Chapter $\mathrm{N}^{\circ} 3$: Limits, Continuous Functions and Derivatives

0.1 Concept of function

To specify a function f you must

1. give a rule which tells you how to compute the value $f(x)$ of the function for a given real number x, and,
2. say for which real numbers x the rule may be applied.

The set of numbers for which a function is defined is called its domain. The set of all possible numbers $f(x)$ as x runs over the domain is called the range or image of the function.

Definition $1 A$ real function f is function from a subset D of \mathbb{R} to \mathbb{R}

Definition 2 (Arithmetic and function) Let f and g two functions defined on $D \subset \mathbb{R}$

1. the sum $: f+g: D \rightarrow \mathbb{R},(f+g)(x)=f(x)+g(x)$,
2. the product $: f . g: D \rightarrow \mathbb{R},(f . g)(x)=f(x) . g(x)$,
3. the multiplies : $\lambda . g: D \rightarrow \mathbb{R},(\lambda . f)(x)=\lambda . f(x)$,

Definition 3 Let $f: D \rightarrow \mathbb{R}$ and $g: D \rightarrow \mathbb{R}$ tow functions. Then:
$-f \geq g$ si $\forall x \in D \quad f(x) \geq g(x)$;
$-f \geq 0$ si $\forall x \in D \quad f(x) \geq 0$;
$-f>0$ si $\forall x \in D \quad f(x)>0$;

- f constant on D if $\exists a \in \mathbb{R} \forall x \in D \quad f(x)=a$;
- f is zero on D if $\forall x \in D \quad f(x)=0$;

Definition 4 Let $f: D \rightarrow \mathbb{R}$ is function. We say that :

- f is bounded from above over D if $\exists M \in \mathbb{R} \forall x \in D \quad f(x) \leq M$;
- f is bounded from below D if $\exists m \in \mathbb{R} \forall x \in D \quad f(x) \geq m$;
- f is bounded over D lf $\exists M \in \mathbb{R} \forall x \in D \quad|f(x)| \leq M$.

Definition 5 Let $f: D \rightarrow \mathbb{R}$ is function. We say that :

- f is increasing on D if $\forall x, y \in D, x \leq y \Rightarrow f(x) \leq f(y)$;
- f is strictly increasing on D if $\forall x, y \in D, x<y \Rightarrow f(x)<f(y)$;
- f is decreasing on D si $\forall x, y \in D, x \leq y \Rightarrow f(x) \geq f(y)$;
- f is strictly decreasing on D if $\forall x, y \in D, x<y \Rightarrow f(x)>f(y)$;
- f is monotone (resp. strictly monotone) on D if f is increasing or decreasing (resp. strictly increasing or strictly decreasing) on D.

Definition 6 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function, and T is a real number, $T>0$. The function f is periodic with period T if $\forall x \mathbb{R}, \quad f(x+T)=f(x)$.

0.2 Limit and Continuity of Real Functions

Definition 7 (limit) Let $f: I \rightarrow \mathbb{R}$ is a real function. Let $x_{0} \in \mathbb{R}$ is point of I
Let $l \in \mathbb{R}$. We sa that f for a limit l at x_{0} if

$$
\forall \epsilon>0 \quad \exists \delta>0 \quad \forall x \in I\left|x-x_{0}\right|<\delta \Rightarrow|f(x)-l|<\epsilon
$$

it is also said that $f(x)$ tends to l as x tends x_{0}. And $\lim _{x \rightarrow x_{0}} f(x)=l$.

0.2.1 Limits and inequalities.

- If there is some neighborhood of a such that $f(x) \leq g(x)$, and the limits of f and g exist at a, then

$$
\lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow a} g(x) .
$$

- If the limits of f and g exist at a, and

$$
\lim _{x \rightarrow a} f(x)<\lim _{x \rightarrow a} g(x),
$$

then in some neighborhood of a $f(x)<g(x)$.

