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III- Dynamics 

1- Introduction 

1-1-Definition:  

Dynamics (kinetics) is the study of motion by taking into account the causes that generate it 

1-2-Inertial Frame of Reference (Galilean) 

In the case of relative motion, the reference frames have been defined as "𝓡", and "𝓡𝟏", one is 

assumed to be absolute (fixed), the other is mobile. But the question for "𝓡", it is fixed with 

respect to what? As a result, it is assumed that a frame of reference is fixed according to the 

problem under study where the laws of physics become simpler.  

The frame of reference in which an isolated (free) object maintains its state of motion(constant 

velocity) is a privileged reference frame called an inertial frame.  

1.3- Observation: 

- If a ball is dropped, from a height" 𝒉", into a smooth tank (frictionless), it goes down and up 

again at the same level " 𝒉" regardless of the slope. 

- If the second side of the bowl is flattened, then it has been lowered, the ball follows a 

horizontal path and continues its path with a uniform rectilinear movement. 

Result:  

An isolated ball follows a uniform straight path. 

2- Principle of inertia 

In an inertial frame of reference (Galilean), a free body (isolated or not subjected to any external 

forces), continues to move in a straight line at a constant speed (uniform rectilinear motion) if 

it was already in motion, if it is in rest, it remains at rest. 

Note: The principle of inertia brings us closer to the concept of force. 

𝒉 
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3- Mass and momentum 

     3.1- Mass 

      The greater the mass of a body, the more difficult to stop or move it. 

Mass is the amount of matter in a body that characterizes its ability to resisting 

the change of motion (velocity), it characterizes its inertia.   

     3.2- Momentum 

- For two bodies with the same velocity, it is easier to stop or move the one with the 

smaller mass. 

- For two bodies with the same mass, it is easier to stop or move the one with the lower 

velocity. 

3-2-1-Definition  

The product of a body's mass by its velocity defines the momentum denoted  "�⃗⃗� ". 

�⃗⃗� = 𝒎�⃗⃗�    [kg.m/s] 

Note: The principle of inertia can be stated as follows: 

           An isolated body of constant mass has a constant momentum. 

3-2-2-Momentum of a Particle System 

Let be an isolated system consisting  "𝒏" of particles of respective velocities " �⃗⃗� 𝟏, �⃗⃗� 𝟐, �⃗⃗� 𝟑, … , �⃗⃗� 𝒏". 

We define the center of mass "𝑮" whose vector position " �⃗� 𝑮" such that:  

�⃗� 𝑮 =
∑ 𝒎𝒊�⃗� 𝒊

𝒏
𝒊=𝟏

∑ 𝒎𝒊
𝒏
𝒊=𝟏

 

�⃗� 𝒊 : is the position vector for the 𝒊𝒕𝒉 particle of mass "𝒎𝒊" 

Then: 

𝒅�⃗� 𝑮
𝒅𝒕

= �⃗⃗� 𝑮 =
∑ 𝒎𝒊

𝒅�⃗� 𝒊
𝒅𝒕

𝒏
𝒊=𝟏

∑ 𝒎𝒊
𝒏
𝒊=𝟏

=
∑ 𝒎𝒊�⃗⃗� 𝒊

𝒏
𝒊=𝟏

∑ 𝒎𝒊
𝒏
𝒊=𝟏

 

∑ 𝒎𝒊
𝒏
𝒊=𝟏 = 𝑴    the total mass 

Then:       
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�⃗⃗� 𝑮 =
∑ �⃗⃗� 𝒊

𝒏
𝒊=𝟏

∑ 𝒎𝒊
𝒏
𝒊=𝟏

=
∑ �⃗⃗� 𝒊

𝒏
𝒊=𝟏

𝑴
      ⟹     

∑ 𝒎𝒊�⃗⃗� 𝒊
𝒏
𝒊=𝟏

∑ 𝒎𝒊
𝒏
𝒊=𝟏

= ∑ �⃗⃗� 𝒊
𝒏
𝒊=𝟏  

Hence: the momentum (linear momentum) of the system 

�⃗⃗� = 𝑴�⃗⃗� 𝑮 = �⃗⃗� 𝟏 + �⃗⃗� 𝟐 + �⃗⃗� 𝟑 + ⋯+ �⃗⃗� 𝒏 = ∑�⃗⃗� 𝒊

𝒏

𝒊=𝟏

 

The momentum of system of  "𝒏" particles  is the same as if all its mass were concentrated 

at its center of mass that whose velocity is �⃗⃗� 𝑮. 

 

3-2-3-Conservation of Momentum 

 a – Conservation of momentum 

 Let be a system consisting of two particles [(𝒎𝟏, �⃗⃗� 𝟏) ;(𝒎𝟐, �⃗⃗� 𝟐)] in interaction. Due to the 

change in their velocities, each of the particles follows a curvilinear path. 

- at the moment "𝒕 = 𝒕𝟎" the two particles are in position 𝑨𝟏 and  𝑨𝟐 

- at the moment "𝒕 = 𝒕𝟏" the two particles are in position 𝑩𝟏 and  𝑩𝟐 

 

The position vector of the center of mass of the system is: 

 

�⃗� 𝑮 =
∑ 𝒎𝒊�⃗� 𝒊

𝒏
𝒊=𝟏

∑ 𝒎𝒊
𝒏
𝒊=𝟏

=
𝒎𝟏�⃗� 𝟏 + 𝒎𝟐�⃗� 𝟐

𝒎𝟏 + 𝒎𝟐
 

The momentum is: 

- At  "𝒕 = 𝒕𝟎" :   �⃗⃗� = 𝒎𝟏�⃗⃗� 𝟏 + 𝒎𝟐�⃗⃗� 𝟐 

- At "𝒕 = 𝒕𝟏" :   𝑷′⃗⃗⃗⃗ = 𝒎𝟏𝒗′⃗⃗  ⃗
𝟏 + 𝒎𝟐𝒗′⃗⃗  ⃗

𝟐 

The velocity of the center of mass of the system is: 
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- At  "𝒕 = 𝒕𝟎" : 

�⃗⃗� 𝑮 =
𝒅�⃗� 𝑮
𝒅𝒕

=
∑ 𝒎𝒊

𝒅�⃗� 𝒊
𝒅𝒕

𝒏
𝒊=𝟏

∑ 𝒎𝒊
𝒏
𝒊=𝟏

=
𝒎𝟏�⃗⃗� 𝟏 + 𝒎𝟐�⃗⃗� 𝟐

𝒎𝟏 + 𝒎𝟐
 

- At "𝒕 = 𝒕𝟏" : 

 𝒗′⃗⃗  ⃗
𝑮 =

𝒅�⃗� 𝑮

𝒅𝒕
=

∑ 𝒎𝒊
𝒅𝒓′⃗⃗⃗⃗ 𝒊
𝒅𝒕

𝒏
𝒊=𝟏

∑ 𝒎𝒊
𝒏
𝒊=𝟏

=
𝒎𝟏𝒗

′⃗⃗⃗⃗ 
𝟏+𝒎𝟐𝒗

′⃗⃗⃗⃗ 
𝟐

𝒎𝟏+𝒎𝟐
 

 

Since the system is isolated, the center of 

mass moves at a constant speed. 

