1 Chapter 1: Diagonalization of matrices

1.1 Definitions

Let E be an n-dimensional space vector over a field K, where $K=\mathbb{R}$ or \mathbb{C}.
$\operatorname{dim} E=n, B$ a basis of E. Let $f: E \longrightarrow E$ a linear application (endomorphism of $E), A$ the square matrix $(n \times n)$ associated with $f: A=\mathbb{M}_{B}(f)=\left(a_{i j}\right)$.

1.1.1 Definition 1. Characteristic Polynomial of a Matrix

If A is an $n \times n$ matrix, the characteristic polynomial $P(\lambda)$ of A is defined by:

$$
P(\lambda)=\operatorname{det}\left(A-\lambda I_{n}\right)
$$

1.1.2 Definition 2. Eigenvalues and Eigenvectors

If A is $n \times n$ matrix, a number λ is called an eigenvalue of A if there is $V \in E$ such that:

$$
A V=\lambda V
$$

In this case, V is called an eigenvector of A corresponding to the eigenvalue λ.
Example. If $A=\left[\begin{array}{cc}3 & 5 \\ 1 & -1\end{array}\right]$ and $V=\left[\begin{array}{l}5 \\ 1\end{array}\right]$ then $A V=\left[\begin{array}{c}20 \\ 4\end{array}\right]=4\left[\begin{array}{l}5 \\ 1\end{array}\right]=4 V$
So $\lambda=4$ is an eigenvalue of A with corresponding eigenvector V.
Theorem. Let A be an $n \times n$ matrix.

1. The eigenvalues λ of A are the roots of the characteristic polynomial $P(\lambda)$ of A.

$$
P(\lambda)=0
$$

2. The λ - eigenvectors X are the nonzero solutions to the homogeneous system

$$
(A-\lambda I) X=0
$$

1.1.3 Definition 3.

Let A be $n \times n$ matrix and λ an eigenvalue of the matrix A. The set

$$
E(\lambda)=\{V \in E, A V=\lambda V\}
$$

is called the eigenspace of A associated to the eigenvalue λ in which $E(\lambda)$ is vector sub-space of E. Its dimension $(\operatorname{dim} E(\lambda))$ is called the the geometric multiplicity of λ.

1.1.4 Definition 4. Similarity and Diagonalization

If A, B are two $n \times n$ matrices, then they are similar if and only if there exists an invertible matrix P such that:

$$
A=P^{-1} B P
$$

1.1.5 Definition 5. Trace of a matrix

If $A=\left(a_{i j}\right)$ is an $n \times n$ matrix, then the trace of A is

$$
\operatorname{trace}(A)=\operatorname{tr}(A)=\sum_{i=1}^{n} a_{i j}
$$

Lemma. Properties of a trace For $n \times n$ matrices A and B, and any $k \in \mathbb{R}$,

1. $\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$
2. $\operatorname{tr}(k A)=k \cdot \operatorname{tr}(A)$
3. $\operatorname{tr}(A B)=\operatorname{tr}(B A)$

Theorem. Properties of similar matrices If A and B are $n \times n$ matrices and A, B are similar, then

1. $\operatorname{det}(A)=\operatorname{det}(B)$
2. $\operatorname{rank}(A)=\operatorname{rank}(B)$
3. $\operatorname{tr}(A)=\operatorname{tr}(B)$
4. $P_{A}(\lambda)=P_{B}(\lambda)$
5. A and B have the same eigenvalues.

Proof. 1. We have $B=P^{-1} A P$, then $\operatorname{det}(B)=\operatorname{det}\left(P^{-1} A P\right)=\operatorname{det}(A)$
4. $P_{B}(\lambda)=\operatorname{det}\left(B-\lambda I_{n}\right)=\operatorname{det}\left(P^{-1} A P-P^{-1} \lambda P\right)=\operatorname{det}\left[P^{-1}\left(A-\lambda I_{n}\right) P\right]=$ $\operatorname{det}\left(P^{-1}\right) \times \operatorname{det}\left(A-\lambda I_{n}\right) \times \operatorname{det}(P)$

1.1.6 Definition 6. Digonalizable

Let A be an $n \times n$ matrix. Then A is said to be diagonalizable if there exists an invetible matrix P such that

$$
P^{-1} A P=D
$$

where D is a diagonal matrix.

Proposition. Let λ_{1} and λ_{2} be two distinct eigenvalues $\left(\lambda_{1} \neq \lambda_{2}\right)$ of A, then

$$
E\left(\lambda_{1}\right) \cap E\left(\lambda_{2}\right)=\{0\}
$$

Proof. If $V \in E\left(\lambda_{1}\right) \cap E\left(\lambda_{2}\right)$, then $A V=\lambda_{1} V=\lambda_{2} V$ i.e. $\left(\lambda_{1}-\lambda_{2}\right) V=0$.
Since $\lambda_{1} \neq \lambda_{2}$, then we have $V=0$

1.1.7 Definition 7. Diagonalization

A square $n \times n$ matrix A is diagonalizable if A is similar to a diagonal matrix, i.e.

$$
A=P D P^{-1}
$$

for a diagonal matrix D and an invertible matrix P.

Proposition. Let A be an $n \times n$ matrix. We suppose that $P(\lambda)$ have k distinct roots $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$. If $E=E\left(\lambda_{1}\right) \oplus E\left(\lambda_{2}\right) \oplus \ldots \oplus E\left(\lambda_{k}\right)$, then A is diagonalizable.

Proof. For $i=1,2, \ldots, k$, we choose the basis B_{i} of $E\left(\lambda_{i}\right)$. The basis $B^{\prime}=\cup_{i=1}^{i=k} B_{i}$ of E consists of the eigenvectors of A associated with the eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$, then the matrix $D=\mathbb{M}_{B^{\prime}}(f)$ is diagonal.

Examples Find the characteristic polynomial, eigenvalues and eigenvectors of the matrices:

1. $A=\left[\begin{array}{cc}3 & 5 \\ 1 & -1\end{array}\right]$
2. $A=\left[\begin{array}{lll}1 & 2 & -3 \\ 1 & 4 & -5 \\ 0 & 2 & -2\end{array}\right]$

Solution.

