ag. If E= E(\) @ E(A\2) & ... & E()\), then A is diagonalizable.

Proof. For i = 1,2,....,k, we choose the basis B; of E()\;). The basis B’ = UZ}B; of
FE consists of the eigenvectors of A associated with the eigenvalues A1, Ag, ..., A\x, then
the matrix D = Mg/ (f) is diagonal. O

Examples Find the characteristic polynomial, eigenvalues and eigenvectors of the
matrices:

3 5
1. A= 1 1
[1 2 -3
2. A=1|1 4 -5
0 2 -2
Solution.



1. POV = (A—4) (A +2)

)\1: ,)\2:4811(1)\3:2
1 1 1
Vi=|1],Vo=|3]| and V5= |2
1 2 1

1.2 Sufficient condition for a matrix to be diagonalizable
Proposition. An n x n matrix with n distinct eigenvalues is diagonalizable.

Proof. We have P(\) = (—1")(A=A1)(A=X2)...(A=\,), where A\;, A\a, ..., A, n distinct
eigenvalues of A and Vi, V5, ..., V,, the n eigenvectors associated with \;.

AV =MV

AVy = AV

AV, =\, V,
We can prove that B’ = (V, V5, ..., V},) is a basis of E by induction:
We prove that the set (Vi, V5, Vs, ..., Viyq) is linearly independent of E.

aVi+ Vot .o+ oV + o1 Vi =0 (1)

We have A(an V) + aoVo + ... + ax Vi + a1 Vi 1) = 0, then
a1 AV] 4+ ag AV + o+ ap AV + a1 AV =0

At M Vi + ao Vo + o+ ap M Vi + a1 A1 Vi (2)
From (2) — Agy1(1):

(A1 = Aer)aa Vi + (A2 = Agpr)aaVa + o+ (A — M) Vi = 0
Since the set (Vi, V4, ..., Vi) is linearly independent of £ by induction hypothesis, then

(A = Mer1)ar = (Ao — A1) = oo = (Mg — Mpg1)ag = 0 (because )y, are distinct).
Therefore oy = as = ... = a; =0
By (1) we have ag1Vir1 =0, then ag; =0 O



1.3 Necessary and sufficient condition for diagonalizability

Proposition 1. Let A be an n x n matrix, then

where A; is an eigenvalue of A multiplicity m.

Proof. Let (e1, ea, ..., €,) the basis of E(\;), then we can find the basis B = (ey, e, ..., €, €411, ..., €5)
of E.
The matrix A is similar of the matrix A’ of the form

A1
A
1 A,
A= A\
0 Ay
A=A |
AL— A
. Ay
P(\) = det(A— \I,) = A — A
0 Ay — A,y
= ()\1 — )\)Tdet(Ag — /\]n—r)
Then m > r, where r = dimE()\) O

Proposition 2. Let A be an n xn matrix. Then A is diagonalizable if and only if:

1. P()) is factored.

2. For each eigenvalue \; of A, dim(E()\;) is equal to the multiplicity of \;
ie.



Proof. By induction, the sub-spaces E()\;), i = 1, ..., 7, verify

E=EM)®EX\)®..®E(\)
forj=1,...,k
Denote S; = E(A) ® E(X2) & ... & E()\;)
It is sufficient to demonstrate that S; N E(\;41) = {0}
Let V € Sj N E()\j+1), then

V=Vi+Vat..4+V
and
AV = )\j+1v

For (3), we have AV = AV} + AV, + ... + AV}, then
)\jHV = )\1‘/1 + )\2‘/2 + ...+ )‘]‘/j

For (4) — X\j41(3), we have

0= (A = A)Vi+ (A2 = Njp) Vo + o+ (A = )V

Using induction hypothesis, we get V) = Vo = ... =V; =0

Since Y1, dimE(\;) = Y>_i, m; = n, we see that E = ®F_ | E();). Then A is diago-

nalizable and we write:

A1

A
A2

A2

Ak

Ak




Examples.

0 1 -1
1. A=|-1 2 -1
-1 1 0
P(A) = —A(\A—1)?
A1 = =1
PO =0= =0
)\2 = 1,m2 =2
1
E(\) = E(0) =<V; >, where V; = [1| and dimE(\) =1=my
1
1 1
E(X\y) = E(1) =< V5, V3 >, where Vo = (3], V3 = [2| and dimE(Xp) = 1 =
2 1
mo = 2.
Then the matrix A is diagonalizable.
1 2 -3
2. A=12 5 -7
1 3 —4
P(A\) = —A(\—1)?
A1=0 =1
PO =0={1 M
)\2 = 1,77’1,2 =2
1
E(\) = E(0) =< Vi >, where V; = |1| and dimE(\) =1=m
1
=1=
E(X) = E(1) =< Vo >, where Vo = [3| and dimE(X\y) =1 # mg =2
2

Then the matrix A isn’t diagonalizable.



