1 Chapter 1: Diagonalization of matrices

1.1 Definitions

Let E be an n-dimensional space vector over a field K, where $K = \mathbb{R}$ or \mathbb{C} . dimE = n, B a basis of E. Let $f : E \longrightarrow E$ a linear application (endomorphism of E), A the square matrix $(n \times n)$ associated with $f : A = \mathbb{M}_B(f) = (a_{ij})$.

1.1.1 Definition 1. Characteristic Polynomial of a Matrix

If A is an $n \times n$ matrix, the **characteristic polynomial** $P(\lambda)$ of A is defined by:

$$P(\lambda) = det(A - \lambda I_n)$$

1.1.2 Definition 2. Eigenvalues and Eigenvectors

If A is $n \times n$ matrix, a number λ is called an eigenvalue of A if there is $V \in E$ such that:

$$AV = \lambda V$$

In this case, V is called an eigenvector of A corresponding to the eigenvalue λ .

Example. If $A = \begin{bmatrix} 3 & 5 \\ 1 & -1 \end{bmatrix}$ and $V = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$ then $AV = \begin{bmatrix} 20 \\ 4 \end{bmatrix} = 4 \begin{bmatrix} 5 \\ 1 \end{bmatrix} = 4V$ So $\lambda = 4$ is an eigenvalue of A with corresponding eigenvector V.

Theorem. Let A be an $n \times n$ matrix.

1. The eigenvalues λ of A are the roots of the characteristic polynomial $P(\lambda)$ of A.

$$P(\lambda) = 0$$

2. The λ - eigenvectors X are the nonzero solutions to the homogeneous system

$$(A - \lambda I)X = 0$$

1.1.3 Definition 3.

Let A be $n \times n$ matrix and λ an eigenvalue of the matrix A. The set

$$E(\lambda) = \{ V \in E, AV = \lambda V \}$$

is called the **eigenspace** of A associated to the eigenvalue λ in which $E(\lambda)$ is vector sub-space of E. Its dimension $(dim E(\lambda))$ is called the the geometric multiplicity of λ .

1.1.4 Definition 4. Similarity and Diagonalization

If A, B are two $n \times n$ matrices, then they are **similar** if and only if there exists an invertible matrix P such that:

$$A = P^{-1}BP$$

1.1.5 Definition 5. Trace of a matrix

If $A = (a_{ij})$ is an $n \times n$ matrix, then the trace of A is

$$trace(A) = tr(A) = \sum_{i=1}^{n} a_{ij}$$

Lemma. Properties of a trace For $n \times n$ matrices A and B, and any $k \in \mathbb{R}$,

1.
$$tr(A+B) = tr(A) + tr(B)$$

- 2. tr(kA) = k.tr(A)
- 3. tr(AB) = tr(BA)

Theorem. Properties of similar matrices If A and B are $n \times n$ matrices and A, B are similar, then

- 1. det(A) = det(B)
- 2. rank(A) = rank(B)

3.
$$tr(A) = tr(B)$$

4. $P_A(\lambda) = P_B(\lambda)$

5. A and B have the same eigenvalues.

Proof. **1.** We have $B = P^{-1}AP$, then $det(B) = det(P^{-1}AP) = det(A)$

4. $P_B(\lambda) = det(B - \lambda I_n) = det(P^{-1}AP - P^{-1}\lambda P) = det[P^{-1}(A - \lambda I_n)P] = det(P^{-1}) \times det(A - \lambda I_n) \times det(P)$

1.1.6 Definition 6. Digonalizable

Let A be an $n \times n$ matrix. Then A is said to be **diagonalizable** if there exists an invetible matrix P such that

$$P^{-1}AP = D$$

where D is a diagonal matrix.

Proposition. Let λ_1 and λ_2 be two distinct eigenvalues $(\lambda_1 \neq \lambda_2)$ of A, then

$$E(\lambda_1) \cap E(\lambda_2) = \{0\}$$

Proof. If $V \in E(\lambda_1) \cap E(\lambda_2)$, then $AV = \lambda_1 V = \lambda_2 V$ i.e. $(\lambda_1 - \lambda_2)V = 0$. Since $\lambda_1 \neq \lambda_2$, then we have V = 0

1.1.7 Definition 7. Diagonalization

A square $n \times n$ matrix A is **diagonalizable** if A is similar to a diagonal matrix, i.e.

$$A = PDP^{-1}$$

for a diagonal matrix D and an invertible matrix P.

Proposition. Let A be an $n \times n$ matrix. We suppose that $P(\lambda)$ have k distinct roots $\lambda_1, \lambda_2, ..., \lambda_k$. If $E = E(\lambda_1) \oplus E(\lambda_2) \oplus ... \oplus E(\lambda_k)$, then A is diagonalizable.

Proof. For i = 1, 2, ..., k, we choose the basis B_i of $E(\lambda_i)$. The basis $B' = \bigcup_{i=1}^{i=k} B_i$ of E consists of the eigenvectors of A associated with the eigenvalues $\lambda_1, \lambda_2, ..., \lambda_k$, then the matrix $D = \mathbb{M}_{B'}(f)$ is diagonal. \Box

Examples Find the characteristic polynomial, eigenvalues and eigenvectors of the matrices:

1.
$$A = \begin{bmatrix} 3 & 5 \\ 1 & -1 \end{bmatrix}$$

2. $A = \begin{bmatrix} 1 & 2 & -3 \\ 1 & 4 & -5 \\ 0 & 2 & -2 \end{bmatrix}$

Solution.