1. $P(\lambda)=(\lambda-4)(\lambda+2)$
$\lambda_{1}=-2$ and $\lambda_{2}=4$
$V_{1}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ and $V_{2}=\left[\begin{array}{l}5 \\ 1\end{array}\right]$
2. $P(\lambda)=-\lambda(\lambda-1)(\lambda-2)$
$\lambda_{1}=0, \lambda_{2}=4$ and $\lambda_{3}=2$

$$
V_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], V_{2}=\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right] \text { and } V_{3}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]
$$

1.2 Sufficient condition for a matrix to be diagonalizable

Proposition. An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.
Proof. We have $P(\lambda)=\left(-1^{n}\right)\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right) \ldots\left(\lambda-\lambda_{n}\right)$, where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} n$ distinct eigenvalues of A and $V_{1}, V_{2}, \ldots, V_{n}$ the n eigenvectors associated with λ_{i}.
$A V_{1}=\lambda_{1} V_{1}$
$A V_{2}=\lambda_{2} V_{2}$
$A V_{n}=\lambda_{n} V_{n}$
We can prove that $B^{\prime}=\left(V_{1}, V_{2}, \ldots, V_{n}\right)$ is a basis of E by induction:
We prove that the set $\left(V_{1}, V_{2}, V_{3}, \ldots, V_{k+1}\right)$ is linearly independent of E.

$$
\begin{equation*}
\alpha_{1} V_{1}+\alpha_{2} V_{2}+\ldots+\alpha_{k} V_{k}+\alpha_{k+1} V_{k+1}=0 \tag{1}
\end{equation*}
$$

We have $A\left(\alpha_{1} V_{1}+\alpha_{2} V_{2}+\ldots+\alpha_{k} V_{k}+\alpha_{k+1} V_{k+1}\right)=0$, then $\alpha_{1} A V_{1}+\alpha_{2} A V_{2}+\ldots+\alpha_{k} A V_{k}+\alpha_{k+1} A V_{k+1}=0$

$$
\begin{equation*}
\alpha_{1} \lambda_{1} V_{1}+\alpha_{2} \lambda_{2} V_{2}+\ldots+\alpha_{k} \lambda_{k} V_{k}+\alpha_{k+1} \lambda_{k+1} V_{k+1} \tag{2}
\end{equation*}
$$

From (2) $-\lambda_{k+1}(1)$:
$\left(\lambda_{1}-\lambda_{k+1}\right) \alpha_{1} V_{1}+\left(\lambda_{2}-\lambda_{k+1}\right) \alpha_{2} V_{2}+\ldots+\left(\lambda_{k}-\lambda_{k+1}\right) \alpha_{k} V_{k}=0$
Since the set $\left(V_{1}, V_{2}, \ldots, V_{k}\right)$ is linearly independent of E by induction hypothesis, then $\left(\lambda_{1}-\lambda_{k+1}\right) \alpha_{1}=\left(\lambda_{2}-\lambda_{k+1}\right) \alpha_{2}=\ldots=\left(\lambda_{k}-\lambda_{k+1}\right) \alpha_{k}=0$ (because λ_{k} are distinct).
Therefore $\alpha_{1}=\alpha_{2}=\ldots=\alpha_{k}=0$
By (1) we have $\alpha_{k+1} V_{k+1}=0$, then $\alpha_{k+1}=0$

1.3 Necessary and sufficient condition for diagonalizability

Proposition 1. Let A be an $n \times n$ matrix, then

$$
\operatorname{dim}\left(E\left(\lambda_{1}\right)\right) \leq m_{1}
$$

where λ_{1} is an eigenvalue of A multiplicity m_{1}.
Proof. Let $\left(e_{1}, e_{2}, \ldots, e_{r}\right)$ the basis of $E\left(\lambda_{1}\right)$, then we can find the basis $B=\left(e_{1}, e_{2}, \ldots, e_{r}, e_{r+1}, \ldots, e_{n}\right)$ of E.
The matrix A is similar of the matrix A^{\prime} of the form

$$
\begin{aligned}
& A^{\prime}=\left(\begin{array}{llll|l}
\lambda_{1} & & & & \\
& \lambda_{1} & & & A_{1} \\
& & \ddots & & \\
\hline & & & \lambda_{1} & \\
\hline & & 0 & & A_{2}
\end{array}\right) \\
& P(\lambda)=\operatorname{det}\left(A-\lambda I_{n}\right)=\left[\begin{array}{cccc|c}
\lambda_{1}-\lambda & & & & \\
& \lambda_{1}-\lambda & & & A_{1} \\
& & \ddots & & \\
& & & \lambda_{1}-\lambda & \\
\hline & 0 & & & A_{2}-\lambda I_{n-r}
\end{array}\right] \\
& =\left(\lambda_{1}-\lambda\right)^{r} \operatorname{det}\left(A_{2}-\lambda I_{n-r}\right)
\end{aligned}
$$

Then $m \geq r$, where $r=\operatorname{dim} E\left(\lambda_{1}\right)$
Proposition 2. Let A be an $n \times n$ matrix. Then A is diagonalizable if and only if:

1. $P(\lambda)$ is factored.
2. For each eigenvalue λ_{i} of $A, \operatorname{dim}\left(E\left(\lambda_{i}\right)\right.$ is equal to the multiplicity of λ_{i} i.e.

$$
\operatorname{dim} E\left(\lambda_{i}\right)=m_{i}, i=1, \ldots, k
$$

Proof. By induction, the sub-spaces $E\left(\lambda_{i}\right), i=1, \ldots, j$, verify

$$
E=E\left(\lambda_{1}\right) \oplus E\left(\lambda_{2}\right) \oplus \ldots \oplus E\left(\lambda_{k}\right)
$$

for $j=1, \ldots, k$
Denote $S_{j}=E\left(\lambda_{1}\right) \oplus E\left(\lambda_{2}\right) \oplus \ldots \oplus E\left(\lambda_{j}\right)$
It is sufficient to demonstrate that $S_{j} \cap E\left(\lambda_{j+1}\right)=\{0\}$
Let $V \in S_{j} \cap E\left(\lambda_{j+1}\right)$, then

$$
\left\{\begin{array}{l}
V=V_{1}+V_{2}+\ldots+V_{j} \tag{3}\\
\text { and } \\
A V=\lambda_{j+1} V
\end{array}\right.
$$