�⃗⃗� 𝑮 = 𝒗′⃗⃗  ⃗
𝑮 

- At "𝒕 = 𝒕𝟎" :  �⃗⃗� = 𝑴�⃗⃗� 𝑮  

- At "𝒕 = 𝒕𝟏" : 𝑷′⃗⃗⃗⃗ = 𝑴𝒗′⃗⃗⃗⃗ 
𝑮 

�⃗⃗� 𝑮 = 𝒗′⃗⃗  ⃗
𝑮           ⟹           

𝒎𝟏�⃗⃗� 𝟏+𝒎𝟐�⃗⃗� 𝟐

𝒎𝟏+𝒎𝟐
=

𝒎𝟏𝒗
′⃗⃗⃗⃗ 
𝟏+𝒎𝟐𝒗

′⃗⃗⃗⃗ 
𝟐

𝒎𝟏+𝒎𝟐
  

 

 𝒎𝟏�⃗⃗� 𝟏 + 𝒎𝟐�⃗⃗� 𝟐 =  𝑴�⃗⃗� 𝑮 = 𝒎𝟏𝒗
′⃗⃗  ⃗
𝟏 + 𝒎𝟐𝒗

′⃗⃗  ⃗
𝟐 = 𝑴𝒗′⃗⃗  ⃗

𝑮      

⟹      �⃗⃗� = 𝑷′⃗⃗⃗⃗  

 

b - Equality of changes in momentum 

Let be two magnetic disks linked by a string and thrown on a blower table which 

constitutes an isolated system.  

 

 

 

 

 

 

�⃗� 𝟏 

�⃗� 𝟐 

𝒋  𝒊  

�⃗⃗�  

𝑨𝟐 

𝑩𝟐 

𝑨𝟏 

𝑩𝟏 

𝓒𝟏 

�⃗⃗� 𝟐 

�⃗⃗� 𝟏 

𝒎𝟐 

𝒎𝟏 

�⃗⃗� 𝟏
′  

�⃗⃗� 𝟐
′  

𝓒𝟐 

1 2 3 4 
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𝑷′′⃗⃗⃗⃗  ⃗ 

𝑷𝟐
′′⃗⃗⃗⃗  ⃗ 

-   1 Position before burning the string 

         The system is isolated, and the disks are still linked. 

-   2 Position where the string is burned: 

         The system is isolated and the disks begin to repel each other. 

-   3 Position after the string is burned: 

         The system is still isolated, but the disks become non-isolated and repel each other 

(interact) and change their velocities. 

-   4 Position after a moment of disk separation: 

        The system is still isolated, but the disks become free again and continue in a 

straight path.                     

  

 

 

 

 

 

 

Since the system is isolated, momentum is conserved, �⃗⃗� = 𝑷′⃗⃗⃗⃗ = 𝑷′′⃗⃗⃗⃗  ⃗  

but for the disks constituting this system are interacting, which changes their momentum 

𝑷𝟏
⃗⃗⃗⃗  ⃗ and �⃗⃗� 𝟐. 

Since:                �⃗⃗� = 𝑷′⃗⃗⃗⃗      ⟹        �⃗⃗� 𝟏 + �⃗⃗� 𝟐 = 𝑷′⃗⃗⃗⃗ 
𝟏 + 𝑷′⃗⃗⃗⃗ 

𝟐     

                                     ⟹         𝑷′⃗⃗⃗⃗ 
𝟏 − �⃗⃗� 𝟏 = �⃗⃗� 𝟐 − 𝑷′⃗⃗⃗⃗ 

𝟐 

The change in momentum is: 

∆�⃗⃗� = 𝑷′⃗⃗⃗⃗ − �⃗⃗�  

⟹      ∆�⃗⃗� 𝟏 = 𝑷′⃗⃗⃗⃗ 
𝟏 − �⃗⃗� 𝟏   and   ∆�⃗⃗� 𝟐 = 𝑷′⃗⃗⃗⃗ 

𝟐 − �⃗⃗� 𝟐 

                                       ⟹         ∆�⃗⃗� 𝟏 = −∆�⃗⃗� 𝟐 

𝑷𝟏
⃗⃗⃗⃗  ⃗ 𝑷𝟐

⃗⃗⃗⃗  ⃗ 
�⃗⃗�  

Before the string is burned 𝑷𝟐
′⃗⃗⃗⃗  ⃗ 

𝑷′⃗⃗⃗⃗  

𝑷𝟏
′⃗⃗⃗⃗  ⃗ 

�⃗⃗� 𝟏 

�⃗⃗� 𝟏
′  

∆�⃗⃗� 𝟏 

When the string is burned 

𝑷𝟏
′′⃗⃗⃗⃗  ⃗ 

�⃗⃗� 𝟐 

�⃗⃗� 𝟐
′  

∆�⃗⃗� 𝟐 

After the string is burned 
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i.e., the variations in momentum are equal and opposite 

4- Newton's Laws   

 4.1:  1st Law: Law of Inertia 

In an inertial frame of reference, the momentum of a free body is conserved, i.e., the 

body (system) is in uniform rectilinear motion or at rest depending on its initial state  

4.2: 2nd Law: Fundamental Principle of Dynamics 

This law is already mentioned, i.e., any change in velocity (or change in momentum) of 

an isolated (free) system is the result of an interaction that results in a force. 

The rate of change in momentum in an interval time produces the applied force. 

�⃗⃗� = ∑ �⃗⃗� 𝒊
𝒆𝒙 =

𝒊

∆�⃗⃗� 

∆𝒕
 

Where:    {
�⃗⃗� : 𝑁𝑒𝑡 𝑓𝑜𝑟𝑐𝑒               

�⃗⃗� : system momentun
 

 

In the limit case with an infinitesimal change:  

�⃗⃗� = 𝐥𝐢𝐦
∆𝒕→𝟎

(
∆�⃗⃗� 

∆𝒕
) =

𝒅�⃗⃗� 

𝒅𝒕
 

Note: In the case where the mass of the system is constant, the 2ndlaw becomes 

�⃗⃗� = ∑�⃗⃗� 𝒊
𝒆𝒙 =

𝒊

𝒅�⃗⃗� 

𝒅𝒕
=

𝒅(𝒎�⃗⃗� )

𝒅𝒕
=  𝒎

𝒅�⃗⃗� 

𝒅𝒕
 

⟹         �⃗⃗� = 𝒎�⃗⃗�  

 4.3: 3rd Law:  Law of Reciprocity (Action and Reaction Law) 

 As already pointed out, the momentum exchanging during the interaction between 

two particles in the system are the same but opposite. 
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�⃗⃗� = 𝑷′⃗⃗⃗⃗   ⟹    �⃗⃗� 𝟏 + �⃗⃗� 𝟐 = 𝑷′⃗⃗⃗⃗ 
𝟏 + 𝑷′⃗⃗⃗⃗ 

𝟐 

           ⟹    𝑷′⃗⃗⃗⃗ 
𝟏 − �⃗⃗� 𝟏 = �⃗⃗� 𝟐 − 𝑷′⃗⃗⃗⃗ 

𝟐    

  ⟹    ∆�⃗⃗� 𝟏 = −∆�⃗⃗� 𝟐 

If: 

 �⃗⃗� 𝟏𝟐: is the action of particle (1) on particle (2) 

�⃗⃗� 𝟐𝟏 : is the action of particle (2) on particle (1)   

So:     �⃗⃗� 𝟏𝟐 =
∆�⃗⃗� 𝟐

∆𝒕
and            �⃗⃗� 𝟐𝟏 =

∆�⃗⃗� 𝟏

∆𝒕
Since       ∆�⃗⃗� 𝟏 = −∆�⃗⃗� 𝟐 ⟹ 

at the limit:    ∆�⃗⃗� 𝟏 → 𝒅�⃗⃗� 𝟏   and     ∆�⃗⃗� 𝟐 → 𝒅�⃗⃗� 𝟐 

                    ⟹     �⃗⃗� 𝟏𝟐 =
𝒅�⃗⃗� 𝟐

𝒅𝒕
    and       �⃗⃗� 𝟐𝟏 =

𝒅�⃗⃗� 𝟏

𝒅𝒕
      

∆�⃗⃗� 𝟏 = −∆�⃗⃗� 𝟐  ⟹   𝒅�⃗⃗� 𝟏 = −𝒅�⃗⃗� 𝟐 

   ⟹    �⃗⃗� 𝟐𝟏 = −�⃗⃗� 𝟏𝟐 

 Result:  