1.
$$P(\lambda) = (\lambda - 4)(\lambda + 2)$$

 $\lambda_1 = -2 \text{ and } \lambda_2 = 4$
 $V_1 = \begin{bmatrix} -1\\1 \end{bmatrix} \text{ and } V_2 = \begin{bmatrix} 5\\1 \end{bmatrix}$
2. $P(\lambda) = -\lambda(\lambda - 1)(\lambda - 2)$
 $\lambda_1 = 0, \lambda_2 = 4 \text{ and } \lambda_3 = 2$
 $V_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}, V_2 = \begin{bmatrix} 1\\3\\2 \end{bmatrix} \text{ and } V_3 = \begin{bmatrix} 1\\2\\1 \end{bmatrix}$

1.2 Sufficient condition for a matrix to be diagonalizable

Proposition. An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.

Proof. We have $P(\lambda) = (-1^n)(\lambda - \lambda_1)(\lambda - \lambda_2)...(\lambda - \lambda_n)$, where $\lambda_1, \lambda_2, ..., \lambda_n$ *n* distinct eigenvalues of *A* and $V_1, V_2, ..., V_n$ the *n* eigenvectors associated with λ_i . $AV_1 = \lambda_1 V_1$ $AV_2 = \lambda_2 V_2$. . . $AV_n = \lambda_n V_n$ We can prove that $B' = (V_1, V_2, ..., V_n)$ is a basis of *E* by induction: We prove that the set $(V_1, V_2, V_3, ..., V_{k+1})$ is linearly independent of *E*.

$$\alpha_1 V_1 + \alpha_2 V_2 + \dots + \alpha_k V_k + \alpha_{k+1} V_{k+1} = 0 \tag{1}$$

We have $A(\alpha_1 V_1 + \alpha_2 V_2 + ... + \alpha_k V_k + \alpha_{k+1} V_{k+1}) = 0$, then $\alpha_1 A V_1 + \alpha_2 A V_2 + ... + \alpha_k A V_k + \alpha_{k+1} A V_{k+1} = 0$

$$\alpha_1 \lambda_1 V_1 + \alpha_2 \lambda_2 V_2 + \dots + \alpha_k \lambda_k V_k + \alpha_{k+1} \lambda_{k+1} V_{k+1} \tag{2}$$

From (2) $-\lambda_{k+1}(1)$: $(\lambda_1 - \lambda_{k+1})\alpha_1V_1 + (\lambda_2 - \lambda_{k+1})\alpha_2V_2 + \dots + (\lambda_k - \lambda_{k+1})\alpha_kV_k = 0$ Since the set (V_1, V_2, \dots, V_k) is linearly independent of E by induction hypothesis, then $(\lambda_1 - \lambda_{k+1})\alpha_1 = (\lambda_2 - \lambda_{k+1})\alpha_2 = \dots = (\lambda_k - \lambda_{k+1})\alpha_k = 0$ (because λ_k are distinct). Therefore $\alpha_1 = \alpha_2 = \dots = \alpha_k = 0$ By (1) we have $\alpha_{k+1}V_{k+1} = 0$, then $\alpha_{k+1} = 0$

1.3 Necessary and sufficient condition for diagonalizability

Proposition 1. Let A be an $n \times n$ matrix, then

$$\dim(E(\lambda_1)) \le m_1$$

where λ_1 is an eigenvalue of A multiplicity m_1 .

Proof. Let $(e_1, e_2, ..., e_r)$ the basis of $E(\lambda_1)$, then we can find the basis $B = (e_1, e_2, ..., e_r, e_{r+1}, ..., e_n)$ of E.

The matrix A is similar of the matrix A' of the form

$$A' = \begin{pmatrix} \lambda_1 & & & \\ \lambda_1 & & & \\ & \ddots & & & \\ \hline & & \lambda_1 & & \\ \hline & & & \lambda_1 & & \\ \hline & & & & \lambda_1 - \lambda & \\ & & & & \ddots & \\ \hline & & & & & \lambda_1 - \lambda & \\ \hline & & & & \ddots & \\ \hline & & & & & \lambda_1 - \lambda$$

Then $m \geq r$, where $r = dim E(\lambda_1)$

Proposition 2. Let A be an $n \times n$ matrix. Then A is diagonalizable if and only if:

1. $P(\lambda)$ is factored.