For (3), we have $A V=A V_{1}+A V_{2}+\ldots+A V_{j}$, then

$$
\begin{equation*}
\lambda_{j+1} V=\lambda_{1} V_{1}+\lambda_{2} V_{2}+\ldots+\lambda_{j} V_{j} \tag{4}
\end{equation*}
$$

For (4) $-\lambda_{j+1}(3)$, we have

$$
0=\left(\lambda_{1}-\lambda_{j+1}\right) V_{1}+\left(\lambda_{2}-\lambda_{j+1}\right) V_{2}+\ldots+\left(\lambda_{j}-\lambda_{j+1}\right) V_{j}
$$

Using induction hypothesis, we get $V_{1}=V_{2}=\ldots=V_{j}=0$
Since $\sum_{i=1}^{n} \operatorname{dim} E\left(\lambda_{i}\right)=\sum_{i=1}^{n} m_{i}=n$, we see that $E=\oplus_{i=1}^{k} E\left(\lambda_{i}\right)$. Then A is diagonalizable and we write:

$$
D=\left[\begin{array}{llllllllll}
\lambda_{1} & & & & & & & & & \\
& \ddots & & & & & & & & \\
& & \lambda_{1} & & & & & & & \\
& & & \lambda_{2} & & & & & & \\
& & & & \ddots & & & & & \\
& & & & & \lambda_{2} & & & & \\
& & & & & & \ddots & & & \\
& & & & & & & \lambda_{k} & & \\
& & & & & & & & \ddots & \\
& & & & & & & & & \lambda_{k}
\end{array}\right]
$$

Examples.

1. $A=\left[\begin{array}{ccc}0 & 1 & -1 \\ -1 & 2 & -1 \\ -1 & 1 & 0\end{array}\right]$
$P(\lambda)=-\lambda(\lambda-1)^{2}$
$P(\lambda)=0 \Rightarrow\left\{\begin{array}{l}\lambda_{1}=0, m_{1}=1 \\ \lambda_{2}=1, m_{2}=2\end{array}\right.$
$E\left(\lambda_{1}\right)=E(0)=<V_{1}>$, where $V_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and $\operatorname{dim} E\left(\lambda_{1}\right)=1=m_{1}$
$E\left(\lambda_{2}\right)=E(1)=<V_{2}, V_{3}>$, where $V_{2}=\left[\begin{array}{l}1 \\ 3 \\ 2\end{array}\right], V_{3}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$ and $\operatorname{dim} E\left(\lambda_{2}\right)=1=$

$$
m_{2}=2 .
$$

Then the matrix A is diagonalizable.
2. $A=\left[\begin{array}{lll}1 & 2 & -3 \\ 2 & 5 & -7 \\ 1 & 3 & -4\end{array}\right]$
$P(\lambda)=-\lambda(\lambda-1)^{2}$
$P(\lambda)=0 \Rightarrow\left\{\begin{array}{l}\lambda_{1}=0, m_{1}=1 \\ \lambda_{2}=1, m_{2}=2\end{array}\right.$
$E\left(\lambda_{1}\right)=E(0)=<V_{1}>$, where $V_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and $\operatorname{dim} E\left(\lambda_{1}\right)=1=m_{1}$
$E\left(\lambda_{2}\right)=E(1)=<V_{2}>$, where $V_{2}=\left[\begin{array}{l}1 \\ 3 \\ 2\end{array}\right]$ and $\operatorname{dim} E\left(\lambda_{2}\right)=1 \neq m_{2}=2$
Then the matrix A isn't diagonalizable.

2 Chapter 2: Triangulability of matrices

Example 1. Consider the matrix $A=\left[\begin{array}{lll}1 & 2 & -3 \\ 2 & 5 & -7 \\ 1 & 3 & -4\end{array}\right]$, then $P(\lambda)=-\lambda(\lambda-1)^{2}$
$P(\lambda)=0 \Rightarrow\left\{\begin{array}{l}\lambda_{1}=0, m_{1}=1 \\ \lambda_{2}=1, m_{2}=2\end{array}\right.$
$E\left(\lambda_{1}\right)=E(0)=<V_{1}>$, where $V_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and $\operatorname{dim} E\left(\lambda_{1}\right)=1=m_{1}$
$E\left(\lambda_{2}\right)=E(1)=<V_{2}>$, where $V_{2}=\left[\begin{array}{l}1 \\ 3 \\ 2\end{array}\right]$ and $\operatorname{dim} E\left(\lambda_{2}\right)=1 \neq m_{2}=2$
Then the matrix A isn't diagonalizable.

What to do if matrix A is not diagonalizable?
Therefore, we use triangulation:

2.1 Proposition

Let $f: E \rightarrow F$ a linear map and A the matrix of f, we suppose the characteristic polynomial $P(\lambda)$ of f (or A) is factored in $K[\lambda]$. Then $f($ or A) is triangulable.

Proof. By induction over dimE : the result is true for the space of dimension 1. Suppose they are true for spaces of dimension $\leq n-1$ and let E be a space of dimension n.
Let $P(\lambda)=\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right) \ldots\left(\lambda-\lambda_{n}\right)$ in $K[\lambda],(K=\mathbb{R}$ or $\mathbb{C})$.
We suppose that the eigenvalues λ_{i} are not necessarily distinct. We denote V_{1}, an eigenvector associated with λ_{1} (i.e $f\left(V_{1}\right)=\lambda_{1} V_{1}$).
By the incomplete basis theorem, there exists a basis B^{\prime} of E where $B^{\prime}=\left(V_{1}, e_{2}, e_{3}, \ldots, e_{n}\right)$ then the matrix A^{\prime} has the form
$A^{\prime}=M_{B^{\prime}}(f)=\left[\begin{array}{cccccc}\lambda_{1} & a_{12} & \cdot & \cdot & \cdot & a_{1 n} \\ 0 & a_{22} & & & \cdot \\ 0 & \cdot & & & \cdot \\ \cdot & \cdot & & & \cdot \\ \cdot & \cdot & & & \cdot \\ 0 & a_{n 2} & \cdot & \cdot & \cdot & \cdot \\ n n\end{array}\right]$