2 Chapter 2: Triangulability of matrices

1 2 -3
Example 1. Consider the matrix A= |2 5 —T7|, then
1 3 —4

P(\) = —A(A—1)?

Ao=0,my =1
PO =0= ¢
)\2:1,7’)7,2:2

E(\) = E(0) =<V >, where V] = and dimE(M\) =1=my

E(X) = E(1) =< V3 >, where V5 = and dimE(X2) =1 # mg = 2

o
1
_1_
"
3
2
Then the matrix A isn’t diagonalizable.

What to do if matrix A is not diagonalizable?
Therefore, we use triangulation:

2.1 Proposition

Let f : E — F alinear map and A the matrix of f, we suppose the characteristic
polynomial P(A) of f (or A) is factored in K[A]. Then f (or A) is triangulable.

Proof. By induction over dimFE: the result is true for the space of dimension 1.
Suppose they are true for spaces of dimension < n — 1 and let E be a space of
dimension n.

Let P(A) = (A= A)(A = X2)...(A—=X\,) in K[\, (K =R or C).

We suppose that the eigenvalues \; are not necessarily distinct. We denote V7,
an eigenvector associated with \; (i.e f(Vi) = A\ VWp).

By the incomplete basis theorem, there exists a basis B’ of E where

B’ = (V1,es, €3, ...,¢e,) then the matrix A’ has the form

—/\1 a1 . . . QAip
0 ag
0
A= Mp(f) =
_0 QAn2 Qnn |




The family B; = (e, ..., e,) is a basis of the subspace F' =< e, ..., e, > of E.
We denote g : F' — F', the linear map such that the associated matrix is
a2 . . . Qip

Al = . . = MBl(g)

Apo2 . . . QApp
Then P(A) = (A — ) x det(Ay — Al,,_4)
i.e. P(\) is factored and since dimF = n — 1, by induction hypothesis, there
exists a basis By = (V4,...,V,) of F such that Mpg,(g) is upper triangular. We

get
12 . . . QAin
D
Mp—w; va,..vi)(f) = oL O
An
Remark.

1/ If A is triangulable, the diagonal of the matrix T' = Mpg/(f) are the eigen-
values of A.
2/ All matrix of A € M, (C) is triangulable.

Corollary.

tr(A) =3\
det(A) =T[; \i

Remark.
We can triangulate the matrix A of Example 1.
( 1]
Vi=|1| =e+ex+e3
_1_
We consider the basis B’ of E where 1]
Vo= 13| =e1 + 3ea + 2e3
_2_
\Va =€

1 11
Because |1 3 0|=2—-3=-1+#0
1 20



612‘/5)
And § eg = =2V1 + Vo + V3
e3 =3V — Vo —2V;

0 0 —1
Then T = MB’(f) =10 1 1 = P 1AP
00 1
fV)=MVi=0
Where ¢ f(V2) = Vo = V)
f(V) = fler) =er+2ea+es==Vi+ Vot Vs
00 -1
Finally, "= |0 1 1 | is the upper triangular matrix,
0 0 1
111 0 -2 3
P=(WVWVV)=|1 3 0| and P! = (e1e9e3) = |0 1 -1
120 1 1 =2

2.2 Annihilating polynomials

Let E a vector space over K and R € K[\
R()\) = an)\” + an,l)\”_l + ...+ ag)\g + al)\l -+ Clo)\o
If f € Endk(E), we denote R(f), the linear map of E defined by
R(f) = anf™ 4+ an 1 f"" + ...+ aof? + ar f' + agid
or R(A) the matrix
R(A) = CLQAn + an_lA"*I + ...+ CLQA2 + alAl + aol,
Where f* = fofo..of
—

k times

Remark.

We have P(f) o Q(f) = Q(f)o P(f).

2.2.1 Definition.

Let f € Endg(E), the polynomial R € K[)] is called annihilating polynomial
of f (or A), if

or



2.3 Cayley-Hamilton theorem

Let f € Endi(E) and P()) the characteristic polynomial of f (or A).
Then

P(f)=0
(or P(A) =0). i.e P(\) annihilates f (or A).