- Squeeze theorem : If in some neighborhood of $a f(x)<g(x)<h(x)$, and the limits of f and h exist at a, and

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x),
$$

then the limit of g also exists at a , and

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=\lim _{x \rightarrow a} h(x)
$$

- 0 times bounded is 0 . If $\lim _{x \rightarrow a} f(x)=0$, and $g(x)$ is bounded, then

$$
\lim _{x \rightarrow a} f(x) g(x)=0 .
$$

Definition 8 The function f is continuous at a if and only if there exists the limit of the function at a and the limit is $f(a)$. Or

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

In logical symbolism,

$$
\forall \epsilon>0, \exists \delta>0, \forall x \in D_{f}:|x-a|<\delta \Rightarrow|f(x)-f(a)|<\epsilon .
$$

For example :
$\lim _{x \rightarrow 4} \frac{1}{x}=\frac{1}{4}$ by definition we can choose $\delta=12 \epsilon$ so that f continuous at 4.
f is continuous on D_{f}, if its continuous at every point in D_{f}.
If f is not continuous at a we say that f is discontinuous at a or that a is a point of discontinuity of f.

Remark 9 - Polynomials function is continuous on \mathbb{R}

- Constant function is continuous on the interval.
- Functions cos, \sin are continuous on \mathbb{R}
- \ln is continuous on $] 0,+\infty[$
- Exponential function is continuous on \mathbb{R}

However the integer part function is not continuous at every point $a \in \mathbb{Z}$ because does not limit at these points. But is $a \in \mathbb{R} / \mathbb{Z}$ is continuous at a.

Corollary $10-A$ function f is continuous from right at a if and only if there exists its righthand side limit at a and it is $f(a)$.

- A function f is continuous from left at a if and only if there exists its left-hand side limit at a and it is $f(a)$.

For example : signum function is not continuous at 0

$$
\lim _{x \rightarrow 0^{+}} \operatorname{sgn}(x)=1, \quad \lim _{x \rightarrow 0^{+}} \operatorname{sgn}(x)=-1
$$

Definition 11 A function f is uniformly continuous on a set D if for every $\epsilon>0$, there exists $\delta>0$, such that $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|<\epsilon$ for all $x_{1}, x_{2} \in D_{f}$, and $\left|x_{1}-x_{2}\right|<\delta$.

More briefly

$$
\forall \epsilon>0, \exists \delta>0, \forall x_{1}, x_{2} \in D_{f}:\left|x_{1}-x_{2}\right|<\delta \Rightarrow\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|<\epsilon
$$

For example : $f: x \mapsto x^{2}$ uniformly continuous on $[0,1]$.

0.2.2 Continuous functions in interval.

Theorem 12 Weierstrass theorem : If a function is continuous in a bounded and closed interval, then the function has maximum and minimum value.

Theorem 13 Intermediate value theorem: If the function $f(x)$ is continuous in the bounded and closed $[a, b]$ interval, then every value y between $f(a)$ and $f(b)$ is attained c in $[a, b]$, such that $y=f(c)$

In logical symbolism this theorem has the following expression :

$$
f \in \mathcal{C}([a, b]), \text { and } f(a) \cdot f(b)<0 \Rightarrow \exists c \in] a, b[, \text { such that } f(c)=0
$$

Exercise 1 : Let $f:[0,1] \rightarrow[0,1]$ continuous function. Prove that f has at least fixed point.
Theorem 14 Inverse of a continuous function: If a function is continuous and invertible in a bounded and closed interval, then the range of the function is a closed interval, and in this interval the inverse function is continuous.

0.3 Differential Calculus

Definition 15 Let f be a function which is defined on some interval I and a be some number in the interval. The derivative of the function f at a is the value of the limit

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=f^{\prime}(a)
$$

- f is said to be differentiable at a if this limit exists.
- f is called differentiable on the interval I, if it is differentiable at ever point a in I

Other notation : one can substitute $x-a=h$ then

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=f^{\prime}(a)
$$

The function f has a tangent line at point a if and only if f is differentiable at a. The equation of the tangent line is

$$
y=f^{\prime}(a)(x-a)+f(a)
$$

If $f(x)$ is differentiable at a, then the function is continuous at a. The converse of the theorem is not true :
for example, $f(x)=|x|$ is continuous at 0 , but not differentiable at 0 !