If one body exerts an action on another, the latter reacts with an equal and opposite force 
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5- Some laws of force 

      According to the fundamental law of dynamics, we have:  

�⃗⃗� = 𝒎�⃗⃗� = 𝒎�⃗̈�   

Where:  �⃗⃗� = �⃗⃗�  (�⃗̇� , �⃗� , 𝒕) 

 5.1- Constant force 

In this case, the net force is: 

�⃗⃗� = �⃗⃗�  (�⃗̇� , �⃗� , 𝒕) = �⃗⃗� 𝟎 = 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕𝒆 

 �⃗⃗� = �⃗⃗�  (�⃗̇� , �⃗� , 𝒕) = �⃗⃗� 𝟎 = 𝒎�⃗̈�       ⟹    �⃗̈� =
�⃗⃗� 𝟎

𝒎
=

𝒅

𝒅𝒕
(
𝒅�⃗� 

𝒅𝒕
)    

 ⟹     𝒅(
𝒅�⃗� 

𝒅𝒕
) =

�⃗⃗� 𝟎

𝒎
𝒅𝒕            ⟹        ∫ 𝒅(�⃗̇� )

�⃗̇� 

�⃗̇� 𝟎
=

�⃗⃗� 𝟎

𝒎
∫ 𝒅𝒕

𝒕

𝒕𝟎
       

 ⟹    �⃗̇� − �⃗̇� 𝟎 =
�⃗⃗� 𝟎

𝒎
(𝒕 − 𝒕𝟎)      ⟹        �⃗̇� =

𝒅�⃗� 

𝒅𝒕
= �⃗̇� 𝟎 +

�⃗⃗� 𝟎

𝒎
(𝒕 − 𝒕𝟎) 

Finally:   

∫ 𝒅�⃗� 
�⃗� 

�⃗� 𝟎

= ∫ [�⃗̇� 𝟎 +
�⃗⃗� 𝟎
𝒎

(𝒕 − 𝒕𝟎)] 𝒅𝒕
𝒕

𝒕𝟎

 

                                          ⟹         �⃗� =
𝟏

𝟐

�⃗⃗� 𝟎

𝒎
(𝒕 − 𝒕𝟎)

𝟐 + �⃗̇� 𝟎(𝒕 − 𝒕𝟎) + �⃗� 𝟎 

It is the law of uniformly varied motion  

Example: Free Fall              �⃗⃗� 𝟎 = 𝒎�⃗⃗� ⟹ �⃗⃗� = �⃗⃗� = �⃗̈�  

                               ⟹    �⃗⃗� =
𝒅�⃗� 

𝒅𝒕
= �⃗⃗� 𝟎 + �⃗⃗� (𝒕 − 𝒕𝟎) 

                              ⟹     �⃗� =
𝟏

𝟐
�⃗⃗� (𝒕 − 𝒕𝟎)

𝟐 + �⃗⃗� 𝟎(𝒕 − 𝒕𝟎) + �⃗� 𝟎 

Since the motion is done in a straight line   

⟹     𝒓 =  
𝟏

𝟐
𝒂(𝒕 − 𝒕𝟎)

𝟐 + 𝒗𝟎(𝒕 − 𝒕𝟎) + 𝒉𝟎    
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     5.2- Time-dependent force 

               �⃗⃗�  (�⃗̇� , �⃗� , 𝒕) = �⃗⃗� (𝒕)    

             �⃗̈� =
�⃗⃗� (𝒕)

𝒎
=

𝒅

𝒅𝒕
(
𝒅�⃗� 

𝒅𝒕
)       ⟹     ∫ 𝒅(�⃗̇� )

�⃗̇� 

�⃗̇� 𝟎
=

𝟏

𝒎
∫ �⃗⃗� (𝒕)𝒅𝒕

𝒕

𝒕𝟎
 

      ⟹   �⃗̇� =
𝒅�⃗� 

𝒅𝒕
= �⃗̇� 𝟎 +

𝟏

𝒎
∫ �⃗⃗� (𝒕)𝒅𝒕

𝒕

𝒕𝟎
        ⟹   ∫ 𝒅�⃗� 

�⃗� 

�⃗� 𝟎
= ∫ [�⃗̇� 𝟎 +

𝟏

𝒎
∫ �⃗⃗� (𝒕)𝒅𝒕

𝒕

𝒕𝟎
] 𝒅𝒕

𝒕

𝒕𝟎
 

Finally:        �⃗� = ∫ [�⃗̇� 𝟎 +
𝟏

𝒎
∫ �⃗⃗� (𝒕)𝒅𝒕

𝒕

𝒕𝟎
] 𝒅𝒕

𝒕

𝒕𝟎
+ �⃗� 𝟎 

Example: Point Charge Q   in a Variable Electric Field  𝑬(𝒕) = 𝑬𝟎𝒔𝒊𝒏(𝝎𝒕). 

We know the force of an electric charge is:    𝑭 = 𝑸𝑬      

 𝑭 = 𝑸𝑬𝟎𝒔𝒊𝒏(𝝎𝒕) ⟹ 𝑭 = 𝒎𝒂 = 𝑸𝑬𝟎𝒔𝒊𝒏(𝝎𝒕) 

⟹     𝒂 =
𝑸𝑬𝟎𝒔𝒊𝒏(𝝎𝒕)

𝒎
 

𝒓 = ∫ [�̇�𝟎 + ∫
𝑸𝑬𝟎𝒔𝒊𝒏(𝝎𝒕)

𝒎

𝒕

𝟎

] 𝒅𝒕
𝒕

𝟎

+ 𝒓𝟎 = 𝒓𝟎 + 𝒗𝟎𝒕 +
𝑸𝑬𝟎

𝒎𝝎𝟐
(𝝎𝒕 − 𝒔𝒊𝒏𝝎𝒕) 

If we take the following initial conditions: 𝒕𝟎 = 𝟎 ; 𝒓𝟎 = 𝟎  ; 𝒗𝟎 = 𝟎  

𝒓 =
𝑸𝑬𝟎

𝒎𝝎𝟐
(𝝎𝒕 − 𝒔𝒊𝒏𝝎𝒕) 

 

     5.3- Velocity-dependent force 

�⃗⃗�  (�⃗̇� , �⃗� , 𝒕) = �⃗⃗� (�⃗̇� ) = �⃗⃗� (�⃗⃗� )   

⟹    �⃗̈� =
�⃗⃗� (�⃗⃗� )

𝒎
=

𝒅

𝒅𝒕
(�⃗⃗� )      

⟹   𝒅𝒕 = 𝒎
𝒅𝒗

𝑭(𝒗)
         ⟹  𝒕 − 𝒕𝟎 = ∫ 𝒎

𝒅𝒗

𝑭(𝒗)

𝒗

𝒗𝟎
              

⟹  𝒕 = 𝒕𝟎 + 𝒇(𝒗; 𝒗𝟎) 

   But:  

 𝒎𝒂 =
𝒎𝒅𝒗

𝒅𝒕
= 𝒎

𝒅𝒗

𝒅𝒓
.
𝒅𝒓

𝒅𝒕
= 𝒎𝒗

𝒅𝒗

𝒅𝒓
= 𝑭(𝒗)    
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           ⟹   𝒅𝒓 = 𝒎
𝒗𝒅𝒗