Proof. We suppose K = C, in this case f (or A) is triangulable.
Let B' = (V1, V4, .., V,), a basis of E such that

)\1 19 . .. Qip
Ay a3 . . agp

Mp/(f) = : : =T is an upper triangular matrix
An

We have f(V1) = MVi = (A\id — f)(V1) = 0 and

PA) =det(T — M\,)) = (A1 — AN (A2 — A)ec (A, = A)

Then P(f) = (Mid — f)o...o (Ayid — f) and

P(f) (V1) = (Aatd—f)o...o(Ayid— f)o(Arid— f) (V1) = 0. Therefore, P(f)(V}) =
0

P(£)(V2) = Ohgid — £) 0. 0 (\gid — £) o (\rid — f) 0 (i — £)(Va) = (\sid —
f)o...o(Ayid — f)0(Aid — f)(—a2V1) = 0. Therefore, P(f)(V2) =0

We can similarly show that P(f)(V3) =0

By induction, we find P(f)(V;) =0,Vi = 1,...,n. Finally, P(f) = 0.

O
Example.
4 1 -1
A=1]-6 -1 2
6 1 1

PA\) =det(A—A3) = (2—=XN)(1=X)?= =23 +4)\2 -5\ +2
Since det(A) = P(0) =2 # 0, A is invertible.

By the Cayley-Hamilton theorem, we have P(A) = 0

ie —A3 +4A%2 —5A 4213 =0. Then —A3 +4A% —5A = -2 =
A[—A* 4+ 4A -5 = =213 = A[LA? — 24+ 3] = I,

Therefore,

1 5
A'=-A%2 24+ =
5 + 2[3

11



2.4 Proposition

Let S(A) a annihilating polynomial of f [S(f) = 0].
All eigenvalue A\; of f (of A) is a root of S(A\)[S(A1) = 0].

Proof. It A\yisa V.P, f(V) =NV
or S(A) = ap\" + ap A+ 4 a1\ + ag
S(f)=anf" + an1f" P+ ... +arf +ayid=0
Therefore a, f*(V) + an_1f" (V) + ... + a1 f(V) +apid(V) = 0
I

= a "V + ap NV + L+ NV +aV =0
(anA? + an—l)\?_l 4+ .o+ CL()) V =0.

S(u)
Consequently, [V # 0] = S(A\) =0
i.e A is a root of S(\). O

2.5 Proposition
Let f € End(F) and P()) the characteristic polynomial of f i.e
PA) = (=D"A=A)™ A= X)™ (A=A

If f is diagonalizable, then the polynomial Q(\) = (A—X\y)...(A—,) annihilates
flQ(f) = 0].

Proof. 1f f is diagonalizable, there exists a basis B’ = (11, V4, ..., V},) formed of
eigenvectors.

Let A1, Ag, ..., A, be the eigenvalues of A. For all V; € B'i = 1,n, there exists
Ai 1< j <p,such that f(V1) = \;V;

ie (f — \id)(Vi=0)

Q(f) = (f = Mid) o (f = Asid) o ... o (f — Ayid)

QU )(Vi) = [(f — M\id) o (f — Agid) o ..o (f — Nid)|(V;) = (f — Avid) o ... 0
(f = Xid)(V;) =0 O
—_—

0

12



2.6 Minimal polynomial
2.6.1 Definition.

We call the minimal polynomial of f (or of A) denoted Q(f) (or Q(A)), the
normalized annihilating polynomial of f (or of A) of the smallest degree.

Q(f)=00r Q(A)=0
Remark. If S()\) is a multiple of Q()), then
S = QM) x T(N)
S(f)=Q(f)eT(f)=0

i.e S(A) is an annihilating polynomial.
Proposition 1.
The annihilating polynomials of f are the polynomials of the type:

SA) = QM) xT(\)

Then S(A) = Q(A) x T'(A\) + R(\)
S(f)=R(f) =0 R(f) =0
i.e R is annihilating and since d° R(\) < d°Q(A). This contradicts the hypothesis
that Q(A) is a minimal polynomial. Then R()\) = 0.
Remark.
QA)/PA) or P(A) = Q(A) x T(A])
Proposition 2.
The roots of Q(X) are exactly the roots of P()), i.e the eigenvalues but with a
different multiplicity
If
PA) = (=D"A =)™ A=) (A= XN)™ N # A\

Then
Q) = (A =A)MA = X)? (A=A,

with 1 <a; <m;, 1=1,...,p
Proof. We know that P(\) = Q(A\)T(A), then if X is a root of Q(A), then it is
a root of P(\).