0.3.1 Derivative rules.

If f and g are differentiable at a, then

- for any $c \in \mathbb{R} f$ is differentiable at a, and

$$
(c . f)^{\prime}(a)=c f^{\prime}(a)
$$

- $f+g$ is differentiable at a, and

$$
(f+g)^{\prime}(a)=f^{\prime}(a)+g^{\prime}(a) .
$$

- $f . g$ is differentiable at a, and

$$
(f . g)^{\prime}(a)=f^{\prime}(a) \cdot g(a)+f(a) \cdot g^{\prime}(a)
$$

- If $g(a) \neq 0$, then $\frac{f}{g}$ differentiable at a and

$$
\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime}(a) \cdot g(a)+f(a) \cdot g^{\prime}(a)}{g^{2}(x)}
$$

Definition 16 Chain rule. If g is differentiable at a, and f is differentiable at $g(a)$, then $f \circ g$ is differentiable at a, and

$$
(f \circ g)^{\prime}(a)=g^{\prime}(a) f^{\prime}(g(a)) .
$$

Definition 17 Derivative of the inverse function. If f is continuous and has an inverse in a neighbourhood of the point a, and it is differentiable at a, and $f^{\prime}(a) \neq 0$, then f^{-1} is differentiable at $f(a)$, and

$$
\left(f^{-1}\right)^{\prime}(f(a))=\frac{1}{f(a)}
$$

0.3.1.1 Derivatives of usual functions

The table on the left is a summary of the main formulas to know, x is a variable. The table in the right is that of the compositions, $u: x \mapsto u(x)$

Function	Derivative	Function	Derivative
x^{n}	$n x^{n-1} n \in \mathbb{Z}$	u^{n}	$n u^{\prime} u^{n-1} n \in \mathbb{Z}$
$\frac{1}{x}$	$-\frac{1}{x^{2}}$	$\frac{1}{u}$	$-\frac{u^{\prime}}{y^{2}}$
\sqrt{x}	$\frac{1}{2 \sqrt{x}}$	\sqrt{u}	$\frac{u^{\prime}}{2 \sqrt{u}}$
x^{α}	$\alpha x^{\alpha-1} \alpha \in \mathbb{R}$	u^{α}	$\alpha u^{\prime} u^{\alpha-1} \alpha \in \mathbb{R}$
e^{x}	e^{x}	e^{u}	$u^{\prime} e^{u}$
$\ln x$	$\frac{1}{x}$	$\ln u$	$-\frac{u^{\prime}}{u}$
$\cos x$	$-\sin x$	$\cos u$	$-u^{\prime} \sin u$
$\sin x$	$\cos x$	$\sin u$	$u^{\prime} \cos u$
$\tan x$	$\frac{1}{\cos ^{2} x}=1+\tan ^{2} x$	$\tan u$	$\frac{u^{\prime}}{\cos ^{2} u}=u^{\prime}\left(1+\tan ^{2} u\right)$

Theorem 18 Rolle's theorem. If f is continuous on a closed interval $[a, b]$, and differentiable on the open interval $] a, b[$, and $f(a)=f(b)$, then there exists a $c \in] a, b\left[\right.$ such that $f^{\prime}(c)=0$.

Theorem 19 Mean value theorem. If f is continuous on the closed interval $[a, b]$, and differentiable on the open interval $] a, b[$, then there exists a $c \in] a, b[$ such that

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)
$$

Therefore, for any function that is continuous on $[a, b]$, and differentiable on $] a ; b[$, there exists $c \in] a, b[$ such that the secant joining the endpoints of the interval $[a, b]$ is parallel to the tangent at c.

