
1 Chapter 1: Diagonalization of matrices

1.1 Definitions

Let E be an n−dimensional space vector over a field K, where K = R or C.
dimE = n, B a basis of E. Let f : E −→ E a linear application (endomorphism of
E), A the square matrix (n× n) associated with f : A = MB(f) = (aij).

1.1.1 Definition 1. Characteristic Polynomial of a Matrix

If A is an n× n matrix, the characteristic polynomial P (λ) of A is defined by:

P (λ) = det(A− λIn)

1.1.2 Definition 2. Eigenvalues and Eigenvectors

If A is n× n matrix, a number λ is called an eigenvalue of A if there is V ∈ E such
that:

AV = λV

In this case, V is called an eigenvector of A corresponding to the eigenvalue λ.

Example. If A =

[
3 5
1 −1

]
and V =

[
5
1

]
then AV =

[
20
4

]
= 4

[
5
1

]
= 4V

So λ = 4 is an eigenvalue of A with corresponding eigenvector V .

Theorem. Let A be an n× n matrix.

1. The eigenvalues λ of A are the roots of the characteristic polynomial P (λ) of
A.

P (λ) = 0

2. The λ− eigenvectors X are the nonzero solutions to the homogeneous system

(A− λI)X = 0

1.1.3 Definition 3.

Let A be n× n matrix and λ an eigenvalue of the matrix A. The set

E(λ) = {V ∈ E,AV = λV }

is called the eigenspace of A associated to the eigenvalue λ in which E(λ) is vector
sub-space of E. Its dimension (dimE(λ)) is called the the geometric multiplicity of
λ.
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1.1.4 Definition 4. Similarity and Diagonalization

If A,B are two n × n matrices, then they are similar if and only if there exists an
invertible matrix P such that:

A = P−1BP

1.1.5 Definition 5. Trace of a matrix

If A = (aij) is an n× n matrix, then the trace of A is

trace(A) = tr(A) =
n∑

i=1

aij

Lemma. Properties of a trace For n× n matrices A and B, and any k ∈ R,

1. tr(A+B) = tr(A) + tr(B)

2. tr(kA) = k.tr(A)

3. tr(AB) = tr(BA)

Theorem. Properties of similar matrices If A and B are n×n matrices and
A,B are similar, then

1. det(A) = det(B)

2. rank(A) = rank(B)

3. tr(A) = tr(B)

4. PA(λ) = PB(λ)

5. A and B have the same eigenvalues.

Proof. 1. We have B = P−1AP , then det(B) = det(P−1AP ) = det(A)

4. PB(λ) = det(B − λIn) = det(P−1AP − P−1λP ) = det[P−1(A − λIn)P ] =
det(P−1)× det(A− λIn)× det(P )
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1.1.6 Definition 6. Digonalizable

Let A be an n × n matrix. Then A is said to be diagonalizable if there exists an
invetible matrix P such that

P−1AP = D

where D is a diagonal matrix.

Proposition. Let λ1 and λ2 be two distinct eigenvalues (λ1 ̸= λ2) of A, then

E(λ1) ∩ E(λ2) = {0}

Proof. If V ∈ E(λ1) ∩ E(λ2), then AV = λ1V = λ2V i.e. (λ1 − λ2)V = 0.
Since λ1 ̸= λ2, then we have V = 0

1.1.7 Definition 7. Diagonalization

A square n× n matrix A is diagonalizable if A is similar to a diagonal matrix, i.e.

A = PDP−1

for a diagonal matrix D and an invertible matrix P .

Proposition. Let A be an n× n matrix. We suppose that P (λ) have k distinct
roots λ1, λ2, ..., λk. If E = E(λ1)⊕ E(λ2)⊕ ...⊕ E(λk), then A is diagonalizable.