Conversely, let A a root of P()\) i.e A is an eigenvalue of A, then A is a root of
Q(A) because Q(A) annihilates A. O

13



2.6.2 Theorem 1.

The minimal polynomial and characteristic polynomial of f (or A) share the
same roots, except for multiplicities.

Examples.
[0 1 2
A= |1 0 2
120
We have P(A\) = —(A+ 1)(A+2)(A = 3), then Q(\) = (A + 1)(A+2)(A — 3)
-1 1 1
A=|1 -1 1
1 1 -1

We have P(A) = —(A — 1)(A + 2)2, then there exists two possibilities:

QN =MA-1)(A+2)
Q) =\ —-1)(A+2)?

2.6.3 Theorem 2.

An endomorphism f (or A) is diagonalizable if and only if the minimal polyno-
mial of f (or A) is factored and has all its simple roots.

ie
QA) = (A= A)(A = A2)..(A = M)
Examples.
-1 1 1
A=|1 -1 1
11 -1
We saw that Q(A) = (A +2)(A — 1), then A is diagonalizable.
(3 2 -2
A=1]-1 0 1
11 0
We have P(A\) = —(A —1)3, then Q(A\) = A —1or (A—1)?or (A —1)3
2 2 =2
QAN =A-1,QA)=00rQA)=A—-I;=|—-1 -1 1| #0
1 1 -1

then A is not diagonalizable.

14



3 1 1
= |2 1
1 2
We have )\):— —1)()\—2)2,thenQ()\):()\—1)()\—2)or
Q) = (A -1 —-2)?
I Q(A) = (A —1)(/\ 2), then
2 -1 11|11 -1 1 1 ..
QUA) = (A—L)A—2L) = |2 —1 1] |2 =2 1| =|. . .| 40
1 -1 1|1 -1 0 Coe

Then A is not diagonalizable.

2.7 Kernel decomposition theorem

. We suppose there exists P € K[A] of the form P = S x T with S,T € K[\
relatively prime, such that P(f) = 0. Then E = kerS(f) @ kerT(f).

. We suppose there exists P € K[\ of the form P = P, x P, X ... X P, with
Py, Py, ..., P, € K[\ relatively prime pairwise, such that P(f) = 0. Then,
E = kerPl(f) bD...P kerPk(f)

Proof.

1. We prove that kerS(f) NkerT(f) = {0}

Let v € kerS(f) NkerT(f )

S(f)(v) =0 and T(f)(v) =

Or P(A\) =S(\) xT(\) = P(f) S(f)oT(f), since S(A\) AT(N) = 1.

Using Besout theorem, 351 (\), 77(A) such that S;(A\) x S(A)+T1(A) xT'(A) =1
Therefore, S1(f) o S(f) + Ti(f) o T(f) = id and

v =id(v) = Si(f)S(f)(w)] + T1(f)[T(f)(v)]. Then v = 0.

—— ——

Letve E ’ ’
v=id(v) = Si(f)o S(f)(v)+?1(f) o T(f)(v)
AN kerT(f) Vi e l;;rS(f)

v1 € kerS(f)
ie S(f)(v1) = SNITL(f) o T(f) ()] = Ti(f) o S(f) o T(f)(v) = 0.

Similarly for ve, we obtain vy € kerT'(f)
lev= U1 + U2 ]

15



2.7.1 Proposition

An endomorphism f (or A) is diagonalizable if and only if the minimal polyno-
mial of f (or A) is factored and has all its simple roots.

Proof. 1f f is diagonalizable = Q(A) = (A — A1) (A — A2)...(A = Ap)

F Q) = (A= M)A — A)(A— Xy

Q) =P x P, x ...P, with P, = A= \; € K[\],i =1,...,p relatively prime
pairwise, such that Q(f) =0

Then E = kerPi(f) @ ... ® kerP,(f) = ker(f — M\id) & ... ® ker(f — \pid) =
E\)®EX\)®...® Ey,.

i.e E is the direct sum of the eigenspace E();),i = 1,...,p. Then f (or A) is
diagonalizable. O

2.8 Applications

Compute the power of the matrix

Let A be an n X n matrix.

Method 1. Using the formula A = PDP!

We suppose A is diagonalizable, then D = P~'AP ie A= PDP~! then

A¥ = (PDP7YY(PDP™Y)..(PDP™') = PD*P™!

A1 0 A} 0
Or D = , DF =
0 An 0 Ak
A} 0
and it’s easy to compute A* using the following formula A* = P ., p1
0 A
A" = pD"P!