,

2. For each eigenvalue λ_i of A, $dim(E(\lambda_i))$ is equal to the multiplicity of λ_i i.e.

$$dim E(\lambda_i) = m_i, i = 1, ..., k$$

Proof. By induction, the sub-spaces $E(\lambda_i)$, i = 1, ..., j, verify

$$E = E(\lambda_1) \oplus E(\lambda_2) \oplus \dots \oplus E(\lambda_k)$$

for j = 1, ..., kDenote $S_j = E(\lambda_1) \oplus E(\lambda_2) \oplus ... \oplus E(\lambda_j)$ It is sufficient to demonstrate that $S_j \cap E(\lambda_{j+1}) = \{0\}$ Let $V \in S_j \cap E(\lambda_{j+1})$, then

$$\begin{cases}
V = V_1 + V_2 + \dots + V_j \\
\text{and} \\
AV = \lambda_{j+1}V
\end{cases}$$
(3)

For (3), we have $AV = AV_1 + AV_2 + \dots + AV_i$, then

$$\lambda_{j+1}V = \lambda_1 V_1 + \lambda_2 V_2 + \dots + \lambda_j V_j \tag{4}$$

For $(4) - \lambda_{j+1}(3)$, we have

$$0 = (\lambda_1 - \lambda_{j+1})V_1 + (\lambda_2 - \lambda_{j+1})V_2 + \dots + (\lambda_j - \lambda_{j+1})V_j$$

Using induction hypothesis, we get $V_1 = V_2 = ... = V_j = 0$ Since $\sum_{i=1}^n dim E(\lambda_i) = \sum_{i=1}^n m_i = n$, we see that $E = \bigoplus_{i=1}^k E(\lambda_i)$. Then A is diagonalizable and we write:

Examples.

1.
$$A = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 2 & -1 \\ -1 & 1 & 0 \end{bmatrix}$$
$$P(\lambda) = -\lambda(\lambda - 1)^{2}$$
$$P(\lambda) = 0 \Rightarrow \begin{cases} \lambda_{1} = 0, m_{1} = 1 \\ \lambda_{2} = 1, m_{2} = 2 \end{cases}$$
$$E(\lambda_{1}) = E(0) = \langle V_{1} \rangle, \text{ where } V_{1} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \text{ and } dimE(\lambda_{1}) = 1 = m_{1}$$
$$E(\lambda_{2}) = E(1) = \langle V_{2}, V_{3} \rangle, \text{ where } V_{2} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}, V_{3} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \text{ and } dimE(\lambda_{2}) = 1 = m_{2} = 2.$$

Then the matrix A is diagonalizable.

2.
$$A = \begin{bmatrix} 1 & 2 & -3 \\ 2 & 5 & -7 \\ 1 & 3 & -4 \end{bmatrix}$$
$$P(\lambda) = -\lambda(\lambda - 1)^{2}$$
$$P(\lambda) = 0 \Rightarrow \begin{cases} \lambda_{1} = 0, m_{1} = 1 \\ \lambda_{2} = 1, m_{2} = 2 \end{cases}$$
$$E(\lambda_{1}) = E(0) = \langle V_{1} \rangle, \text{ where } V_{1} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \text{ and } dimE(\lambda_{1}) = 1 = m_{1}$$
$$E(\lambda_{2}) = E(1) = \langle V_{2} \rangle, \text{ where } V_{2} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} \text{ and } dimE(\lambda_{2}) = 1 \neq m_{2} = 2$$
Then the matrix A isn't diagonalizable.

2 Chapter 2: Triangulability of matrices

Example 1. Consider the matrix $A = \begin{bmatrix} 1 & 2 & -3 \\ 2 & 5 & -7 \\ 1 & 3 & -4 \end{bmatrix}$, then

$$P(\lambda) = -\lambda(\lambda - 1)^{2}$$

$$P(\lambda) = 0 \Rightarrow \begin{cases} \lambda_{1} = 0, m_{1} = 1\\ \lambda_{2} = 1, m_{2} = 2 \end{cases}$$

$$E(\lambda_{1}) = E(0) = \langle V_{1} \rangle, \text{ where } V_{1} = \begin{bmatrix} 1\\ 1\\ 1\\ 1 \end{bmatrix} \text{ and } dimE(\lambda_{1}) = 1 = m_{1}$$

$$E(\lambda_{2}) = E(1) = \langle V_{2} \rangle, \text{ where } V_{2} = \begin{bmatrix} 1\\ 3\\ 2 \end{bmatrix} \text{ and } dimE(\lambda_{2}) = 1 \neq m_{2} = 2$$
Then the matrix A isn't diagonalizable.

What to do if matrix A is not diagonalizable? Therefore, we use triangulation:

2.1 Proposition

Let $f : E \to F$ a linear map and A the matrix of f, we suppose the characteristic polynomial $P(\lambda)$ of f (or A) is factored in $K[\lambda]$. Then f (or A) is triangulable.

Proof. By induction over dimE: the result is true for the space of dimension 1. Suppose they are true for spaces of dimension $\leq n-1$ and let E be a space of dimension n.

Let $P(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2)...(\lambda - \lambda_n)$ in $K[\lambda]$, $(K = \mathbb{R} \text{ or } \mathbb{C})$. We suppose that the eigenvalues λ_i are not necessarily distinct. We denote V_1 , an eigenvector associated with λ_1 (i.e. $f(V_1) = \lambda_1 V_1$).