Proof. For i = 1, 2, ..., k, we choose the basis Bi of E(λi). The basis B′ = ∪i=k
i=1Bi of

E consists of the eigenvectors of A associated with the eigenvalues λ1, λ2, ..., λk, then
the matrix D = MB′(f) is diagonal.

Examples Find the characteristic polynomial, eigenvalues and eigenvectors of the
matrices:

1. A =

[
3 5
1 −1

]

2. A =

1 2 −3
1 4 −5
0 2 −2


Solution.
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1. P (λ) = (λ− 4)(λ+ 2)
λ1 = −2 and λ2 = 4

V1 =

[
−1
1

]
and V2 =

[
5
1

]
2. P (λ) = −λ(λ− 1)(λ− 2)

λ1 = 0,λ2 = 4 and λ3 = 2

V1 =

11
1

, V2 =

13
2

 and V3 =

12
1


1.2 Sufficient condition for a matrix to be diagonalizable

Proposition. An n× n matrix with n distinct eigenvalues is diagonalizable.

Proof. We have P (λ) = (−1n)(λ−λ1)(λ−λ2)...(λ−λn), where λ1, λ2, ..., λn n distinct
eigenvalues of A and V1, V2, ..., Vn the n eigenvectors associated with λi.
AV1 = λ1V1

AV2 = λ2V2

.

.

.
AVn = λnVn

We can prove that B′ = (V1, V2, ..., Vn) is a basis of E by induction:
We prove that the set (V1, V2, V3, ..., Vk+1) is linearly independent of E.

α1V1 + α2V2 + ...+ αkVk + αk+1Vk+1 = 0 (1)

We have A(α1V1 + α2V2 + ...+ αkVk + αk+1Vk+1) = 0, then
α1AV1 + α2AV2 + ...+ αkAVk + αk+1AVk+1 = 0

α1λ1V1 + α2λ2V2 + ...+ αkλkVk + αk+1λk+1Vk+1 (2)

From (2)− λk+1(1):
(λ1 − λk+1)α1V1 + (λ2 − λk+1)α2V2 + ...+ (λk − λk+1)αkVk = 0
Since the set (V1, V2, ..., Vk) is linearly independent of E by induction hypothesis, then
(λ1 − λk+1)α1 = (λ2 − λk+1)α2 = ... = (λk − λk+1)αk = 0 (because λk are distinct).
Therefore α1 = α2 = ... = αk = 0
By (1) we have αk+1Vk+1 = 0, then αk+1 = 0
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1.3 Necessary and sufficient condition for diagonalizability

Proposition 1. Let A be an n× n matrix, then

dim(E(λ1)) ≤ m1

where λ1 is an eigenvalue of A multiplicity m1.

Proof. Let (e1, e2, ..., er) the basis ofE(λ1), then we can find the basisB = (e1, e2, ..., er, er+1, ..., en)
of E.
The matrix A is similar of the matrix A′ of the form

A′ =



λ1

λ1

. . .

λ1

A1

0 A2



P (λ) = det(A− λIn) =



λ1 − λ
λ1 − λ

. . .

λ1 − λ

A1

0 A2 − λIn−r


= (λ1 − λ)rdet(A2 − λIn−r)

Then m ≥ r, where r = dimE(λ1)

Proposition 2. Let A be an n×n matrix. Then A is diagonalizable if and only if:

1. P (λ) is factored.

2. For each eigenvalue λi of A, dim(E(λi) is equal to the multiplicity of λi

i.e.
dimE(λi) = mi, i = 1, ..., k
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Proof. By induction, the sub-spaces E(λi), i = 1, ..., j, verify

E = E(λ1)⊕ E(λ2)⊕ ...⊕ E(λk)

for j = 1, ..., k
Denote Sj = E(λ1)⊕ E(λ2)⊕ ...⊕ E(λj)
It is sufficient to demonstrate that Sj ∩ E(λj+1) = {0}
Let V ∈ Sj ∩ E(λj+1), then 