The family $B_{1}=\left(e_{2}, \ldots, e_{n}\right)$ is a basis of the subspace $F=<e_{2}, \ldots, e_{n}>$ of E. We denote $g: F \rightarrow F$, the linear map such that the associated matrix is
$A_{1}=\left[\begin{array}{ccccc}a_{12} & \cdot & \cdot & a_{1 n} \\ \cdot & & & \cdot \\ \cdot & & & \cdot \\ \cdot & & & \cdot \\ a_{n 2} & \cdot & \cdot & \cdot & a_{n n}\end{array}\right]=M_{B_{1}}(g)$
Then $P(\lambda)=\left(\lambda_{1}-\lambda\right) \times \operatorname{det}\left(A_{1}-\lambda I_{n-1}\right)$
i.e. $P(\lambda)$ is factored and since $\operatorname{dim} F=n-1$, by induction hypothesis, there exists a basis $B_{2}=\left(V_{2}, \ldots, V_{n}\right)$ of F such that $M_{B_{2}}(g)$ is upper triangular. We get
$M_{B^{\prime}=\left(V_{1}, V_{2}, \ldots, V_{n}\right)}(f)=\left[\begin{array}{cccccc}\left.\begin{array}{|lllll}\lambda_{1} & a_{12} & \cdot & \cdot & \cdot \\ & \lambda_{2} & \cdot & \cdot & \cdot \\ 1 n \\ & & & \cdot & \cdot \\ & & & \cdot & \cdot \\ & & & & \lambda_{n}\end{array}\right]\end{array}\right.$

Remark.

1/ If A is triangulable, the diagonal of the matrix $T=M_{B^{\prime}}(f)$ are the eigenvalues of A.
2/ All matrix of $A \in M_{n}(\mathbb{C})$ is triangulable.

Corollary.

$\operatorname{tr}(A)=\sum_{i} \lambda_{i}$
$\operatorname{det}(A)=\prod_{i} \lambda_{i}$

Remark.

We can triangulate the matrix A of Example 1.
We consider the basis B^{\prime} of E where $\left\{\begin{array}{l}V_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=e_{1}+e_{2}+e_{3} \\ V_{2}=\left[\begin{array}{l}1 \\ 3 \\ 2\end{array}\right]=e_{1}+3 e_{2}+2 e_{3} \\ V_{3}=e_{1}\end{array}\right.$
Because $\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & 3 & 0 \\ 1 & 2 & 0\end{array}\right|=2-3=-1 \neq 0$

And $\left\{\begin{array}{l}e_{1}=V_{3} \\ e_{2}=-2 V_{1}+V_{2}+V_{3} \\ e_{3}=3 V_{1}-V_{2}-2 V_{3}\end{array}\right.$
Then $T=M_{B^{\prime}}(f)=\left[\begin{array}{ccc}0 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]=P^{-1} A P$
Where $\left\{\begin{array}{l}f\left(V_{1}\right)=\lambda_{1} V_{1}=0 \\ f\left(V_{2}\right)=\lambda_{2} V_{2}=V_{2} \\ f\left(V_{3}\right)=f\left(e_{1}\right)=e_{1}+2 e_{2}+e_{3}=-V_{1}+V_{2}+V_{3}\end{array}\right.$
Finally, $T=\left[\begin{array}{ccc}0 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$ is the upper triangular matrix,
$P=\left(V_{1} V_{2} V_{3}\right)=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 3 & 0 \\ 1 & 2 & 0\end{array}\right]$ and $P^{-1}=\left(e_{1} e_{2} e_{3}\right)=\left[\begin{array}{ccc}0 & -2 & 3 \\ 0 & 1 & -1 \\ 1 & 1 & -2\end{array}\right]$

2.2 Annihilating polynomials

Let E a vector space over K and $R \in K[\lambda]$
$R(\lambda)=a_{n} \lambda^{n}+a_{n-1} \lambda^{n-1}+\ldots+a_{2} \lambda_{2}+a_{1} \lambda^{1}+a_{0} \lambda^{0}$
If $f \in E n d_{K}(E)$, we denote $R(f)$, the linear map of E defined by
$R(f)=a_{n} f^{n}+a_{n-1} f^{n-1}+\ldots+a_{2} f^{2}+a_{1} f^{1}+a_{0} i d$
or $R(A)$ the matrix
$R(A)=a_{2} A^{n}+a_{n-1} A^{n-1}+\ldots+a_{2} A^{2}+a_{1} A^{1}+a_{0} I_{n}$
Where $f^{k}=\underbrace{f \circ f \circ \ldots \circ f}_{\mathrm{k} \text { times }}$

Remark.

We have $P(f) \circ Q(f)=Q(f) \circ P(f)$.

2.2.1 Definition.

Let $f \in \operatorname{End}_{K}(E)$, the polynomial $R \in K[\lambda]$ is called annihilating polynomial of f (or A), if

$$
R(f)=0
$$

or

$$
R(A)=0
$$

2.3 Cayley-Hamilton theorem

Let $f \in \operatorname{End}_{k}(E)$ and $P(\lambda)$ the characteristic polynomial of $f($ or $A)$.
Then