By the incomplete basis theorem, there exists a basis B^\prime of E where

 $B' = (V_1, e_2, e_3, ..., e_n)$ then the matrix A' has the form

$$A' = M_{B'}(f) = \begin{bmatrix} \lambda_1 & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & \\ 0 & \ddots & \dots & \ddots \\ \vdots & \ddots & \ddots & \ddots \\ 0 & a_{n2} & \dots & \vdots & a_{nn} \end{bmatrix}$$

The family $B_1 = (e_2, ..., e_n)$ is a basis of the subspace $F = \langle e_2, ..., e_n \rangle$ of E. We denote $g: F \to F$, the linear map such that the associated matrix is $\begin{bmatrix} a_{12} & ... & a_{1n} \end{bmatrix}$

$$A_{1} = \begin{bmatrix} a_{12} & \dots & a_{1n} \\ \vdots & & \vdots \\ \vdots & & \vdots \\ a_{n2} & \dots & a_{nn} \end{bmatrix} = M_{B_{1}}(g)$$

Then $\overline{P}(\lambda) = (\lambda_1 - \lambda) \times det(A_1 - \lambda I_{n-1})$

i.e. $P(\lambda)$ is factored and since dimF = n - 1, by induction hypothesis, there exists a basis $B_2 = (V_2, ..., V_n)$ of F such that $M_{B_2}(g)$ is upper triangular. We get

Remark.

1/ If A is triangulable, the diagonal of the matrix $T = M_{B'}(f)$ are the eigenvalues of A.

2/ All matrix of $A \in M_n(\mathbb{C})$ is triangulable.

Corollary.

 $\begin{array}{l} tr(A) = \sum_{i}^{\circ} \lambda_{i} \\ det(A) = \prod_{i} \lambda_{i} \end{array}$

Remark.

We can triangulate the matrix A of Example 1.

We consider the basis B' of E where
$$\begin{cases} V_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} = e_1 + e_2 + e_3\\ V_2 = \begin{bmatrix} 1\\3\\2\\2 \end{bmatrix} = e_1 + 3e_2 + 2e_3\\ V_3 = e_1 \end{cases}$$
Because
$$\begin{vmatrix} 1 & 1 & 1\\1 & 3 & 0\\1 & 2 & 0 \end{vmatrix} = 2 - 3 = -1 \neq 0$$

And
$$\begin{cases} e_1 = V_3 \\ e_2 = -2V_1 + V_2 + V_3 \\ e_3 = 3V_1 - V_2 - 2V_3 \end{cases}$$

Then $T = M_{B'}(f) = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = P^{-1}AP$
Where
$$\begin{cases} f(V_1) = \lambda_1 V_1 = 0 \\ f(V_2) = \lambda_2 V_2 = V_2 \\ f(V_3) = f(e_1) = e_1 + 2e_2 + e_3 = -V_1 + V_2 + V_3 \end{cases}$$

Finally, $T = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ is the upper triangular matrix,
 $P = (V_1 V_2 V_3) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 3 & 0 \\ 1 & 2 & 0 \end{bmatrix}$ and $P^{-1} = (e_1 e_2 e_3) = \begin{bmatrix} 0 & -2 & 3 \\ 0 & 1 & -1 \\ 1 & 1 & -2 \end{bmatrix}$

2.2 Annihilating polynomials

Let E a vector space over K and $R \in K[\lambda]$ $R(\lambda) = a_n \lambda^n + a_{n-1} \lambda^{n-1} + \ldots + a_2 \lambda_2 + a_1 \lambda^1 + a_0 \lambda^0$ If $f \in End_K(E)$, we denote R(f), the linear map of E defined by $R(f) = a_n f^n + a_{n-1} f^{n-1} + \ldots + a_2 f^2 + a_1 f^1 + a_0 id$ or R(A) the matrix $R(A) = a_2 A^n + a_{n-1} A^{n-1} + \ldots + a_2 A^2 + a_1 A^1 + a_0 I_n$ Where $f^k = \underbrace{f \circ f \circ \ldots \circ f}_{\text{k times}}$

Remark.

We have $P(f) \circ Q(f) = Q(f) \circ P(f)$.

2.2.1 Definition.

Let $f \in End_K(E)$, the polynomial $R \in K[\lambda]$ is called annihilating polynomial of f (or A), if

$$R(f) = 0$$

or

$$R(A) = 0$$

$\mathbf{2.3}$ Cayley-Hamilton theorem

Let $f \in End_k(E)$ and $P(\lambda)$ the characteristic polynomial of f (or A). Then

$$P(f) = 0$$

(or P(A) = 0). i.e $P(\lambda)$ annihilates f (or A).

Proof. We suppose $K = \mathbb{C}$, in this case f (or A) is triangulable. Let $B' = (V_1, V_2, ..., V_n)$, a basis of E such that

$$M_{B'}(f) = \begin{pmatrix} \lambda_1 & a_{12} & \dots & a_{1n} \\ \lambda_2 & a_{23} & \dots & a_{2n} \\ & \ddots & \ddots \\ & \ddots & \ddots \\ & & \lambda_n \end{pmatrix} = T \text{ is an upper triangular matrix}$$
We have $f(V_1) = \lambda_1 V_1 \Rightarrow (\lambda_1 id - f)(V_1) = 0$ and
 $P(\lambda) = det(T - \lambda I_n) = (\lambda_1 - \lambda)(\lambda_2 - \lambda)...(\lambda_n - \lambda)$
Then $P(f) = (\lambda_1 id - f) \circ \dots \circ (\lambda_n id - f)$ and
 $P(f)(V_1) = (\lambda_2 id - f) \circ \dots \circ (\lambda_n id - f) \circ (\lambda_1 id - f)(V_1) = 0$. Therefore, $P(f)(V_1) = 0$
 $P(f)(V_2) = (\lambda_3 id - f) \circ \dots \circ (\lambda_n id - f) \circ (\lambda_1 id - f) \circ (\lambda_2 id - f)(V_2) = (\lambda_3 id - f) \circ (\lambda_1 id - f) \circ (\lambda_1 id - f) \circ (\lambda_2 id - f)(V_2) = 0$

We can similarly show that $P(f)(V_3) = 0$

By induction, we find $P(f)(V_i) = 0, \forall i = 1, ..., n$. Finally, P(f) = 0.