V = V1 + V2 + ...+ Vj

and

AV = λj+1V

(3)

For (3), we have AV = AV1 + AV2 + ...+ AVj, then

λj+1V = λ1V1 + λ2V2 + ...+ λjVj (4)

For (4)− λj+1(3), we have

0 = (λ1 − λj+1)V1 + (λ2 − λj+1)V2 + ...+ (λj − λj+1)Vj

Using induction hypothesis, we get V1 = V2 = ... = Vj = 0
Since

∑n
i=1 dimE(λi) =

∑n
i=1 mi = n, we see that E = ⊕k

i=1E(λi). Then A is diago-
nalizable and we write:

D =



λ1

. . .

λ1

λ2

. . .

λ2

. . .

λk

. . .

λk


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Examples.

1. A =

 0 1 −1
−1 2 −1
−1 1 0


P (λ) = −λ(λ− 1)2

P (λ) = 0 ⇒

{
λ1 = 0,m1 = 1

λ2 = 1,m2 = 2

E(λ1) = E(0) =< V1 >, where V1 =

11
1

 and dimE(λ1) = 1 = m1

E(λ2) = E(1) =< V2, V3 >, where V2 =

13
2

, V3 =

12
1

 and dimE(λ2) = 1 =

m2 = 2.
Then the matrix A is diagonalizable.

2. A =

1 2 −3
2 5 −7
1 3 −4


P (λ) = −λ(λ− 1)2

P (λ) = 0 ⇒

{
λ1 = 0,m1 = 1

λ2 = 1,m2 = 2

E(λ1) = E(0) =< V1 >, where V1 =

11
1

 and dimE(λ1) = 1 = m1

E(λ2) = E(1) =< V2 >, where V2 =

13
2

 and dimE(λ2) = 1 ̸= m2 = 2

Then the matrix A isn’t diagonalizable.
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2 Chapter 2: Triangulability of matrices

Example 1. Consider the matrix A =

1 2 −3
2 5 −7
1 3 −4

, then
P (λ) = −λ(λ− 1)2

P (λ) = 0 ⇒

{
λ1 = 0,m1 = 1

λ2 = 1,m2 = 2

E(λ1) = E(0) =< V1 >, where V1 =

11
1

 and dimE(λ1) = 1 = m1

E(λ2) = E(1) =< V2 >, where V2 =

13
2

 and dimE(λ2) = 1 ̸= m2 = 2

Then the matrix A isn’t diagonalizable.

What to do if matrix A is not diagonalizable?
Therefore, we use triangulation:

2.1 Proposition

Let f : E → F a linear map and A the matrix of f , we suppose the characteristic
polynomial P (λ) of f (or A) is factored in K[λ]. Then f (or A) is triangulable.

Proof. By induction over dimE: the result is true for the space of dimension 1.
Suppose they are true for spaces of dimension ≤ n− 1 and let E be a space of
dimension n.
Let P (λ) = (λ− λ1)(λ− λ2)...(λ− λn) in K[λ], (K = R or C).
We suppose that the eigenvalues λi are not necessarily distinct. We denote V1,
an eigenvector associated with λ1 (i.e f(V1) = λ1V1).
By the incomplete basis theorem, there exists a basis B′ of E where
B′ = (V1, e2, e3, ..., en) then the matrix A′ has the form

A′ = MB′(f) =


λ1 a12 . . . a1n
0 a22 .
0 . .
. . .
. . .
0 an2 . . . ann


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The family B1 = (e2, ..., en) is a basis of the subspace F =< e2, ..., en > of E.
We denote g : F → F , the linear map such that the associated matrix is

A1 =


a12 . . . a1n
. .
. .
. .

an2 . . . ann

 = MB1(g)

Then P (λ) = (λ1 − λ)× det(A1 − λIn−1)
i.e. P (λ) is factored and since dimF = n − 1, by induction hypothesis, there
exists a basis B2 = (V2, ..., Vn) of F such that MB2(g) is upper triangular. We
get

MB′=(V1,V2,...,Vn)(f) =


λ1 a12 . . . a1n

λ2 . . . .
. . .