𝑭(𝒗)
 

            ⟹   ∫ 𝒅𝒓
𝒓

𝒓𝟎
= 𝒎∫

𝒗𝒅𝒗

𝑭(𝒗)

𝒗

𝒗𝟎
         ⟹         𝒓 = 𝒓𝟎 + 𝒎∫

𝒗𝒅𝒗

𝑭(𝒗)

𝒗

𝒗𝟎
 

 

Example: frictional force (air resistance) acting on a body in free fall: �⃗⃗� = −𝒌�⃗⃗�  

         ∑ �⃗⃗� 𝒆𝒙 = 𝒎�⃗⃗� + �⃗⃗�     ⟹    𝒎𝒈 − 𝒌𝒗 =
𝒎𝒅𝒗

𝒅𝒕
    

         ⟹    
𝒅𝒗

(𝒈−
𝒌

𝒎
𝒗)

= 𝒅𝒕    ⟹   ∫
𝒅𝒗

(𝒈−
𝒌

𝒎
𝒗)

= ∫𝒅𝒕     

If we take                

 𝒈 −
𝒌

𝒎
𝒗 = 𝒖 ⟹ −

𝒌

𝒎
𝒅𝒗 = 𝒅𝒖 

So 

∫
𝒅𝒖

𝒖
  = −

𝒎

𝒌
∫𝒅𝒕      ⟹          𝑳𝒏(𝒖) = −

𝒎

𝒌
𝒕 

 

If at  𝒕𝟎 = 𝟎,   𝒗𝟎 = 𝟎    ⟹   𝒗 = 𝜶(𝟏 − 𝒆−𝜷𝒕)𝜷 =
𝒎

𝒌
    

Where   𝜶 =
𝒎𝒈

𝒌
 

5.4- Position-dependent force 

�⃗⃗�  (�⃗̇� , �⃗� , 𝒕) = �⃗⃗� (�⃗� ) 

Generally, these types of forces are conservative, so they derive from a potential. 

𝑭 = −
𝒅𝑽

𝒅𝒓
 

Where 𝑽 : is a potential function (potential energy) 

𝑭 = −
𝒅𝑽

𝒅𝒓
= 𝒎𝒂 = 𝒎�̈�        ⟹              �⃗⃗� ∘ �⃗̇� = 𝒎�⃗̈� ∘ �⃗̇�     

                �⃗⃗� ∘
𝒅�⃗� 

𝒅𝒕
=

𝟏

𝟐

𝒅(𝒎�̇�𝟐)

𝒅𝒕
         

𝒎�⃗⃗�  

�⃗⃗�  

+ 
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  ⟹  ∫ �⃗⃗� ∘ 𝒅�⃗� 
𝒓

𝒓𝟎
= ∫ 𝒅(

𝟏

𝟐
𝒎�̇�𝟐)

�̇�

�̇�𝟎
= −∫ 𝒅𝑽

𝑽

𝑽𝟎
      

⟹    
𝟏

𝟐
(𝒎�̇�𝟐 − 𝒎�̇�𝟎

𝟐) = 𝑽(𝒓𝟎) − 𝑽(𝒓) 

⟹          
𝟏

𝟐
𝒎�̇�𝟐 + 𝑽(𝒓) =  

𝟏

𝟐
𝒎�̇�𝟎

𝟐 + 𝑽(𝒓𝟎) = 𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕 = 𝑬 

E: total energy (mechanical Energy) 

We have:                     

𝒅𝒓

𝒅𝒕
= �̇� = ∓√

𝟐

𝒎
√𝑬 − 𝑽(𝒓)            ⟹            𝒅𝒕 = ∓√

𝒎

𝟐
.

𝒅𝒓

√𝑬 − 𝑽(𝒓)
 

⟹         𝒕 − 𝒕𝟎 = ∓√
𝒎

𝟐
. ∫

𝒅𝒓

√𝑬−𝑽(𝒓)

𝒓

𝒓𝟎
 

      ⟹        𝒕 = 𝒕𝟎 ∓ √
𝒎

𝟐
. ∫

𝒅𝒓

√𝑬−𝑽(𝒓)

𝒓

𝒓𝟎
= 𝑻(𝒓) 

Time is a function of "𝒓", conversely, we can determine the function that describes 

the position of the mobile "𝒓 = 𝑹(𝒕)" 

 6- Angular momentum 

A particle of mass "𝒎" and velocity " �⃗⃗�  ", has momentum " �⃗⃗�  " and is subject to forces 

given by Newton's second law. 

�⃗⃗� = ∑ �⃗⃗� 𝒊
𝒆𝒙 =𝒊

𝒅�⃗⃗� 

𝒅𝒕
     

⟹   �⃗� ∧ �⃗⃗� = ∑ �⃗� ∧ �⃗⃗� 𝒊
𝒆𝒙 = ∑ �⃗⃗⃗⃗⃗� 

𝒊(�⃗⃗� 𝒊
𝒆𝒙)/𝒐𝒊𝒊 = �⃗� ∧

𝒅�⃗⃗� 

𝒅𝒕
 

If we add the quantity " 
𝒅�⃗� 

𝒅𝒕
∧ �⃗⃗� = 𝟎" that does not modify the previous expression in any 

way, we will have: 

∑�⃗⃗⃗⃗⃗� 
𝒊/𝒐

= �⃗� ∧
𝒅�⃗⃗� 

𝒅𝒕
𝒊

+
𝒅�⃗� 

𝒅𝒕
∧ �⃗⃗� =

𝒅(�⃗� ∧ �⃗⃗� )

𝒅𝒕
 

Quantity " �⃗� ∧ �⃗⃗�  " plays an important role in rotational motion than momentum in 

translation. This amount is called angular momentum. 
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 6.1- Definition 

 The angular momentum with respect to a point "O", denoted "�⃗⃗� 𝑶", of a particle of mass 

"𝒎" and velocity " �⃗⃗�  ", is the rotation that results from the effect of its momentum. 

�⃗⃗� 𝑶 = �⃗⃗⃗⃗⃗� (�⃗⃗� )/𝒐 = 𝑶𝑴⃗⃗⃗⃗⃗⃗  ⃗ ∧ �⃗⃗� = �⃗� ∧ �⃗⃗� . 

6.2- Relation between angular momentum and resultant forces (Newton's 

2nd Law) 

Newton's second law for a rotational motion of a body can be 

written as follows:  

�⃗⃗⃗⃗⃗� (�⃗⃗� )/𝒐 = ∑�⃗⃗⃗⃗⃗� 
𝒊/𝒐

𝒊

=
𝒅(�⃗� ∧ �⃗⃗� )

𝒅𝒕
=

𝒅�⃗⃗� 𝑶
𝒅𝒕

 

 

Example:  

The mass 𝒎𝟐, slides on frictionless table, driven by the sphere 𝒎𝟏, with the help of a 

non stretched wire passing through the groove of a pulley of radius 𝑹 and mass 𝑴 

distributed on its rim. 

Calculate  

1. The angular momentum with respect to an axis passing through the center of the  

    pulley. 