Example.

 $A = \begin{bmatrix} 4 & 1 & -1 \\ -6 & -1 & 2 \\ 6 & 1 & 1 \end{bmatrix}$ $P(\lambda) = det(A - \lambda I_3) = (2 - \lambda)(1 - \lambda)^2 = -\lambda^3 + 4\lambda^2 - 5\lambda + 2$ Since $det(A) = P(0) = 2 \neq 0$, A is invertible. By the Cayley-Hamilton theorem, we have P(A) = 0i.e $-A^3 + 4A^2 - 5A + 2I_3 = 0$. Then $-A^3 + 4A^2 - 5A = -2I_3 \Rightarrow$ $A[-A^{2} + 4A - 5I_{3}] = -2I_{3} \Rightarrow A[\frac{1}{2}A^{2} - 2A + \frac{5}{2}I_{3}] = I_{3}$ Therefore, $A^{-1} = \frac{1}{2}A^2 - 2A + \frac{5}{2}I_3$

$$=\frac{1}{2}A - 2A +$$

2.4 Proposition

Let $S(\lambda)$ a annihilating polynomial of f[S(f) = 0]. All eigenvalue λ_1 of f (of A) is a root of $S(\lambda)[S(\lambda_1) = 0]$.

Proof. If λ_1 is a V.P, $f(V) = \lambda_1 V$ or $S(\lambda) = a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0$ $S(f) = a_n f^n + a_{n-1} f^{n-1} + \dots + a_1 f + a_0 id = 0$ Therefore $a_n f^n(V) + a_{n-1} f^{n-1}(V) + \dots + a_1 \underbrace{f(V)}_{\lambda V} + a_0 id(V) = 0$ $\Rightarrow a_n \lambda^n V + a_{n-1} \lambda^{n-1} V + \dots + a_1 \lambda V + a_0 V = 0$ $\underbrace{(a_n \lambda_1^n + a_{n-1} \lambda_1^{n-1} + \dots + a_1 \lambda_1 + a_0)}_{S(\lambda_1)} V = 0.$ Consequently, $[V \neq 0] \Rightarrow S(\lambda_1) = 0$ i.e λ is a root of $S(\lambda)$.

2.5 Proposition

Let $f \in End(E)$ and $P(\lambda)$ the characteristic polynomial of f i.e

$$P(\lambda) = (-1)^n (\lambda - \lambda_1)^{m_1} (\lambda - \lambda_2)^{m_2} \dots (\lambda - \lambda_p)^{m_p}$$

If f is diagonalizable, then the polynomial $Q(\lambda) = (\lambda - \lambda_1)...(\lambda - \lambda_p)$ annihilates f[Q(f) = 0].

Proof. If f is diagonalizable, there exists a basis $B' = (V_1, V_2, ..., V_n)$ formed of eigenvectors. Let $\lambda_1, \lambda_2, ..., \lambda_p$ be the eigenvalues of A. For all $V_i \in B'i = \overline{1, n}$, there exists $\lambda_i \ 1 \leq j \leq p$, such that $f(V_1) = \lambda_j V_i$ i.e $(f - \lambda_j id)(V_i = 0)$ $Q(f) = (f - \lambda_1 id) \circ (f - \lambda_2 id) \circ ... \circ (f - \lambda_p id)$ $Q(f)(V_i) = [(f - \lambda_1 id) \circ (f - \lambda_2 id) \circ ... \circ (f - \lambda_p id)](V_i) = (f - \lambda_1 id) \circ ... \circ (f - \lambda_p id)](V_i) = 0$

2.6 Minimal polynomial

2.6.1 Definition.

We call the **minimal polynomial** of f (or of A) denoted Q(f) (or Q(A)), the normalized annihilating polynomial of f (or of A) of the smallest degree.

$$Q(f) = 0 \text{ or } Q(A) = 0$$

Remark. If $S(\lambda)$ is a multiple of $Q(\lambda)$, then

$$S(\lambda) = Q(\lambda) \times T(\lambda)$$
$$S(f) = Q(f) \circ T(f) = 0$$

i.e $S(\lambda)$ is an annihilating polynomial.

Proposition 1.

The annihilating polynomials of f are the polynomials of the type:

$$S(\lambda) = Q(\lambda) \times T(\lambda)$$

Then $S(\lambda) = Q(\lambda) \times T(\lambda) + R(\lambda)$ $S(f) = R(f) = 0 \ R(f) = 0$

i.e R is annihilating and since $d^{\circ}R(\lambda) < d^{\circ}Q(\lambda)$. This contradicts the hypothesis that $Q(\lambda)$ is a minimal polynomial. Then $R(\lambda) = 0$.

Remark.

$$Q(\lambda)/P(\lambda)$$
 or $P(\lambda) = Q(\lambda) \times T(\lambda)$

Proposition 2.