. .
λn


Remark.
1/ If A is triangulable, the diagonal of the matrix T = MB′(f) are the eigen-
values of A.
2/ All matrix of A ∈ Mn(C) is triangulable.

Corollary.
tr(A) =

∑
i λi

det(A) =
∏

i λi

Remark.
We can triangulate the matrix A of Example 1.

We consider the basis B′ of E where



V1 =

11
1

 = e1 + e2 + e3

V2 =

13
2

 = e1 + 3e2 + 2e3

V3 = e1

Because

∣∣∣∣∣∣
1 1 1
1 3 0
1 2 0

∣∣∣∣∣∣ = 2− 3 = −1 ̸= 0
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And


e1 = V3

e2 = −2V1 + V2 + V3

e3 = 3V1 − V2 − 2V3

Then T = MB′(f) =

0 0 −1
0 1 1
0 0 1

 = P−1AP

Where


f(V1) = λ1V1 = 0

f(V2) = λ2V2 = V2

f(V3) = f(e1) = e1 + 2e2 + e3 = −V1 + V2 + V3

Finally, T =

0 0 −1
0 1 1
0 0 1

 is the upper triangular matrix,

P = (V1V2V3) =

1 1 1
1 3 0
1 2 0

 and P−1 = (e1e2e3) =

0 −2 3
0 1 −1
1 1 −2


2.2 Annihilating polynomials

Let E a vector space over K and R ∈ K[λ]
R(λ) = anλ

n + an−1λ
n−1 + ...+ a2λ2 + a1λ

1 + a0λ
0

If f ∈ EndK(E), we denote R(f), the linear map of E defined by
R(f) = anf

n + an−1f
n−1 + ...+ a2f

2 + a1f
1 + a0id

or R(A) the matrix
R(A) = a2A

n + an−1A
n−1 + ...+ a2A

2 + a1A
1 + a0In

Where fk = f ◦ f ◦ ... ◦ f︸ ︷︷ ︸
k times

Remark.
We have P (f) ◦Q(f) = Q(f) ◦ P (f).

2.2.1 Definition.

Let f ∈ EndK(E), the polynomial R ∈ K[λ] is called annihilating polynomial
of f (or A), if

R(f) = 0

or
R(A) = 0
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.

2.3 Cayley-Hamilton theorem

Let f ∈ Endk(E) and P (λ) the characteristic polynomial of f (or A).
Then

P (f) = 0

(or P (A) = 0). i.e P (λ) annihilates f (or A).

Proof. We suppose K = C, in this case f (or A) is triangulable.
Let B′ = (V1, V2, .., Vn), a basis of E such that

MB′(f) =


λ1 a12 . . . a1n

λ2 a23 . . a2n
. .

. .
λn

 = T is an upper triangular matrix

We have f(V1) = λ1V1 ⇒ (λ1id− f)(V1) = 0 and
P (λ) = det(T − λIn) = (λ1 − λ)(λ2 − λ)...(λn − λ)
Then P (f) = (λ1id− f) ◦ ... ◦ (λnid− f) and
P (f)(V1) = (λ2id−f)◦...◦(λnid−f)◦(λ1id−f)(V1) = 0. Therefore, P (f)(V1) =
0
P (f)(V2) = (λ3id− f) ◦ ... ◦ (λnid− f) ◦ (λ1id− f) ◦ (λ2id− f)(V2) = (λ3id−
f) ◦ ... ◦ (λnid− f)0(λ1id− f)(−a12V1) = 0. Therefore, P (f)(V2) = 0
We can similarly show that P (f)(V3) = 0
By induction, we find P (f)(Vi) = 0, ∀i = 1, ..., n. Finally, P (f) = 0.

Example.