2. The acceleration of the masses 𝒎𝟏 and 𝒎𝟐 

 

• The angular momentum of 𝒎𝟐 : 

      𝑳𝟐 = |�⃗� 𝟐 ∧ 𝒎𝟐�⃗⃗� 𝟐| = 𝒎𝟐𝒗𝑹 

• The angular momentum of 𝒎𝟏 :  

       𝑳𝟏 = |�⃗� 𝟏 ∧ 𝒎𝟏�⃗⃗� 𝟏| = 𝒎𝟏𝒗𝑹 

• The angular momentum of 𝑴 : 

        𝑳𝟑 = |�⃗⃗� ∧ 𝑴�⃗⃗� | = 𝑴𝒗𝑹 

𝑶 

�⃗�  

𝒛 

𝒚 

𝒙 
�⃗⃗� = 𝒎�⃗⃗�  

𝒎𝟏�⃗⃗�  

�⃗⃗�  𝑴,𝑹 𝒎𝟐 

𝒎𝟐�⃗⃗�  

�⃗⃗�  

�⃗⃗� 𝟐 

�⃗⃗� 𝟏 
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Pulley mass distributed over the rim (periphery), so the angular momentum is: 

𝑳/∆ = 𝑳𝟏 + 𝑳𝟐 + 𝑳𝟑 

∑𝓜(�⃗⃗� )/∆
𝒊

=
𝒅𝑳/∆

𝒅𝒕
=

𝒅(𝑳𝟏 + 𝑳𝟐 + 𝑳𝟑)

𝒅𝒕
=

𝒅(𝒎𝟏𝒗𝑹 + 𝒎𝟐𝒗𝑹 + 𝑴𝒗𝑹)

𝒅𝒕
 

∑𝓜(�⃗⃗� )
/∆

𝒊

= 𝓜(𝒎𝟏�⃗⃗� 
⃗⃗ )

/∆
= 𝒎𝟏𝒈𝑹 = (𝒎𝟏 + 𝒎𝟐 + 𝑴)𝑹𝒂 

⟹        𝒂 =
𝒎𝟏𝒈

(𝒎𝟏+𝒎𝟐+𝑴 )
 

     6.3- Angular momentum of a rigid (non-deformable) body 

              6.3.1-Expression of angular momentum  

The rotation is about the axis 𝒐𝒛⃗⃗⃗⃗ , the point has 

the velocity 𝒎𝒊�⃗⃗� 𝒊 

- �⃗⃗� 𝒊/𝑶 = �⃗� 𝒊 ∧ �⃗⃗� 𝒊    

        But:  

             �⃗⃗� 𝒊 = �⃗⃗⃗� ∧ �⃗� 𝒊  and  �⃗⃗⃗� = 𝝎�⃗⃗�  

⟹       �⃗⃗� 𝒊/𝑶 = 𝒎𝒊�⃗� 𝒊 ∧ (�⃗⃗⃗� ∧ �⃗� 𝒊) = 𝒎𝒊�⃗� 𝒊 ∧ (𝝎�⃗⃗� ∧ �⃗� 𝒊) 

⟹       �⃗⃗� 𝒊/𝑶 = 𝒎𝒊𝒓𝒊
𝟐𝝎�⃗⃗�  

          𝑳𝒊/𝒐𝒛⃗⃗⃗⃗ 
= �⃗⃗� 𝒊/𝑶 ∘ �⃗⃗� = [�⃗� 𝒊 ∧ ( 𝒎𝒊�⃗⃗� 𝒊)] ∘ �⃗⃗�  

⟹      𝑳𝒊/𝒐𝒛⃗⃗⃗⃗ 
= 𝒎𝒊𝒓𝒊

𝟐𝝎�⃗⃗� ∘ �⃗⃗� = 𝒎𝒊𝒓𝒊
𝟐𝝎 

The angular momentum of a point  "𝒎𝒊" on the solid is  "𝑳𝒊" 

The total angular momentum with respect to a point "𝑂" is: 

�⃗⃗� 𝑶 = ∑𝒎𝒊𝒓𝒊
𝟐𝝎�⃗⃗� 

𝒊

 

and the total angular momentum with respect to the axis "𝑂𝑍⃗⃗⃗⃗  ⃗" is: 

𝒛 

𝒚 

𝒙 

�⃗⃗⃗�  

�⃗�  
�⃗⃗�  

𝒎𝒊 
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𝑳/𝒐𝒛⃗⃗⃗⃗ = 𝑳𝒛 = ∑𝑳𝒊/𝒐𝒛⃗⃗⃗⃗ 

𝒊

= ∑𝒎𝒊𝒓𝒊
𝟐𝝎

𝒊

 

The moment of inertia of a set of points that rotate about an axis is defined as follows: 

   𝑰 = ∑ 𝒎𝒊𝒓𝒊
𝟐

𝒊  

For a continuous solid, the moment of inertia is:   

𝑰 = ∫𝒓𝟐𝒅𝒎  

The angular momentum with respect to a point "𝑂" is: 

�⃗⃗� 𝑶 = (∑ 𝒎𝒊𝒓𝒊
𝟐

𝒊 ). �⃗⃗⃗� = 𝑰. �⃗⃗⃗�   

 

The angular momentum with respect to the axis ′′(𝒐𝒛⃗⃗⃗⃗ )′′ is: 

𝑳/𝒐𝒛⃗⃗⃗⃗ = 𝑳𝒛 = (∑ 𝒎𝒊𝒓𝒊
𝟐

𝒊 ).𝝎 = 𝑰.𝝎  

Newton's second law becomes: 

∑�⃗⃗⃗⃗⃗� 
𝒊/𝒐

𝒊

=
𝒅�⃗⃗� 𝑶
𝒅𝒕

=
𝒅(𝑰�⃗⃗⃗� )

𝒅𝒕
= 𝑰�⃗�  

with and: moment of inertia (constant)�⃗� =
𝒅�⃗⃗⃗� 

𝒅𝒕
𝑰  

This is Newton's law applied to rotational motion 

 

Example:  

On a swing, long of and of ′′𝒍′′mass, ′′𝑴′′two boys of masses,  𝒎𝟏 and, are distracting 

themselves. Calculate their angular acceleration 𝒎𝟐𝜺. 



15 

 

Knowing that the moments of inertia of the helm and the boys are: 

𝑰𝒃 =
𝑴𝒍𝟐

𝟏𝟐
        𝑰𝟏 = 𝒎𝟏 (

𝒍

𝟐
)
𝟐

       𝑰𝟐 = 𝒎𝟐 (
𝒍

𝟐
)
𝟐

 

The angular momentum is:  

�⃗⃗� 𝑶 = 𝑰�⃗⃗⃗� = (𝑰𝒃 + 𝑰𝟏 + 𝑰𝟐)�⃗⃗⃗�  

But         𝜽 = 𝝎𝒕  ⟹   �̇� =
𝒅𝜽

𝒅𝒕
= 𝝎    

and        𝜺 =
𝒅𝟐𝜽

𝒅𝒕𝟐
= �̇� 

So 

∑�⃗⃗⃗⃗⃗� 
𝒊/𝒐

𝒊

= �⃗⃗⃗⃗⃗� 
𝟏/𝒐

+ �⃗⃗⃗⃗⃗� 
𝟐/𝒐

=
𝒅�⃗⃗� 𝑶
𝒅𝒕

=
𝒅

𝒅𝒕
((𝑰𝒃 + 𝑰𝟏 + 𝑰𝟐)�⃗⃗⃗� ) 

= (𝑰𝒃 + 𝑰𝟏 + 𝑰𝟐)
𝒅�⃗⃗⃗� 

𝒅𝒕
= (𝑰𝒃 + 𝑰𝟏 + 𝑰𝟐). �⃗�  

          ⟹   (𝒎𝟏 − 𝒎𝟐)𝒈
𝒍

𝟐
𝒄𝒐𝒔𝜽 =

𝟏

𝟒
𝒍𝟐 (

𝑴

𝟑
+ 𝒎𝟏 + 𝒎𝟐) 𝜺 

⟹           𝜺 = �̈� =
𝟐.(𝒎𝟏−𝒎𝟐).𝒄𝒐𝒔𝜽

𝒍.(
𝑴

𝟑
+𝒎𝟏+𝒎𝟐)

𝒈 

 6.3.2 - Conservation of angular momentum 

When the system is isolated (free), then the external forces are zero (∑ �⃗⃗⃗⃗⃗� 
𝒊/𝒐𝒊 = 𝟎), the 

angular momentum is constant. 