$$
P(f)=0
$$

(or $P(A)=0$). i.e $P(\lambda)$ annihilates f (or A).
Proof. We suppose $K=\mathbb{C}$, in this case f (or A) is triangulable.
Let $B^{\prime}=\left(V_{1}, V_{2}, . ., V_{n}\right)$, a basis of E such that
$M_{B^{\prime}}(f)=\left(\begin{array}{cccccc}\lambda_{1} & a_{12} & \cdot & \cdot & \cdot & a_{1 n} \\ & \lambda_{2} & a_{23} & \cdot & \cdot & a_{2 n} \\ & & \cdot & & & \cdot \\ & & & & \cdot & \cdot \\ & & & & \lambda_{n}\end{array}\right)=T$ is an upper triangular matrix
We have $f\left(V_{1}\right)=\lambda_{1} V_{1} \Rightarrow\left(\lambda_{1} i d-f\right)\left(V_{1}\right)=0$ and
$P(\lambda)=\operatorname{det}\left(T-\lambda I_{n}\right)=\left(\lambda_{1}-\lambda\right)\left(\lambda_{2}-\lambda\right) \ldots\left(\lambda_{n}-\lambda\right)$
Then $P(f)=\left(\lambda_{1} i d-f\right) \circ \ldots \circ\left(\lambda_{n} i d-f\right)$ and
$P(f)\left(V_{1}\right)=\left(\lambda_{2} i d-f\right) \circ \ldots \circ\left(\lambda_{n} i d-f\right) \circ\left(\lambda_{1} i d-f\right)\left(V_{1}\right)=0$. Therefore, $P(f)\left(V_{1}\right)=$ 0
$P(f)\left(V_{2}\right)=\left(\lambda_{3} i d-f\right) \circ \ldots \circ\left(\lambda_{n} i d-f\right) \circ\left(\lambda_{1} i d-f\right) \circ\left(\lambda_{2} i d-f\right)\left(V_{2}\right)=\left(\lambda_{3} i d-\right.$
$f) \circ \ldots \circ\left(\lambda_{n} i d-f\right) 0\left(\lambda_{1} i d-f\right)\left(-a_{12} V_{1}\right)=0$. Therefore, $P(f)\left(V_{2}\right)=0$
We can similarly show that $P(f)\left(V_{3}\right)=0$
By induction, we find $P(f)\left(V_{i}\right)=0, \forall i=1, \ldots, n$. Finally, $P(f)=0$.

Example.

$A=\left[\begin{array}{ccc}4 & 1 & -1 \\ -6 & -1 & 2 \\ 6 & 1 & 1\end{array}\right]$
$P(\lambda)=\operatorname{det}\left(A-\lambda I_{3}\right)=(2-\lambda)(1-\lambda)^{2}=-\lambda^{3}+4 \lambda^{2}-5 \lambda+2$
Since $\operatorname{det}(A)=P(0)=2 \neq 0, A$ is invertible.
By the Cayley-Hamilton theorem, we have $P(A)=0$
i.e $-A^{3}+4 A^{2}-5 A+2 I_{3}=0$. Then $-A^{3}+4 A^{2}-5 A=-2 I_{3} \Rightarrow$ $A\left[-A^{2}+4 A-5 I_{3}\right]=-2 I_{3} \Rightarrow A\left[\frac{1}{2} A^{2}-2 A+\frac{5}{2} I_{3}\right]=I_{3}$
Therefore,

$$
A^{-1}=\frac{1}{2} A^{2}-2 A+\frac{5}{2} I_{3}
$$

2.4 Proposition

Let $S(\lambda)$ a annihilating polynomial of $f[S(f)=0]$.
All eigenvalue λ_{1} of $f($ of $A)$ is a root of $S(\lambda)\left[S\left(\lambda_{1}\right)=0\right]$.
Proof. If λ_{1} is a V.P, $f(V)=\lambda_{1} V$
or $S(\lambda)=a_{n} \lambda^{n}+a_{n-1} \lambda^{n-1}+\ldots+a_{1} \lambda+a_{0}$
$S(f)=a_{n} f^{n}+a_{n-1} f^{n-1}+\ldots+a_{1} f+a_{0} i d=0$
Therefore $a_{n} f^{n}(V)+a_{n-1} f^{n-1}(V)+\ldots+a_{1} \underbrace{f(V)}_{\lambda V}+a_{0} i d(V)=0$
$\Rightarrow a_{n} \lambda^{n} V+a_{n-1} \lambda^{n-1} V+\ldots+a_{1} \lambda V+a_{0} V=0$
$\underbrace{\left(a_{n} \lambda_{1}^{n}+a_{n-1} \lambda_{1}^{n-1}+\ldots+a_{1} \lambda_{1}+a_{0}\right)}_{S\left(\lambda_{1}\right)} V=0$.
Consequently, $[V \neq 0] \Rightarrow S\left(\lambda_{1}\right)=0$
i.e λ is a root of $S(\lambda)$.

2.5 Proposition

Let $f \in \operatorname{End}(E)$ and $P(\lambda)$ the characteristic polynomial of f i.e

$$
P(\lambda)=(-1)^{n}\left(\lambda-\lambda_{1}\right)^{m_{1}}\left(\lambda-\lambda_{2}\right)^{m_{2}} \ldots\left(\lambda-\lambda_{p}\right)^{m_{p}}
$$

If f is diagonalizable, then the polynomial $Q(\lambda)=\left(\lambda-\lambda_{1}\right) \ldots\left(\lambda-\lambda_{p}\right)$ annihilates $f[Q(f)=0]$.

Proof. If f is diagonalizable, there exists a basis $B^{\prime}=\left(V_{1}, V_{2}, \ldots, V_{n}\right)$ formed of eigenvectors.
Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$ be the eigenvalues of A. For all $V_{i} \in B^{\prime} i=\overline{1, n}$, there exists $\lambda_{i} 1 \leq j \leq p$, such that $f\left(V_{1}\right)=\lambda_{j} V_{i}$
i.e $\left(f-\lambda_{j} i d\right)\left(V_{i}=0\right)$
$Q(f)=\left(f-\lambda_{1} i d\right) \circ\left(f-\lambda_{2} i d\right) \circ \ldots \circ\left(f-\lambda_{p} i d\right)$
$Q(f)\left(V_{i}\right)=\left[\left(f-\lambda_{1} i d\right) \circ\left(f-\lambda_{2} i d\right) \circ \ldots \circ\left(f-\lambda_{p} i d\right)\right]\left(V_{i}\right)=\left(f-\lambda_{1} i d\right) \circ \ldots \circ$ $\underbrace{\left(f-\lambda_{j} i d\right)\left(V_{i}\right)}_{0}=0$

2.6 Minimal polynomial

2.6.1 Definition.

We call the minimal polynomial of f (or of A) denoted $Q(f)$ (or $Q(A)$), the normalized annihilating polynomial of f (or of A) of the smallest degree.

$$
Q(f)=0 \text { or } Q(A)=0
$$

Remark. If $S(\lambda)$ is a multiple of $Q(\lambda)$, then

$$
\begin{gathered}
S(\lambda)=Q(\lambda) \times T(\lambda) \\
S(f)=Q(f) \circ T(f)=0
\end{gathered}
$$

i.e $S(\lambda)$ is an annihilating polynomial.

Proposition 1.