A =

 4 1 −1
−6 −1 2
6 1 1


P (λ) = det(A− λI3) = (2− λ)(1− λ)2 = −λ3 + 4λ2 − 5λ+ 2
Since det(A) = P (0) = 2 ̸= 0, A is invertible.
By the Cayley-Hamilton theorem, we have P (A) = 0
i.e −A3 + 4A2 − 5A+ 2I3 = 0. Then −A3 + 4A2 − 5A = −2I3 ⇒
A[−A2 + 4A− 5I3] = −2I3 ⇒ A[1

2
A2 − 2A+ 5

2
I3] = I3

Therefore,

A−1 =
1

2
A2 − 2A+

5

2
I3
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2.4 Proposition

Let S(λ) a annihilating polynomial of f [S(f) = 0].
All eigenvalue λ1 of f (of A) is a root of S(λ)[S(λ1) = 0].

Proof. If λ1 is a V.P, f(V ) = λ1V
or S(λ) = anλ

n + an−1λ
n−1 + ...+ a1λ+ a0

S(f) = anf
n + an−1f

n−1 + ...+ a1f + a0id = 0
Therefore anf

n(V ) + an−1f
n−1(V ) + ...+ a1 f(V )︸ ︷︷ ︸

λV

+a0id(V ) = 0

⇒ anλ
nV + an−1λ

n−1V + ...+ a1λV + a0V = 0
(anλ

n
1 + an−1λ

n−1
1 + ...+ a1λ1 + a0)︸ ︷︷ ︸
S(λ1)

V = 0.

Consequently, [V ̸= 0] ⇒ S(λ1) = 0
i.e λ is a root of S(λ).

2.5 Proposition

Let f ∈ End(E) and P (λ) the characteristic polynomial of f i.e

P (λ) = (−1)n(λ− λ1)
m1(λ− λ2)

m2 ...(λ− λp)
mp

If f is diagonalizable, then the polynomial Q(λ) = (λ−λ1)...(λ−λp) annihilates
f [Q(f) = 0].

Proof. If f is diagonalizable, there exists a basis B′ = (V1, V2, ..., Vn) formed of
eigenvectors.
Let λ1, λ2, ..., λp be the eigenvalues of A. For all Vi ∈ B′i = 1, n, there exists
λi 1 ≤ j ≤ p, such that f(V1) = λjVi

i.e (f − λjid)(Vi = 0)
Q(f) = (f − λ1id) ◦ (f − λ2id) ◦ ... ◦ (f − λpid)
Q(f)(Vi) = [(f − λ1id) ◦ (f − λ2id) ◦ ... ◦ (f − λpid)](Vi) = (f − λ1id) ◦ ... ◦
(f − λjid)(Vi)︸ ︷︷ ︸

0

= 0
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2.6 Minimal polynomial

2.6.1 Definition.

We call the minimal polynomial of f (or of A) denoted Q(f) (or Q(A)), the
normalized annihilating polynomial of f (or of A) of the smallest degree.

Q(f) = 0 or Q(A) = 0

Remark. If S(λ) is a multiple of Q(λ), then

S(λ) = Q(λ)× T (λ)

S(f) = Q(f) ◦ T (f) = 0

i.e S(λ) is an annihilating polynomial.
Proposition 1.
The annihilating polynomials of f are the polynomials of the type:

S(λ) = Q(λ)× T (λ)

Then S(λ) = Q(λ)× T (λ) +R(λ)
S(f) = R(f) = 0 R(f) = 0
i.e R is annihilating and since d◦R(λ) < d◦Q(λ). This contradicts the hypothesis
that Q(λ) is a minimal polynomial. Then R(λ) = 0.
Remark.
Q(λ)/P (λ) or P (λ) = Q(λ)× T (λ])
Proposition 2.
The roots of Q(λ) are exactly the roots of P (λ), i.e the eigenvalues but with a
different multiplicity
If