Method 2. Using the minimal polynomial Q()\)
A" =Q(N) x S(A) + R(\). Then A™ = R(A)

Example.

1 -1
LetA:[2 4]

We have P(\) = (A —2)(A = 3)

16



E(\) = E(2) =<V; >, where V; = {_11}

E(\) = E(3) = {_12]

_11 _12 and P~ = :% _11}
2k+1 o 3k 2k+1 o 23k:|

Therefore, P = [

Ak
We obtain A" = [_Qk L3k _ok o3k

Solving a system of recurrence relations
Let’s illustrate this with an example. This involves determining two sequences
(un), v, such that:

(1) ot = = Un and such that { °
Upt1 = 2uy, + 4v, v =1

We put X,, = {Z"} . We can write the system (1):

n

. 1 -1
Xpi1 = AX, with A = {2 A }

Hence, by induction

We have [u"] = Ak = [

Un

ok+1 _ 31@ ok+1 _ 23k )
—2k 43k ok 4 2.3’f] B M
Finally,

U, = 3271 — 43"
v, = —3.2" +4.3"

Solving a first-order linear differential system
1 (t) ' (t)

xo(t xh(t
Let the system X' = AX, where X = ZF ) , X' = 2.( )

(1) 0

17



Example.
) =z + 229 + —3x3
(I) I/2 =+ 4I2 - 5[1)3

rh = 2x9 — 213

3 Chapter 3: Nilpotent and exponential ma-
trix

3.1 Nilpotent Matrix

3.1.1 Definition

A nilpotent matrix is a square matrix, there exists an integer m such that

N™ =0

The integer m is called the nilpotency index. It is the smallest integer such that
N™ = 0.
Examples.

2 —4
(@) A=11

The matrix is nilpotent because by squaring matrix A we get the zero

matrix as a result:
s |2 —4 2 =4 100
e o K e

1 -2 1
(by B=|3 0 3
-1 2 -1
Although when raising the matrix to 2 we do not obtain the null matrix:
1 -2 1 1 -2 1 -6 0 —6
B*=|3 0 3|.[3 0 3|=]|0 0 0
-1 2 -1 -1 2 -1 6 0 6

18



When calculating the cube of the matrix we do not get the matrix with all
the elements equal to zero:

—6 0 —6 1 -2 1 0 00
0O 0 Of.13 0 3|=1000
6 0 6 -1 2 -1 0 00
So matrix B is a nilpotent matrix, and since the null matrix is obtained

with the third power, its nilpotency index is 3.

3.2 Exponential of a matrix
3.2.1 Definition

If A is a constant n x n matrix, the matrix exponential e*? is given by:

n

t2 t
eM =T+ At+ A~ + .+ A"+,
2! n!

where the right-hand side indicates the n X n matrix whose elements are power
series with coefficients given by the entries in the matrices.

Example. The exponential is easiest to compute when A is diagonal. For the

matrix A = -0 , we calculate
0 2
42— 10 43— -1 0 s (=)™ 0
{0 417 0 87T 0 2"

Then we get
L (- 0 et 0
At _ n’  _ n=0 n! nl =
- ZOA n! [ 0 Dm0 20 0 e

Remark. In general, if A is an n x n matrix with entries A\, Aa, ... \n, then e??
is the diagonal matrix with entries e*'?, e*2f, ..., e’ on the main diagonal.

19



3.2.2 Theorem 1.

Let A and B be n X n constant matrices, and r,s,t € R. Then

3.2.3 Theorem 2.

If Ais an n xn constant matrix, then the columns of the matrix exponential e*?
form of a fundamental solution set for the system z'(t) = Az(t). Therefore, e
is a fundamental matrix for the system, and a general solution is z(t) = ce?t.

3.3 Exponential of a nilpotent matrix

If A is nilpotent of index m, i.e A™ = 0, then
tk'fl

(& — 1)

e =T+ At+ ...+ A™!

Example. Find the fundamental matrix e#* for the system 2’ = Az, where

2 1 1
1 2 1
-2 =2 -1

Solution. We find the polynomial of A

2—r 1 1
p(r)y=A—rI|=| 1 2—r 1 :—(7‘—1)3
2 21—y

Therefore, r = 1 is the only eigenvalue of A, so (A — I)? =0 and
2
At — teADl T 4 (A= )+ (A — 1)2%} ..... (1)

We calculate

20



1 1 1
A-T=11 1 1|and(A-1)?=0

-2 =2 =2
Substitution into (1) gives us
el +tet  te te!
eM=e T4t (A—T)=| tet e +tet  te!

—2tet —2te! el — 2te!
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