The roots of $Q(\lambda)$ are exactly the roots of $P(\lambda)$, i.e the eigenvalues but with a different multiplicity

If

$$P(\lambda) = (-1)^n (\lambda - \lambda_1)^{m_1} (\lambda - \lambda_2)^{m_2} \dots (\lambda - \lambda_p)^{m_p} \quad \lambda_i \neq \lambda_j$$

Then

$$Q(\lambda) = (\lambda - \lambda_1)^{\alpha_1} (\lambda - \lambda_2)^{\alpha_2} \dots (\lambda - \lambda_p)^{\alpha_p}$$

with $1 \leq \alpha_i \leq m_i, i = 1, ..., p$

Proof. We know that $P(\lambda) = Q(\lambda)T(\lambda)$, then if λ is a root of $Q(\lambda)$, then it is a root of $P(\lambda)$.

Conversely, let λ a root of $P(\lambda)$ i.e λ is an eigenvalue of A, then λ is a root of $Q(\lambda)$ because $Q(\lambda)$ annihilates A.

2.6.2 Theorem 1.

The minimal polynomial and characteristic polynomial of f (or A) share the same roots, except for multiplicities.

Examples.

- $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{bmatrix}$ We have $P(\lambda) = -(\lambda + 1)(\lambda + 2)(\lambda - 3)$, then $Q(\lambda) = (\lambda + 1)(\lambda + 2)(\lambda - 3)$ $\begin{bmatrix} -1 & 1 & 1 \end{bmatrix}$
- $A = \begin{bmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix}$ We have $P(\lambda) = -(\lambda - 1)(\lambda + 2)^2$, then there exists two possibilities:

$$Q(\lambda) = (\lambda - 1)(\lambda + 2)$$
$$Q(\lambda) = (\lambda - 1)(\lambda + 2)^{2}$$

2.6.3 Theorem 2.

An endomorphism f (or A) is diagonalizable if and only if the minimal polynomial of f (or A) is factored and has all its simple roots. i.e

$$Q(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2)...(\lambda - \lambda_m)$$

Examples.

• $A = \begin{bmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix}$ We saw that $Q(\lambda) = (\lambda + 2)(\lambda - 1)$, then A is diagonalizable.

•
$$A = \begin{bmatrix} 3 & 2 & -2 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

We have $P(\lambda) = -(\lambda - 1)^3$, then $Q(\lambda) = \lambda - 1$ or $(\lambda - 1)^2$ or $(\lambda - 1)^3$
If $Q(\lambda) = \lambda - 1$, $Q(A) = 0$ or $Q(A) = A - I_3 = \begin{bmatrix} 2 & 2 & -2 \\ -1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix} \neq 0$
then A is not diagonalizable.

•
$$A = \begin{bmatrix} 3 & -1 & 1 \\ 2 & 0 & 1 \\ 1 & -1 & 2 \end{bmatrix}$$

We have $P(\lambda) = -(\lambda - 1)(\lambda - 2)^2$, then $Q(\lambda) = (\lambda - 1)(\lambda - 2)$ or
 $Q(\lambda) = (\lambda - 1)(\lambda - 2)^2$
If $Q(\lambda) = (\lambda - 1)(\lambda - 2)$, then
 $Q(A) = (A - I_3)(A - 2I_3) = \begin{bmatrix} 2 & -1 & 1 \\ 2 & -1 & 1 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \\ 2 & -2 & 1 \\ 1 & -1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & . & . \\ . & . & . \end{bmatrix} \neq 0$
Then A is not diagonalizable.

2.7 Kernel decomposition theorem

- 1. We suppose there exists $P \in K[\lambda]$ of the form $P = S \times T$ with $S, T \in K[\lambda]$ relatively prime, such that P(f) = 0. Then $E = kerS(f) \oplus kerT(f)$.
- 2. We suppose there exists $P \in K[\lambda]$ of the form $P = P_1 \times P_2 \times ... \times P_k$ with $P_1, P_2, ..., P_k \in K[\lambda]$ relatively prime pairwise, such that P(f) = 0. Then, $E = kerP_1(f) \oplus ... \oplus kerP_k(f)$.

Proof.

1. We prove that
$$kerS(f) \cap kerT(f) = \{0\}$$

Let $v \in kerS(f) \cap kerT(f)$
 $S(f)(v) = 0$ and $T(f)(v) = 0$
Or $P(\lambda) = S(\lambda) \times T(\lambda) \Rightarrow P(f) = S(f) \circ T(f)$, since $S(\lambda) \wedge T(\lambda) = 1$.
Using Besout theorem, $\exists S_1(\lambda), T_1(\lambda)$ such that $S_1(\lambda) \times S(\lambda) + T_1(\lambda) \times T(\lambda) = 1$
Therefore, $S_1(f) \circ S(f) + T_1(f) \circ T(f) = id$ and
 $v = id(v) = S_1(f)[\underbrace{S(f)(v)}_{0}] + T_1(f)[\underbrace{T(f)(v)}_{0}]$. Then $v = 0$.
Let $v \in E$
 $v = id(v) = \underbrace{S_1(f) \circ S(f)(v)}_{V_2 \in kerT(f)} + \underbrace{T_1(f) \circ T(f)(v)}_{V_1 \in kerS(f)}$
 $v_1 \in kerS(f)$
i.e $S(f)(v_1) = S(f)[T_1(f) \circ T(f)(v)] = T_1(f) \circ \underbrace{S(f) \circ T(f)}_{P(f) = 0}(v) = 0$.
Similarly for v_2 , we obtain $v_2 \in kerT(f)$
i.e $v = v_1 + v_2$

2.7.1 Proposition

An endomorphism f (or A) is diagonalizable if and only if the minimal polynomial of f (or A) is factored and has all its simple roots.