P (λ) = (−1)n(λ− λ1)
m1(λ− λ2)

m2 ...(λ− λp)
mp λi ̸= λj

Then
Q(λ) = (λ− λ1)

α1(λ− λ2)
α2 ...(λ− λp)

αp

with 1 ≤ αi ≤ mi, i = 1, ..., p

Proof. We know that P (λ) = Q(λ)T (λ), then if λ is a root of Q(λ), then it is
a root of P (λ).
Conversely, let λ a root of P (λ) i.e λ is an eigenvalue of A, then λ is a root of
Q(λ) because Q(λ) annihilates A.
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2.6.2 Theorem 1.

The minimal polynomial and characteristic polynomial of f (or A) share the
same roots, except for multiplicities.

Examples.

� A =

0 1 2
1 0 2
1 2 0


We have P (λ) = −(λ+ 1)(λ+ 2)(λ− 3), then Q(λ) = (λ+ 1)(λ+ 2)(λ− 3)

� A =

−1 1 1
1 −1 1
1 1 −1


We have P (λ) = −(λ− 1)(λ+ 2)2, then there exists two possibilities:

Q(λ) = (λ− 1)(λ+ 2)
Q(λ) = (λ− 1)(λ+ 2)2

2.6.3 Theorem 2.

An endomorphism f (or A) is diagonalizable if and only if the minimal polyno-
mial of f (or A) is factored and has all its simple roots.
i.e

Q(λ) = (λ− λ1)(λ− λ2)...(λ− λm)

Examples.

� A =

−1 1 1
1 −1 1
1 1 −1


We saw that Q(λ) = (λ+ 2)(λ− 1), then A is diagonalizable.

� A =

 3 2 −2
−1 0 1
1 1 0


We have P (λ) = −(λ− 1)3, then Q(λ) = λ− 1 or (λ− 1)2 or (λ− 1)3

If Q(λ) = λ− 1, Q(A) = 0 or Q(A) = A− I3 =

 2 2 −2
−1 −1 1
1 1 −1

 ̸= 0

then A is not diagonalizable.
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� A =

3 −1 1
2 0 1
1 −1 2


We have P (λ) = −(λ− 1)(λ− 2)2, then Q(λ) = (λ− 1)(λ− 2) or
Q(λ) = (λ− 1)(λ− 2)2

If Q(λ) = (λ− 1)(λ− 2), then

Q(A) = (A− I3)(A− 2I3) =

2 −1 1
2 −1 1
1 −1 1

1 −1 1
2 −2 1
1 −1 0

 =

1 . .
. . .
. . .

 ̸= 0

Then A is not diagonalizable.

2.7 Kernel decomposition theorem

1. We suppose there exists P ∈ K[λ] of the form P = S × T with S, T ∈ K[λ]
relatively prime, such that P (f) = 0. Then E = kerS(f)⊕ kerT (f).

2. We suppose there exists P ∈ K[λ] of the form P = P1 × P2 × ... × Pk with
P1, P2, ..., Pk ∈ K[λ] relatively prime pairwise, such that P (f) = 0. Then,
E = kerP1(f)⊕ ...⊕ kerPk(f).

Proof.

1. We prove that kerS(f) ∩ kerT (f) = {0}
Let v ∈ kerS(f) ∩ kerT (f)
S(f)(v) = 0 and T (f)(v) = 0
Or P (λ) = S(λ)× T (λ) ⇒ P (f) = S(f) ◦ T (f), since S(λ) ∧ T (λ) = 1.
Using Besout theorem, ∃S1(λ), T1(λ) such that S1(λ)×S(λ)+T1(λ)×T (λ) = 1
Therefore, S1(f) ◦ S(f) + T1(f) ◦ T (f) = id and
v = id(v) = S1(f)[S(f)(v)︸ ︷︷ ︸

0

] + T1(f)[T (f)(v)︸ ︷︷ ︸
0

]. Then v = 0.