The annihilating polynomials of f are the polynomials of the type:

$$
S(\lambda)=Q(\lambda) \times T(\lambda)
$$

Then $S(\lambda)=Q(\lambda) \times T(\lambda)+R(\lambda)$
$S(f)=R(f)=0 \quad R(f)=0$
i.e R is annihilating and since $d^{\circ} R(\lambda)<d^{\circ} Q(\lambda)$. This contradicts the hypothesis that $Q(\lambda)$ is a minimal polynomial. Then $R(\lambda)=0$.

Remark.

$Q(\lambda) / P(\lambda)$ or $P(\lambda)=Q(\lambda) \times T(\lambda])$

Proposition 2.

The roots of $Q(\lambda)$ are exactly the roots of $P(\lambda)$, i.e the eigenvalues but with a different multiplicity

If

$$
P(\lambda)=(-1)^{n}\left(\lambda-\lambda_{1}\right)^{m_{1}}\left(\lambda-\lambda_{2}\right)^{m_{2}} \ldots\left(\lambda-\lambda_{p}\right)^{m_{p}} \quad \lambda_{i} \neq \lambda_{j}
$$

Then

$$
Q(\lambda)=\left(\lambda-\lambda_{1}\right)^{\alpha_{1}}\left(\lambda-\lambda_{2}\right)^{\alpha_{2}} \ldots\left(\lambda-\lambda_{p}\right)^{\alpha_{p}}
$$

with $1 \leq \alpha_{i} \leq m_{i}, i=1, \ldots, p$
Proof. We know that $P(\lambda)=Q(\lambda) T(\lambda)$, then if λ is a root of $Q(\lambda)$, then it is a root of $P(\lambda)$.
Conversely, let λ a root of $P(\lambda)$ i.e λ is an eigenvalue of A, then λ is a root of $Q(\lambda)$ because $Q(\lambda)$ annihilates A.

2.6.2 Theorem 1.

The minimal polynomial and characteristic polynomial of f (or A) share the same roots, except for multiplicities.

Examples.

- $A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 0 & 2 \\ 1 & 2 & 0\end{array}\right]$

We have $P(\lambda)=-(\lambda+1)(\lambda+2)(\lambda-3)$, then $Q(\lambda)=(\lambda+1)(\lambda+2)(\lambda-3)$

- $A=\left[\begin{array}{ccc}-1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1\end{array}\right]$

We have $P(\lambda)=-(\lambda-1)(\lambda+2)^{2}$, then there exists two possibilities:

$$
\begin{gathered}
Q(\lambda)=(\lambda-1)(\lambda+2) \\
Q(\lambda)=(\lambda-1)(\lambda+2)^{2}
\end{gathered}
$$

2.6.3 Theorem 2.

An endomorphism f (or A) is diagonalizable if and only if the minimal polynomial of f (or A) is factored and has all its simple roots.
i.e

$$
Q(\lambda)=\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right) \ldots\left(\lambda-\lambda_{m}\right)
$$

Examples.

- $A=\left[\begin{array}{ccc}-1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1\end{array}\right]$

We saw that $Q(\lambda)=(\lambda+2)(\lambda-1)$, then A is diagonalizable.

- $A=\left[\begin{array}{ccc}3 & 2 & -2 \\ -1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$

We have $P(\lambda)=-(\lambda-1)^{3}$, then $Q(\lambda)=\lambda-1$ or $(\lambda-1)^{2}$ or $(\lambda-1)^{3}$
If $Q(\lambda)=\lambda-1, Q(A)=0$ or $Q(A)=A-I_{3}=\left[\begin{array}{ccc}2 & 2 & -2 \\ -1 & -1 & 1 \\ 1 & 1 & -1\end{array}\right] \neq 0$
then A is not diagonalizable.

- $A=\left[\begin{array}{ccc}3 & -1 & 1 \\ 2 & 0 & 1 \\ 1 & -1 & 2\end{array}\right]$

We have $P(\lambda)=-(\lambda-1)(\lambda-2)^{2}$, then $Q(\lambda)=(\lambda-1)(\lambda-2)$ or $Q(\lambda)=(\lambda-1)(\lambda-2)^{2}$
If $Q(\lambda)=(\lambda-1)(\lambda-2)$, then
$Q(A)=\left(A-I_{3}\right)\left(A-2 I_{3}\right)=\left[\begin{array}{lll}2 & -1 & 1 \\ 2 & -1 & 1 \\ 1 & -1 & 1\end{array}\right]\left[\begin{array}{lll}1 & -1 & 1 \\ 2 & -2 & 1 \\ 1 & -1 & 0\end{array}\right]=\left[\begin{array}{lll}1 & . & . \\ . & . & . \\ . & . & .\end{array}\right] \neq 0$
Then A is not diagonalizable.

2.7 Kernel decomposition theorem

1. We suppose there exists $P \in K[\lambda]$ of the form $P=S \times T$ with $S, T \in K[\lambda]$ relatively prime, such that $P(f)=0$. Then $E=\operatorname{ker} S(f) \oplus \operatorname{ker} T(f)$.
2. We suppose there exists $P \in K[\lambda]$ of the form $P=P_{1} \times P_{2} \times \ldots \times P_{k}$ with $P_{1}, P_{2}, \ldots, P_{k} \in K[\lambda]$ relatively prime pairwise, such that $P(f)=0$. Then, $E=\operatorname{ker} P_{1}(f) \oplus \ldots \oplus \operatorname{ker} P_{k}(f)$.

Proof.

1. We prove that $\operatorname{ker} S(f) \cap \operatorname{ker} T(f)=\{0\}$

Let $v \in \operatorname{ker} S(f) \cap \operatorname{ker} T(f)$
$S(f)(v)=0$ and $T(f)(v)=0$
Or $P(\lambda)=S(\lambda) \times T(\lambda) \Rightarrow P(f)=S(f) \circ T(f)$, since $S(\lambda) \wedge T(\lambda)=1$.
Using Besout theorem, $\exists S_{1}(\lambda), T_{1}(\lambda)$ such that $S_{1}(\lambda) \times S(\lambda)+T_{1}(\lambda) \times T(\lambda)=1$
Therefore, $S_{1}(f) \circ S(f)+T_{1}(f) \circ T(f)=i d$ and
$v=i d(v)=S_{1}(f)[\underbrace{S(f)(v)}_{0}]+T_{1}(f)[\underbrace{T(f)(v)}_{0}]$. Then $v=0$.
Let $v \in E$
$v=i d(v)=\underbrace{S_{1}(f) \circ S(f)(v)}_{V_{2} \in \operatorname{ker} T(f)}+\underbrace{T_{1}(f) \circ T(f)(v)}_{V_{1} \in \operatorname{ker} S(f)}$
$v_{1} \in \operatorname{ker} S(f)$
i.e $S(f)\left(v_{1}\right)=S(f)\left[T_{1}(f) \circ T(f)(v)\right]=T_{1}(f) \circ \underbrace{S(f) \circ T(f)}_{P(f)=0}(v)=0$.