Proof. If f is diagonalizable $\Rightarrow Q(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2)...(\lambda - \lambda_p)$ If $Q(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2)...(\lambda - \lambda_p)$ $Q(\lambda) = P_1 \times P_2 \times ...P_p$ with $P_i = \lambda - \lambda_i \in K[\lambda], i = 1, ..., p$ relatively prime pairwise, such that Q(f) = 0Then $E = kerP_1(f) \oplus ... \oplus kerP_p(f) = ker(f - \lambda_1 id) \oplus ... \oplus ker(f - \lambda_p id) = E(\lambda_1) \oplus E(\lambda_2) \oplus ... \oplus E_{\lambda_p}$. i.e E is the direct sum of the eigenspace $E(\lambda_i), i = 1, ..., p$. Then f (or A) is diagonalizable. \Box

2.8 Applications

Let A be an $n \times n$ matrix.

Method 1. Using the formula $A = PDP^{-1}$ We suppose A is diagonalizable, then $D = P^{-1}AP$, i.e $A = PDP^{-1}$, then

$$A^{k} = (PDP^{-1})(PDP^{-1})...(PDP^{-1}) = PD^{k}P^{-1}$$

Or $D = \begin{bmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix}, D^k = \begin{bmatrix} \lambda_1^n & 0 \\ & \ddots & \\ 0 & & \lambda_n^k \end{bmatrix}$

and it's easy to compute A^k using the following formula $A^k = P \begin{bmatrix} \lambda_1^n & 0 \\ & \ddots & \\ 0 & & \lambda_n^k \end{bmatrix} P^{-1}$

$$A^n = PD^n P^{-1}$$

Method 2. Using the minimal polynomial $Q(\lambda)$ $\lambda^n = Q(\lambda) \times S(\lambda) + R(\lambda)$. Then $A^n = R(A)$

Example. Let $A = \begin{bmatrix} 1 & -1 \\ 2 & 4 \end{bmatrix}$ We have $P(\lambda) = (\lambda - 2)(\lambda - 3)$

$$E(\lambda_{1}) = E(2) = \langle V_{1} \rangle, \text{ where } V_{1} = \begin{bmatrix} 1\\ -1 \end{bmatrix}$$
$$E(\lambda_{2}) = E(3) = \begin{bmatrix} 1\\ -2 \end{bmatrix}$$
Therefore, $P = \begin{bmatrix} 1 & 1\\ -1 & -2 \end{bmatrix} \text{ and } P^{-1} = \begin{bmatrix} -2 & 1\\ -1 & -1 \end{bmatrix}$ We obtain $A^{k} = \begin{bmatrix} 2^{k+1} - 3^{k} & 2^{k+1} - 2 \cdot 3^{k} \\ -2^{k} + 3^{k} & -2^{k} + 2 \cdot 3^{k} \end{bmatrix}$

• Solving a system of recurrence relations

Let's illustrate this with an example. This involves determining two sequences (u_n) , v_n such that:

(1)
$$\begin{cases} u_{n+1} = u_n - v_n \\ v_{n+1} = 2u_n + 4v_n \end{cases}$$
 and such that
$$\begin{cases} u_0 = 2 \\ v_0 = 1 \end{cases}$$

We put $X_n = \begin{bmatrix} u_n \\ v_n \end{bmatrix}$. We can write the system (1):

$$X_{n+1} = AX_n$$
 with $A = \begin{bmatrix} 1 & -1 \\ 2 & 4 \end{bmatrix}$

Hence, by induction

$$X_{n} = A^{n}X_{0} \text{ with } X_{0} = \begin{bmatrix} 2\\1 \end{bmatrix}$$

We have $\begin{bmatrix} u_{n}\\v_{n} \end{bmatrix} = A^{k} = \begin{bmatrix} 2^{k+1} - 3^{k} & 2^{k+1} - 2.3^{k}\\-2^{k} + 3^{k} & -2^{k} + 2.3^{k} \end{bmatrix} = \begin{bmatrix} 2\\1 \end{bmatrix}$
Finally,
$$\begin{cases} u_{n} = 3.2^{n+1} - 4.3^{n}\\v_{n} = -3.2^{n} + 4.3^{n} \end{cases}$$

• Solving a first-order linear differential system $\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$

Let the system
$$X' = AX$$
, where $X = \begin{bmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{bmatrix}$, $X' = \begin{bmatrix} x'_1(t) \\ x'_2(t) \\ \vdots \\ x'_n(t) \end{bmatrix}$

Example.

(I)
$$\begin{cases} x_1' = x_1 + 2x_2 + -3x_3 \\ x_2' = x_1 + 4x_2 - 5x_3 \\ x_3' = 2x_2 - 2x_3 \end{cases}$$

3 Chapter 3: Nilpotent and exponential matrix

3.1 Nilpotent Matrix

3.1.1 Definition

A nilpotent matrix is a square matrix, there exists an integer m such that

 $N^m = 0$

The integer m is called the nilpotency index. It is the smallest integer such that $N^m = 0$.