Let v ∈ E
v = id(v) = S1(f) ◦ S(f)(v)︸ ︷︷ ︸

V2 ∈ kerT (f)

+T1(f) ◦ T (f)(v)︸ ︷︷ ︸
V1 ∈ kerS(f)

v1 ∈ kerS(f)
i.e S(f)(v1) = S(f)[T1(f) ◦ T (f)(v)] = T1(f) ◦ S(f) ◦ T (f)︸ ︷︷ ︸

P (f) = 0

(v) = 0.

Similarly for v2, we obtain v2 ∈ kerT (f)
i.e v = v1 + v2
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2.7.1 Proposition

An endomorphism f (or A) is diagonalizable if and only if the minimal polyno-
mial of f (or A) is factored and has all its simple roots.

Proof. If f is diagonalizable ⇒ Q(λ) = (λ− λ1)(λ− λ2)...(λ− λp)
If Q(λ) = (λ− λ1)(λ− λ2)...(λ− λp)
Q(λ) = P1 × P2 × ...Pp with Pi = λ − λi ∈ K[λ], i = 1, ..., p relatively prime
pairwise, such that Q(f) = 0
Then E = kerP1(f) ⊕ ... ⊕ kerPp(f) = ker(f − λ1id) ⊕ ... ⊕ ker(f − λpid) =
E(λ1)⊕ E(λ2)⊕ ...⊕ Eλp .
i.e E is the direct sum of the eigenspace E(λi), i = 1, ..., p. Then f (or A) is
diagonalizable.

2.8 Applications

� Compute the power of the matrix
Let A be an n× n matrix.
Method 1. Using the formula A = PDP−1

We suppose A is diagonalizable, then D = P−1AP , i.e A = PDP−1, then

Ak = (PDP−1)(PDP−1)...(PDP−1) = PDkP−1

Or D =

λ1 0
. . .

0 λn

, Dk =

λ
n
1 0

. . .

0 λk
n


and it’s easy to computeAk using the following formulaAk = P

λ
n
1 0

. . .

0 λk
n

P−1

An = PDnP−1

Method 2. Using the minimal polynomial Q(λ)
λn = Q(λ)× S(λ) +R(λ). Then An = R(A)

Example.

Let A =

[
1 −1
2 4

]
We have P (λ) = (λ− 2)(λ− 3)

16



E(λ1) = E(2) =< V1 >, where V1 =

[
1
−1

]
E(λ2) = E(3) =

[
1
−2

]
Therefore, P =

[
1 1
−1 −2

]
and P−1 =

[
−2 1
−1 −1

]
We obtain Ak =

[
2k+1 − 3k 2k+1 − 2.3k

−2k + 3k −2k + 2.3k

]
� Solving a system of recurrence relations
Let’s illustrate this with an example. This involves determining two sequences
(un), vn such that:

(1)

{
un+1 = un − vn

vn+1 = 2un + 4vn
and such that

{
u0 = 2

v0 = 1

We put Xn =

[
un

vn

]
. We can write the system (1):

Xn+1 = AXn with A =

[
1 −1
2 4

]
Hence, by induction

Xn = AnX0 with X0 =

[
2
1

]

We have

[
un

vn

]
= Ak =

[
2k+1 − 3k 2k+1 − 2.3k

−2k + 3k −2k + 2.3k

]
=

[
2
1

]
Finally, {

un = 3.2n+1 − 4.3n

vn = −3.2n + 4.3n

� Solving a first-order linear differential system

Let the system X ′ = AX, where X =


x1(t)
x2(t)
...

xn(t)

, X ′ =


x′
1(t)

x′
2(t)
...

x′
n(t)


17



Example.