Similarly for v_{2}, we obtain $v_{2} \in \operatorname{ker} T(f)$
i.e $v=v_{1}+v_{2}$

2.7.1 Proposition

An endomorphism f (or A) is diagonalizable if and only if the minimal polynomial of f (or A) is factored and has all its simple roots.

Proof. If f is diagonalizable $\Rightarrow Q(\lambda)=\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right) \ldots\left(\lambda-\lambda_{p}\right)$ If $Q(\lambda)=\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right) \ldots\left(\lambda-\lambda_{p}\right)$
$Q(\lambda)=P_{1} \times P_{2} \times \ldots P_{p}$ with $P_{i}=\lambda-\lambda_{i} \in K[\lambda], i=1, \ldots, p$ relatively prime pairwise, such that $Q(f)=0$
Then $E=\operatorname{ker} P_{1}(f) \oplus \ldots \oplus \operatorname{ker} P_{p}(f)=\operatorname{ker}\left(f-\lambda_{1} i d\right) \oplus \ldots \oplus \operatorname{ker}\left(f-\lambda_{p} i d\right)=$ $E\left(\lambda_{1}\right) \oplus E\left(\lambda_{2}\right) \oplus \ldots \oplus E_{\lambda_{p}}$.
i.e E is the direct sum of the eigenspace $E\left(\lambda_{i}\right), i=1, \ldots, p$. Then f (or A) is diagonalizable.

2.8 Applications

- Compute the power of the matrix

Let A be an $n \times n$ matrix.
Method 1. Using the formula $A=P D P^{-1}$
We suppose A is diagonalizable, then $D=P^{-1} A P$, i.e $A=P D P^{-1}$, then

$$
A^{k}=\left(P D P^{-1}\right)\left(P D P^{-1}\right) \ldots\left(P D P^{-1}\right)=P D^{k} P^{-1}
$$

Or $D=\left[\begin{array}{lll}\lambda_{1} & & 0 \\ & \ddots & \\ 0 & & \lambda_{n}\end{array}\right], D^{k}=\left[\begin{array}{lll}\lambda_{1}^{n} & & 0 \\ & \ddots & \\ 0 & & \lambda_{n}^{k}\end{array}\right]$
and it's easy to compute A^{k} using the following formula $A^{k}=P\left[\begin{array}{lll}\lambda_{1}^{n} & & 0 \\ & \ddots & \\ 0 & & \lambda_{n}^{k}\end{array}\right] P^{-1}$

$$
A^{n}=P D^{n} P^{-1}
$$

Method 2. Using the minimal polynomial $Q(\lambda)$ $\lambda^{n}=Q(\lambda) \times S(\lambda)+R(\lambda)$. Then $A^{n}=R(A)$

Example.

Let $A=\left[\begin{array}{cc}1 & -1 \\ 2 & 4\end{array}\right]$
We have $P(\lambda)=(\lambda-2)(\lambda-3)$
$E\left(\lambda_{1}\right)=E(2)=<V_{1}>$, where $V_{1}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$
$E\left(\lambda_{2}\right)=E(3)=\left[\begin{array}{c}1 \\ -2\end{array}\right]$
Therefore, $P=\left[\begin{array}{cc}1 & 1 \\ -1 & -2\end{array}\right]$ and $P^{-1}=\left[\begin{array}{cc}-2 & 1 \\ -1 & -1\end{array}\right]$
We obtain $A^{k}=\left[\begin{array}{cc}2^{k+1}-3^{k} & 2^{k+1}-2.3^{k} \\ -2^{k}+3^{k} & -2^{k}+2.3^{k}\end{array}\right]$

- Solving a system of recurrence relations

Let's illustrate this with an example. This involves determining two sequences $\left(u_{n}\right), v_{n}$ such that:

$$
\text { (1) }\left\{\begin{array} { l }
{ u _ { n + 1 } = u _ { n } - v _ { n } } \\
{ v _ { n + 1 } = 2 u _ { n } + 4 v _ { n } }
\end{array} \quad \text { and such that } \left\{\begin{array}{l}
u_{0}=2 \\
v_{0}=1
\end{array}\right.\right.
$$

We put $X_{n}=\left[\begin{array}{l}u_{n} \\ v_{n}\end{array}\right]$. We can write the system (1):

$$
X_{n+1}=A X_{n} \text { with } A=\left[\begin{array}{cc}
1 & -1 \\
2 & 4
\end{array}\right]
$$

Hence, by induction

$$
X_{n}=A^{n} X_{0} \text { with } X_{0}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

We have $\left[\begin{array}{l}u_{n} \\ v_{n}\end{array}\right]=A^{k}=\left[\begin{array}{cc}2^{k+1}-3^{k} & 2^{k+1}-2.3^{k} \\ -2^{k}+3^{k} & -2^{k}+2.3^{k}\end{array}\right]=\left[\begin{array}{l}2 \\ 1\end{array}\right]$
Finally,

$$
\left\{\begin{array}{l}
u_{n}=3.2^{n+1}-4.3^{n} \\
v_{n}=-3.2^{n}+4.3^{n}
\end{array}\right.
$$

- Solving a first-order linear differential system

Let the system $X^{\prime}=A X$, where $X=\left[\begin{array}{c}x_{1}(t) \\ x_{2}(t) \\ \vdots \\ x_{n}(t)\end{array}\right], X^{\prime}=\left[\begin{array}{c}x_{1}^{\prime}(t) \\ x_{2}^{\prime}(t) \\ \vdots \\ x_{n}^{\prime}(t)\end{array}\right]$

Example.