0.3.2 Relationship between monotonicity and derivative.

Let $f(x)$ be continuous on $[a ; b]$, and differentiable on $] a, b[$,.

- $f(x)$ is monotonically increasing on $[a, b]$ if and only if for all $x \in] a, b\left[, f^{\prime}(x) \geq 0\right.$.
- If for all $x \in] a, b\left[, f^{\prime}(x)>0\right.$ then $f(x)$ is strictly monotonically increasing on $[a, b]$.

The converse of the statement is not true, for example $f(x)=x^{3}$ is strictly monotonically increasing, but $f^{\prime}(0)=0$.

- $f(x)$ is monotonically decreasing on $[a, b]$ if and only if for all $x \in] a, b\left[, f^{\prime}(x) \leq 0\right.$.
- If for all $x \in] a, b\left[, f^{\prime}(x)<0\right.$ then $f(x)$ is strictly monotonically decreasing on $[a, b]$.

Theorem 20 L'Hospital's rule. Let's assume that f and g are differentiable in a punctured neighbourhood of a, f and g have limits at a, and either both limits are 0 or both limits are ∞, that is, the limit of the quotient of the two function is critical. In this case if there exists the limit $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$, then also exists the limit $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$, and

$$
\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow a} \frac{f(x)}{g(x)}
$$

This theorem is also valid for one-sided limits or limits at infinity or minus infinity.
Exercise 2: Calculate the limits (Applying L'Hospital's theorem)

$$
\lim _{x \rightarrow 0} \frac{\ln (1+x)-x}{x^{2}}, \quad \lim _{x \rightarrow 0} \frac{e^{x^{2}}-\cos x}{x^{2}}
$$

Exercise 3 : Let f numerical function defined as follow

$$
f(x)=\left\{\begin{array}{lr}
\frac{\ln \left(2-e^{x}\right)}{x}, & x<0 \\
-1-x, & x \geq 0 .
\end{array}\right.
$$

- Study the continuity of f on \mathbb{R}.
- Study the differentiability of f on \mathbb{R}.
- f^{\prime} is continuous on \mathbb{R} ? (i.e $f \in \mathcal{C}^{1}(\mathbb{R})$)

0.4 Higher derivatives

Definition 21 Let f be a differentiable function, and let f^{\prime} be its derivative. The derivative of f^{\prime} (if it has one) is written $f^{\prime \prime}$ and is called the second derivative of f. Similarly, the derivative of the second derivative, if it exists, is written $f^{\prime \prime \prime}$ and is called the third derivative of f. Continuing this process, one can define, if it exists, the n-th derivative as the derivative of the (n - 1)-th derivative. These repeated derivatives are called higher-order derivatives. The n-th derivative is also called the derivative of order n (or n-th-order derivative : first, second, third-order derivative, ...) and denoted $f^{(n)}$.

For example : The higher derivatives of the function $f: x \mapsto f(x)=\ln (1+x)$ are :

$$
f^{\prime}(x)=\frac{1}{1+x}, \quad f^{\prime \prime}(x)=-\frac{1}{(1+x)^{2}}, \ldots, f^{(n)}(x)=\frac{(-1)^{n+1}(n-1)!}{(1+x)^{n}}
$$

The question : By induction show that $f^{(n)(x)}$ is true.
Generalizes the product rule (which is also known as Leibniz's rule). It f and g are n-times differentiable functions, then the product $f . g$ is also n -times differentiable and its n -th derivative given by

$$
(f . g)^{n}=f^{(n)} . g+C_{n}^{1} f^{(n-1)} g^{(1)}+\ldots+C_{n}^{k} f^{(n-k)} g^{(k)}+\ldots+f . g^{(n)}=\sum_{k=0}^{k=n} C_{n}^{k} f^{(n-k)} g^{(k)}
$$

Exercise 4 : Using Leibnitz formula; calculate the derivative $7-t h$ of the function $h(x)=x^{3} \cdot \ln x$