(I)


x′
1 = x1 + 2x2 +−3x3

x′
2 = x1 + 4x2 − 5x3

x′
3 = 2x2 − 2x3

3 Chapter 3: Nilpotent and exponential ma-

trix

3.1 Nilpotent Matrix

3.1.1 Definition

A nilpotent matrix is a square matrix, there exists an integer m such that

Nm = 0

.
The integer m is called the nilpotency index. It is the smallest integer such that
Nm = 0.

Examples.

(a) A =

[
2 −4
1 −2

]
The matrix is nilpotent because by squaring matrix A we get the zero
matrix as a result:

A2 =

[
2 −4
1 −2

]
.

[
2 −4
1 −2

]
=

[
0 0
0 0

]

(b) B =

 1 −2 1
3 0 3
−1 2 −1


Although when raising the matrix to 2 we do not obtain the null matrix:

B2 =

 1 −2 1
3 0 3
−1 2 −1

 .

 1 −2 1
3 0 3
−1 2 −1

 =

−6 0 −6
0 0 0
6 0 6


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When calculating the cube of the matrix we do not get the matrix with all
the elements equal to zero:−6 0 −6

0 0 0
6 0 6

 .

 1 −2 1
3 0 3
−1 2 −1

 =

0 0 0
0 0 0
0 0 0


So matrix B is a nilpotent matrix, and since the null matrix is obtained
with the third power, its nilpotency index is 3.

3.2 Exponential of a matrix

3.2.1 Definition

If A is a constant n× n matrix, the matrix exponential eAt is given by:

eAt = I + At+ A2 t
2

2!
+ ...+ An t

n

n!
+ ...,

where the right-hand side indicates the n× n matrix whose elements are power
series with coefficients given by the entries in the matrices.

Example. The exponential is easiest to compute when A is diagonal. For the

matrix A =

[
−1 0
0 2

]
, we calculate

A2 =

[
1 0
0 4

]
, A3 =

[
−1 0
0 8

]
, ..., An =

[
(−1)n 0

0 2n

]
Then we get

eAt =
∞∑
n=0

An t
n

n!
=

[∑∞
n=0(−1)n tn

n!
0

0
∑∞

n=0 2
n tn

n!

]
=

[
e−t 0
0 e2t

]

Remark. In general, if A is an n×n matrix with entries λ1, λ2, ...λn, then eAt

is the diagonal matrix with entries eλ1t, eλ2t, ..., eλnt on the main diagonal.
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3.2.2 Theorem 1.

Let A and B be n× n constant matrices, and r, s, t ∈ R. Then

(a) eA0 = e0 = I

(b) eA(t+s) = eAteAs

(c) (eAt)−1 = e−At

(d) e(A+B)t = eAteBt if AB = BA

(e) erIt = ertI

3.2.3 Theorem 2.

If A is an n×n constant matrix, then the columns of the matrix exponential eAt

form of a fundamental solution set for the system x′(t) = Ax(t). Therefore, eAt

is a fundamental matrix for the system, and a general solution is x(t) = ceAt.

3.3 Exponential of a nilpotent matrix

If A is nilpotent of index m, i.e Am = 0, then

eAt = I + At+ ...+ Am−1 tk−1

(k − 1)!

Example. Find the fundamental matrix eAt for the system x′ = Ax, where 2 1 1
1 2 1
−2 −2 −1


Solution. We find the polynomial of A

p(r) = |A− rI| =

∣∣∣∣∣∣
2− r 1 1
1 2− r 1
−2 −2 −1− r

∣∣∣∣∣∣ = −(r − 1)3

Therefore, r = 1 is the only eigenvalue of A, so (A− I)3 = 0 and

eAt = ete(A−I)tet{I + (A− I)t+ (A− I)2
t2

2
}.....(1)

We calculate
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A− I =

 1 1 1
1 1 1
−2 −2 −2

 and (A− I)2 = 0

Substitution into (1) gives us

eAt = etI + tet(A− I) =

et + tet tet tet

tet et + tet tet

−2tet −2tet et − 2tet


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