(I) $\left\{\begin{array}{l}x_{1}^{\prime}=x_{1}+2 x_{2}+-3 x_{3} \\ x_{2}^{\prime}=x_{1}+4 x_{2}-5 x_{3} \\ x_{3}^{\prime}=2 x_{2}-2 x_{3}\end{array}\right.$

3 Chapter 3: Nilpotent and exponential matrix

3.1 Nilpotent Matrix

3.1.1 Definition

A nilpotent matrix is a square matrix, there exists an integer m such that

$$
N^{m}=0
$$

The integer m is called the nilpotency index. It is the smallest integer such that $N^{m}=0$.

Examples.

(a) $A=\left[\begin{array}{ll}2 & -4 \\ 1 & -2\end{array}\right]$

The matrix is nilpotent because by squaring matrix A we get the zero matrix as a result:

$$
A^{2}=\left[\begin{array}{ll}
2 & -4 \\
1 & -2
\end{array}\right] \cdot\left[\begin{array}{ll}
2 & -4 \\
1 & -2
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

(b) $B=\left[\begin{array}{ccc}1 & -2 & 1 \\ 3 & 0 & 3 \\ -1 & 2 & -1\end{array}\right]$

Although when raising the matrix to 2 we do not obtain the null matrix:

$$
B^{2}=\left[\begin{array}{ccc}
1 & -2 & 1 \\
3 & 0 & 3 \\
-1 & 2 & -1
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & -2 & 1 \\
3 & 0 & 3 \\
-1 & 2 & -1
\end{array}\right]=\left[\begin{array}{ccc}
-6 & 0 & -6 \\
0 & 0 & 0 \\
6 & 0 & 6
\end{array}\right]
$$

When calculating the cube of the matrix we do not get the matrix with all the elements equal to zero:

$$
\left[\begin{array}{ccc}
-6 & 0 & -6 \\
0 & 0 & 0 \\
6 & 0 & 6
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & -2 & 1 \\
3 & 0 & 3 \\
-1 & 2 & -1
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

So matrix B is a nilpotent matrix, and since the null matrix is obtained with the third power, its nilpotency index is 3 .

3.2 Exponential of a matrix

3.2.1 Definition

If A is a constant $n \times n$ matrix, the matrix exponential $e^{A t}$ is given by:

$$
e^{A t}=I+A t+A^{2} \frac{t^{2}}{2!}+\ldots+A^{n} \frac{t^{n}}{n!}+\ldots
$$

where the right-hand side indicates the $n \times n$ matrix whose elements are power series with coefficients given by the entries in the matrices.

Example. The exponential is easiest to compute when A is diagonal. For the matrix $A=\left[\begin{array}{cc}-1 & 0 \\ 0 & 2\end{array}\right]$, we calculate

$$
A^{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 4
\end{array}\right], A^{3}=\left[\begin{array}{cc}
-1 & 0 \\
0 & 8
\end{array}\right], \ldots, A^{n}=\left[\begin{array}{cc}
(-1)^{n} & 0 \\
0 & 2^{n}
\end{array}\right]
$$

Then we get

$$
e^{A t}=\sum_{n=0}^{\infty} A^{n} \frac{t^{n}}{n!}=\left[\begin{array}{cc}
\sum_{n=0}^{\infty}(-1)^{n} \frac{t^{n}}{n!} & 0 \\
0 & \sum_{n=0}^{\infty} 2^{n} \frac{t^{n}}{n!}
\end{array}\right]=\left[\begin{array}{cc}
e^{-t} & 0 \\
0 & e^{2 t}
\end{array}\right]
$$

Remark. In general, if A is an $n \times n$ matrix with entries $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$, then $e^{A t}$ is the diagonal matrix with entries $e^{\lambda_{1} t}, e^{\lambda_{2} t}, \ldots, e^{\lambda_{n} t}$ on the main diagonal.

3.2.2 Theorem 1.

Let A and B be $n \times n$ constant matrices, and $r, s, t \in \mathbb{R}$. Then
(a) $e^{A 0}=e^{0}=I$
(b) $e^{A(t+s)}=e^{A t} e^{A s}$
(c) $\left(e^{A t}\right)^{-1}=e^{-A t}$
(d) $e^{(A+B)^{t}}=e^{A t} e^{B t}$ if $A B=B A$
(e) $e^{r I t}=e^{r t} I$

3.2.3 Theorem 2.

If A is an $n \times n$ constant matrix, then the columns of the matrix exponential $e^{A t}$ form of a fundamental solution set for the system $x^{\prime}(t)=A x(t)$. Therefore, $e^{A t}$ is a fundamental matrix for the system, and a general solution is $x(t)=c e^{A t}$.

3.3 Exponential of a nilpotent matrix

If A is nilpotent of index m, i.e $A^{m}=0$, then

$$
e^{A t}=I+A t+\ldots+A^{m-1} \frac{t^{k-1}}{(k-1)!}
$$

Example. Find the fundamental matrix $e^{A t}$ for the system $x^{\prime}=A x$, where

$$
\left[\begin{array}{ccc}
2 & 1 & 1 \\
1 & 2 & 1 \\
-2 & -2 & -1
\end{array}\right]
$$

Solution. We find the polynomial of A

$$
p(r)=|A-r I|=\left|\begin{array}{ccc}
2-r & 1 & 1 \\
1 & 2-r & 1 \\
-2 & -2 & -1-r
\end{array}\right|=-(r-1)^{3}
$$

Therefore, $r=1$ is the only eigenvalue of A, so $(A-I)^{3}=0$ and

$$
\begin{equation*}
e^{A t}=e^{t} e^{(A-I) t} e^{t}\left\{I+(A-I) t+(A-I)^{2} \frac{t^{2}}{2}\right\} . \tag{1}
\end{equation*}
$$

We calculate

$$
A-I=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
-2 & -2 & -2
\end{array}\right] \text { and }(A-I)^{2}=0
$$

Substitution into (1) gives us

$$
e^{A t}=e^{t} I+t e^{t}(A-I)=\left[\begin{array}{ccc}
e^{t}+t e^{t} & t e^{t} & t e^{t} \\
t e^{t} & e^{t}+t e^{t} & t e^{t} \\
-2 t e^{t} & -2 t e^{t} & e^{t}-2 t e^{t}
\end{array}\right]
$$