∑ �⃗⃗⃗⃗⃗� 
𝒊/𝒐𝒊 =

𝒅�⃗⃗� 𝑶

𝒅𝒕
= 𝟎       ⟹        �⃗⃗� 𝑶 = 𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕𝒆  

     6.4- Angular momentum of a deformable body 

During its motion, the deformable body undergoes mass redistributions and the moment 

of inertia changes, but its angular momentum remains constant if it is isolated (free). 

�⃗⃗� 𝑶 = 𝑰�⃗⃗⃗� = 𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕𝒆 

𝒍 

𝒎𝟏�⃗⃗�  
𝒎𝟐�⃗⃗�  

𝑶 𝜽 

𝒎𝟐 

𝒎𝟏 
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The change of "𝑰", causes the change of "𝝎" such that the angular momentum remains 

constant, which means that, If "𝑰" increases, the angular velocity "𝝎" decreases and 

inversely. 

Note:  

This result is valid for a body that rotates with respect to any fixed axis or an axis passing 

through its center of mass but remains fixed in direction 

Example:  

In an ice rink, when skaters (deformable bodies) fold their arms towards their trunks, the 

moment of inertia decreases but the angular velocity increases (it rotates faster). When they 

spread out their arms, the moment of inertia increases, but the angular velocity decreases 

until it stops. 

Finally:  

If the angular momentum is constant: 

�⃗⃗� = �⃗�  ∧ 𝒎�⃗⃗� = 𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕𝒆    ⟹   𝒅�⃗⃗� 
𝒅𝒕

⁄ = �⃗⃗̇� = �⃗⃗⃗⃗⃗� = �⃗�  ∧ �⃗⃗� = 𝟎 

In this situation, one can have  

- |�⃗⃗� | = 𝟎     ⟹    The system is free and moves at a    

                       constant speed  

�⃗⃗� = �⃗�  ∧ 𝒎�⃗⃗� = 𝒎𝒓𝒔𝒊𝒏𝜶 �⃗⃗�  

∀ the position of the point M:   

𝒓𝒔𝒊𝒏𝜶 = 𝑶𝑨  is constant 

In addition, the mass is constant  

⟹    �⃗⃗� = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

⟹ The motion is uniformly rectilinear. 

 

- |�⃗� | = 𝟎   ⟹    There is no motion, the particle is at rest or in equilibrium. 

    

- �⃗�  ∥ �⃗⃗�      ⟹    The force passes through the center "O", i.e., the force is central. 

       

𝑨 

𝑶 

𝑴 

𝜶 
�⃗⃗�  

�⃗�  
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 6.5- Area theorems 

During the motion, the position of the particle is given by: 

𝑶𝑴⃗⃗⃗⃗⃗⃗  ⃗ = 𝝆�⃗⃗� 𝝆 

Its speed is: 

�⃗⃗� = �̇��⃗⃗� 𝝆 + 𝝆�̇��⃗⃗� 𝜽 

Its angular momentum will be: 

�⃗⃗� = 𝑶𝑴⃗⃗⃗⃗⃗⃗  ⃗ ∧ 𝒎�⃗⃗� = 𝝆�⃗⃗� 𝝆 ∧ 𝒎(�̇��⃗⃗� 𝝆 + 𝝆�̇��⃗⃗� 𝜽) = 𝒎𝝆𝟐�̇��⃗⃗�  

When the point "𝑴" moves to "𝑴𝟏", the vector " �⃗�  " sweeps the area " 𝑶𝑴𝑴𝟏" 

⟹    ∆𝑨𝑶𝑴𝑴𝟏
=

𝟏

𝟐
𝑴𝑴�̂�𝒓 =

𝟏

𝟐
𝝆𝟐∆𝜽    

⟹   
∆𝑨𝑶𝑴𝑴𝟏

∆𝒕
=

𝟏

𝟐
𝝆𝟐 ∆𝜽

∆𝒕
 

 At the limit, we will have: ∆𝜽 → 𝒅𝜽 

𝒅𝑨𝑶𝑴𝑴𝟏

𝒅𝒕
=

𝟏

𝟐
𝝆𝟐

𝒅𝜽

𝒅𝒕
=

𝟏

𝟐
𝝆𝟐�̇� 

For central forces, angular momentum is constant. 

�⃗⃗� = 𝑪𝒐𝒏𝒔𝒕   ⟹    |�⃗⃗� | = 𝒎𝝆𝟐�̇�        

 ⟹   
|�⃗⃗� |

𝟐𝒎
= 𝑪𝒐𝒏𝒔𝒕 =

𝝆𝟐�̇�

𝟐
=

𝒅𝑨𝑶𝑴𝑴𝟏

𝒅𝒕
 

During the motion of a particle under the action of central forces, the areas swept in the 

same time intervals are equal. This is the area theorem  

7- Types of forces 

     7.1- Conservative Forces 

The forces that derive from a potential and depend on the position of the particle are a 

conservatives forces. 

𝒚 

O 

𝜽 

�⃗⃗� 𝝆 

𝑴𝟏 

𝑴 
�⃗� 𝟏 

�⃗�  

�⃗⃗� 𝜽 

𝒙 

∆𝜽 

𝑹 

�⃗�  

𝒎 

𝒎�⃗⃗�  
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�⃗⃗� (�⃗� ) = −�⃗⃗� 𝑽(�⃗� ) 

Where is the operator �⃗⃗�  is:      �⃗⃗� =
𝛛

𝛛𝐱
𝒋 +

𝛛

𝛛𝐲
𝒋 +

𝛛�⃗⃗� 

𝛛𝐤
 

𝑽(�⃗� ) is a scalar which is the potential energy 

      Example:  

       The weight of a body: 𝑽(�⃗� ) = 𝒎𝒈𝒓 

        The restoring force of a spring: 𝑽(�⃗� ) =
𝟏

𝟐
𝒌𝒓𝟐 

 

  7.2- Lorenz Forces 

 Strength depends on position and speed.  

         Example:  

         Electric charge  "𝒒" immersed in an electromagnetic field: 

           �⃗⃗� (�⃗� ; �⃗̇� ; 𝒕) = 𝒒(�⃗⃗� + �⃗⃗� ∧ �⃗⃗� )         �⃗⃗� :  electric field              �⃗⃗�  : magnetic field 

 

 7.3- Elastic forces 

Force due to the elastic deformations of the 

materials 

Example:  

A mass " 𝒎 " suspended from spring of stiffness 

constant " 𝒌 " undergoes a so-called restoring force 

which obeys Hooke's law, i.e., it is proportional to 

the deformation 

- When the spring is unstretched (uncompressed) its length is "𝒍𝟎". 

When a mass is suspended to the spring but stay in equilibrium. The tension which is 

the restoring force) is then.   