Examples.

(a) $A = \begin{bmatrix} 2 & -4 \\ 1 & -2 \end{bmatrix}$

The matrix is nilpotent because by squaring matrix A we get the zero matrix as a result:

$$A^{2} = \begin{bmatrix} 2 & -4 \\ 1 & -2 \end{bmatrix} \cdot \begin{bmatrix} 2 & -4 \\ 1 & -2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

(b) $B = \begin{bmatrix} 1 & -2 & 1 \\ 3 & 0 & 3 \\ -1 & 2 & -1 \end{bmatrix}$

Although when raising the matrix to 2 we do not obtain the null matrix:

$$B^{2} = \begin{bmatrix} 1 & -2 & 1 \\ 3 & 0 & 3 \\ -1 & 2 & -1 \end{bmatrix} \cdot \begin{bmatrix} 1 & -2 & 1 \\ 3 & 0 & 3 \\ -1 & 2 & -1 \end{bmatrix} = \begin{bmatrix} -6 & 0 & -6 \\ 0 & 0 & 0 \\ 6 & 0 & 6 \end{bmatrix}$$

When calculating the cube of the matrix we do not get the matrix with all the elements equal to zero:

$\left[-6\right]$	0	-6	[1]	-2	1		[0	0	0]
0	0	0	3	0	3	=	0	0	0
$\begin{bmatrix} -6\\0\\6 \end{bmatrix}$	0	6	[-1]	2	-1		0	0	0

So matrix B is a nilpotent matrix, and since the null matrix is obtained with the third power, its nilpotency index is 3.

3.2 Exponential of a matrix

3.2.1 Definition

If A is a constant $n \times n$ matrix, the matrix exponential e^{At} is given by:

$$e^{At} = I + At + A^2 \frac{t^2}{2!} + \dots + A^n \frac{t^n}{n!} + \dots,$$

where the right-hand side indicates the $n \times n$ matrix whose elements are power series with coefficients given by the entries in the matrices.

Example. The exponential is easiest to compute when A is diagonal. For the matrix $A = \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix}$, we calculate

$$A^{2} = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}, A^{3} = \begin{bmatrix} -1 & 0 \\ 0 & 8 \end{bmatrix}, ..., A^{n} = \begin{bmatrix} (-1)^{n} & 0 \\ 0 & 2^{n} \end{bmatrix}$$

Then we get

$$e^{At} = \sum_{n=0}^{\infty} A^n \frac{t^n}{n!} = \begin{bmatrix} \sum_{n=0}^{\infty} (-1)^n \frac{t^n}{n!} & 0\\ 0 & \sum_{n=0}^{\infty} 2^n \frac{t^n}{n!} \end{bmatrix} = \begin{bmatrix} e^{-t} & 0\\ 0 & e^{2t} \end{bmatrix}$$

Remark. In general, if A is an $n \times n$ matrix with entries $\lambda_1, \lambda_2, ..., \lambda_n$, then e^{At} is the diagonal matrix with entries $e^{\lambda_1 t}, e^{\lambda_2 t}, ..., e^{\lambda_n t}$ on the main diagonal.

3.2.2 Theorem 1.

Let A and B be $n \times n$ constant matrices, and $r, s, t \in \mathbb{R}$. Then

(a) $e^{A0} = e^0 = I$ (b) $e^{A(t+s)} = e^{At}e^{As}$ (c) $(e^{At})^{-1} = e^{-At}$ (d) $e^{(A+B)^t} = e^{At}e^{Bt}$ if AB = BA(e) $e^{rIt} = e^{rt}I$

3.2.3 Theorem 2.

If A is an $n \times n$ constant matrix, then the columns of the matrix exponential e^{At} form of a fundamental solution set for the system x'(t) = Ax(t). Therefore, e^{At} is a fundamental matrix for the system, and a general solution is $x(t) = ce^{At}$.

3.3 Exponential of a nilpotent matrix

If A is nilpotent of index m, i.e $A^m = 0$, then

$$e^{At} = I + At + \dots + A^{m-1} \frac{t^{k-1}}{(k-1)!}$$

Example. Find the fundamental matrix e^{At} for the system x' = Ax, where

$$\begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ -2 & -2 & -1 \end{bmatrix}$$

Solution. We find the polynomial of A

$$p(r) = |A - rI| = \begin{vmatrix} 2 - r & 1 & 1 \\ 1 & 2 - r & 1 \\ -2 & -2 & -1 - r \end{vmatrix} = -(r - 1)^3$$

Therefore, r = 1 is the only eigenvalue of A, so $(A - I)^3 = 0$ and

$$e^{At} = e^{t} e^{(A-I)t} e^{t} \{ I + (A-I)t + (A-I)^{2} \frac{t^{2}}{2} \} \dots \dots (1)$$

We calculate

$$A - I = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ -2 & -2 & -2 \end{bmatrix} \text{ and } (A - I)^2 = 0$$

Substitution into (1) gives us

$$e^{At} = e^{t}I + te^{t}(A - I) = \begin{bmatrix} e^{t} + te^{t} & te^{t} & te^{t} \\ te^{t} & e^{t} + te^{t} & te^{t} \\ -2te^{t} & -2te^{t} & e^{t} - 2te^{t} \end{bmatrix}$$