𝒌 

Rest 
𝒙𝟎 

𝒙 

Stretching 

𝒍𝟎 

𝒍 

𝒎�⃗⃗�  

�⃗⃗�  

𝒊  

Equilibrium 

𝒌 𝒌 

𝒎�⃗⃗�  

�⃗⃗�  

𝑴 
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𝑻 = −𝒌𝒙𝟎 

Newton's law gives: 

 

 �⃗⃗� = ∑ �⃗⃗� 𝒊
𝒆𝒙 =

𝒊

𝒎�⃗⃗� + �⃗⃗� = �⃗⃗�  

After projection on: 𝒐𝒙⃗⃗⃗⃗  ⃗ 

𝒎𝒈 = 𝑻 = 𝒌𝒙𝟎 

- Stretching the spring more by "𝒙 " and let the mass free to move 

The system, executes oscillations. 

Newton's law now gives: 

�⃗⃗� = ∑�⃗⃗� 𝒊
𝒆𝒙 =

𝒊

𝒎�⃗⃗� + �⃗⃗� = 𝒎�⃗⃗�  

By projection on :𝒐𝒙⃗⃗⃗⃗  ⃗ 

𝒎𝒈 − 𝑻 = 𝒎𝒈 − 𝒌(𝒙 + 𝒙𝟎) = 𝒎�̈� 

                         ⟹             𝒎�̈� + 𝒌𝒙 = 𝟎     

                         ⟹               �̈� + 𝝎𝟎
𝟐𝒙 = 𝟎      where    𝝎𝟎

𝟐 =
𝒌

𝒎
 

Which is the differential equation of the second order 

           The Solution of this equation is:         

𝒙 = 𝑨𝒄𝒐𝒔(𝝎𝒕 + 𝝋)    →       it's a harmonic motion 

7.4- Central Forces 

A body is subject to the action of a central force, if it is everywhere directed towards a 

fixed point of the frame of reference under consideration. 

These forces are generally conservative.  

�⃗⃗� = −𝒇(�⃗� )�⃗⃗� 𝒓 

Example:  

Gravitational Forces between two masses 𝒎𝟏 and 𝒎𝟐:  

�⃗⃗� 𝒈 = −𝑮.
𝒎𝟏𝒎𝟐

𝒓𝟐
�⃗� 𝒓 

 𝒎𝟏;𝒎𝟐: masses of the 2 bodies 

𝑴 

�⃗⃗� 𝒓 

�⃗�  

𝑶 

�⃗⃗�  

�⃗⃗� 𝒓 

�⃗⃗� 𝒈 

𝒎𝟏 

𝒎𝟐 
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Electrostatic Forces between two chargeses 𝒒𝟏 and 𝒒𝟐:  

�⃗⃗� 𝒆 = 𝑲.
𝒒

𝟏
𝒒

𝟐

𝒓𝟐
�⃗� 𝒓  

𝒒𝟏; 𝒒𝟐:  Charges of the 2 bodies 

-  A system subjected to central forces has a constant angular momentum (�⃗⃗� = 𝑪𝒐𝒏𝒔𝒕) 

𝒅�⃗⃗� 

𝒅𝒕
= �⃗� ∧ �⃗⃗� = �⃗� ∧ 𝒇(�⃗⃗� )�⃗⃗� 𝒓 = 𝟎 

-  The executed motion is in a plane, such that "�⃗⃗� " is always perpendicular. 

 

   7.5- Frictional force 

 - Resistance to relative motion between two bodies in contact is caused by friction. 

 - The origin of this opposition is due to the irregularities of the two surfaces in contact.  

  

 7.5.1- Sliding friction (Coulomb friction) 

    The friction due to sliding of two surfaces of contact of 

the solids is said to be Coulombian. 

           A-Static Friction 

-  By applying force "�⃗⃗� 𝒂" to the body "𝑨", there is opposition to 

relative motion up to a certain limit. when "𝑨" is ready in 

beginning to move (starting the motion), we are in a critical 

equilibrium. 

-  Applying Newton's Second Law 

�⃗⃗� = ∑ �⃗⃗� 𝒊
𝒆𝒙 =

𝒊

𝒎𝑨�⃗⃗� + �⃗⃗� + �⃗⃗� 𝒇 + �⃗⃗� 𝒂 = 𝒎�⃗⃗�  

𝒎𝑨�⃗⃗�  : body weight "𝑨". 

�⃗⃗�      : the reaction of "𝑨" to the action of "𝑩". 

�⃗⃗� 𝒇 : Force of friction: force at the contact surface. 

�⃗⃗� 𝒂 

�⃗⃗�  

�⃗⃗�  

𝒎𝑨�⃗⃗�  

�⃗⃗� 𝒇 

𝒚 

𝒙 

𝑨 

𝑩 

�⃗⃗� 𝒓 �⃗⃗� 𝒆 

𝒒𝟏< 0 𝒒𝟏> 0 
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�⃗⃗� 𝒂 : Applied force to move "𝑨". 

At the limit, the body "𝑨" is always at rest: 

∑�⃗⃗� 𝒊
𝒆𝒙 = 𝒎�⃗⃗� = 𝟎

𝒊

 

Let's project the equation onto the axes: 

{
𝒐𝒙⃗⃗⃗⃗  :          𝑭𝒂 − 𝑭

𝒇
= 𝟎     

𝒐𝒚⃗⃗⃗⃗ :    −  𝒎𝑨𝒈 + 𝑵 = 𝟎
       ⟹        {

  𝑭𝒂 = 𝑭
𝒇
           

 𝑵 = 𝒎𝑨𝒈     
 

- 𝑭𝒍 : The minimum force required to initiate relative motion. 

- Experience shows that the frictional force is proportional to the weight 

𝑭𝒇 = 𝝁𝒔.𝒎𝒈 ;      

𝝁𝒔: is the coefficient of static friction 

𝝁𝒔 =
𝑭𝒇

𝒎𝒈
=

𝑭𝒂

𝑵
 

 At the static limit            

𝑭𝒍 = (𝑭𝒂)𝒎𝒂𝒙 = 𝑭𝒔 

                                            ⟹      𝝁𝒔 =
𝑭𝒍

𝑵
=

𝑭𝑺

𝑵
 

The coefficient of static friction "𝝁𝒔" is determined by the ratio of the limiting 

force "𝑭𝒍" required to initiate the motion and the normal reaction "�⃗⃗� ". 

 

          B-Dynamic Friction 

The experience shows that during relative motion, the 

force dynamic friction �⃗⃗� 𝒅 is less than the force of static 

friction �⃗⃗� 𝒔. This is how the coefficient of kinetic friction 𝝁𝒅 

is defined. 

𝑭𝒔 = 𝑭𝒍 

𝝁𝒔𝑵 

𝑭𝒂 

𝑭𝒇 

𝝁𝒅𝑵 
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 In such way:   𝝁𝒅 =
𝑭𝒅

𝑵
 

�⃗⃗� = ∑�⃗⃗� 𝒊
𝒆𝒙 =

𝒊

𝒎𝑨�⃗⃗� + �⃗⃗� + �⃗⃗� 𝒇 + �⃗⃗� 𝒂 = 𝒎�⃗⃗�  

Uniform Motion: 

∑�⃗⃗� 𝒊
𝒆𝒙 = 𝒎�⃗⃗� = 𝟎

𝒊

 

Let's project the equation onto the axes: 

{

𝒐𝒙⃗⃗⃗⃗  :          𝑭𝒅 − 𝑭
𝒇

= 𝟎     

𝒐𝒚⃗⃗⃗⃗ :    −  𝒎𝑨𝒈 + 𝑵 = 𝟎

     ⟹        {

𝑭𝒅 = 𝑭
𝒇
   

𝑵 = 𝒎𝑨𝒈

 

- 𝑭𝒅: Force required to have a uniform motion. 

𝝁𝒅 =
𝑭𝒇

𝒎𝒈
=

𝑭𝒅

𝑵
 

The kinetic coefficient of friction "𝝁𝒅" is determined by the ratio of the force "𝑭𝒅" 

required to have a uniform motion and the normal reaction "�⃗⃗� ". 

 

• Friction angle 

𝑵 = 𝒎𝒈 = 𝑪𝒐𝒏𝒔𝒕 : always perpendicular to the 

surface 

�⃗⃗� 𝒇 : depends on the direction in the contact 

surface. 

�⃗⃗� = �⃗⃗� + �⃗⃗� 𝒇: All reaction forces  

belong to the surface of the so-called friction 

cone. 

If the angle at the top of the cone is  "𝜽", then for a defined direction 

The angle of friction is:                  𝒕𝒈(𝜽) =
𝑭𝒇

𝑵
⟹ 𝝁 = 𝒕𝒈(𝜽) 

 

7.5.2- Viscous friction 

These are the frictions caused by contact with a solid and a fluid (liquid or gas) 

�⃗⃗� 𝒅 
�⃗⃗� 𝒇 

�⃗⃗�  

�⃗⃗�  

𝒎𝑨�⃗⃗�  𝒚 

𝒙 

𝑨 

𝑩 

𝜽 
�⃗⃗�  

�⃗⃗� 𝒇 

�⃗⃗�  

�⃗⃗� 𝒇 

�⃗⃗�  
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            A- Stock Friction (�⃗⃗� = −𝜶�⃗⃗� ): Drag force 

The force in this type is proportional to the speed: 

�⃗⃗� = −𝜶�⃗⃗� = −𝑲𝜼�⃗⃗�  

𝑲 : Form constant;     

𝜼: viscosity. 

Examples 

 01: What is the terminal (limit) speed of a spherical ball in free fall. 

𝑲 = 𝟔𝝅𝑹 

∑ �⃗⃗� 𝒊
𝒆𝒙 =𝒊 𝒎�⃗⃗� + �⃗⃗� 𝒇 = 𝒎�⃗⃗�       

Projection on 𝒐𝒙⃗⃗⃗⃗  ⃗ gives: 

𝒎𝒈 − 𝜶𝒗 = 𝒎�̈�    ⟹   �̈� = 𝒈 −
𝜶

𝒎
𝒗     

Solving the Differential Equation 

𝒈 −
𝜶

𝒎
𝒗 =

𝒅𝒗

𝒅𝒕
    ⟹    

𝑑𝑣

𝑔−
𝛼

𝑚
𝑣
= 𝒅𝒕 

We put:          

𝒈 −
𝜶

𝒎
𝒗 = 𝒖     ⟹   −

𝜶

𝒎
𝒅𝒗 = 𝒅𝒖  ⟹    

𝒅𝒖

𝒖
= −

𝜶

𝒎
𝒅𝒕 

⟹   ∫
𝒅𝒖

𝒖
= −

𝜶

𝒎
∫𝒅𝒕   ⟹    𝑳𝒏(𝒖) = −

𝜶

𝒎
𝒕    ⟹   𝒖 = 𝑪𝒆−

𝜶

𝒎
𝒕        

⟹    𝒈 −
𝜶

𝒎
𝒗 = 𝑪𝒆−

𝜶

𝒎
𝒕    

If at  𝒕 = 𝟎,           𝒗𝟎 = 𝟎 ⟹ 𝑪 = 𝒈 

⟹   𝒗 =
𝒎𝒈

𝜶
(𝟏 − 𝒆− 

𝜶

𝒎
𝒕    ) 

 

02:  

What is the terminal speed of a spherical ball falling in oil of viscosity 𝜼 ? 

The mass of the ball is:  

𝒎 = 𝝆𝑽 =
𝟒

𝟑
𝝆𝝅𝑹𝟑  

𝝆: density;  𝑽:volume  

If "𝝆𝒇" is the density of the oil (fluid), then its mass corresponding to the ball 

is: 

𝒎𝒇 = 𝝆𝒇𝑽 =
𝟒

𝟑
𝝆𝒇𝝅𝑹𝟑 

The Bouncing force (Archimedean thrust) is: 

�⃗⃗� 𝑨 = −𝒎𝒇�⃗⃗�  

𝒗 

𝒗𝒍 

𝒕 

𝒙 

𝒎�⃗⃗�  

�⃗⃗� 𝒇 
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The forces of weight, bouncing force and drag forces act on the ball 

 

∑�⃗⃗� 𝒊
𝒆𝒙 =

𝒊

𝒎�⃗⃗� + �⃗⃗� 𝑨 + �⃗⃗� = 𝒎�⃗⃗�  

For terminal speed:    �⃗⃗� = �⃗⃗�  

⟹    𝒎𝒈 − 𝑭𝑨 − 𝑹 = 𝒎𝒈 − 𝒎𝒇𝒈 − 𝑲𝜼𝒗𝒍 = 𝟎,        𝑲 = 𝟔𝝅𝑹 

⟹  𝒗𝒍 =
(𝒎−𝒎𝒇)

𝑲𝜼
𝒈 =

𝟒

𝟑
𝝅𝑹𝟑(𝝆−𝝆𝒇)

𝟔𝝅𝑹𝜼
𝒈    

𝒗𝒍 =
𝟐

𝟗
 
(𝝆 − 𝝆𝒇)

𝜼
𝑹𝟐𝒈 

- If the terminal velocity is measured   " 𝒗𝒍" and a copper bead is used, the 

viscosity of the fluid (oil or other immersion liquid) can be determined. 

B- Newtonian friction: �⃗⃗� = −𝜷𝒗𝟐 

The force in this type is proportional to the square of the velocity:   �⃗⃗� = −𝜷𝒗𝟐�⃗⃗� .  

This relationship is applicable in the case of high speeds compared to the speed 

of sound and higher (supersonic):𝒗 ≈ 1 𝑚𝑎𝑐 𝒗 > 1 𝑚𝑎𝑐. 

𝜷 =
𝟏

𝟐
𝑪𝑨𝝆 

                     𝑪 : constant :0.4 ... 2, :  

                      𝑨 : cross-sectional area 

                      𝝆 : density of fluid   

Example:   

A raindrop, supposed to be sphere of radius 𝑹 = 𝟏. 𝟓𝒎𝒎, falling under the action 

of its weight from a height 𝒉 = 𝟏𝟐𝟎𝟎𝒎 .   

What is its terminal speed? 

 𝝆𝒘 = 𝟏𝟎𝟎𝟎𝒌𝒈/𝒎𝟑      𝝆𝒂 = 𝟏. 𝟐𝒌𝒈/𝒎𝟑   

We have:         𝜷 =
𝟏

𝟐
𝑪𝑨𝝆 

𝝆 = 𝝆𝒂𝒊𝒓𝒆 = 𝟏. 𝟐𝒌𝒈/𝒎𝟑;     𝑪 = 𝟎. 𝟔 

cross-sectional area: 𝑨 = 𝝅𝑹𝟐 

If there is no resistance from the air, the drop will reach the 

ground at speed: 

�⃗⃗� 𝑨 

�⃗⃗�  

𝒎�⃗⃗�  

𝒙 

𝒎�⃗⃗�  

�⃗⃗� 𝒇 
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𝒗 = √𝟐𝒈𝒉 ≈ 𝟓𝟓𝟎𝒌𝒎/𝒉 

It's a high speed, it approaches the speed of a bullet coming out of a gun. 

Because   𝒎𝒘 = 𝝆𝒘𝑽 =
𝟒

𝟑
𝝆𝒘𝝅𝑹𝟑 

So, the second Newton’s law give: 

𝒎𝒈 − 𝑭𝒇 =
𝟒

𝟑
𝝆𝒘𝝅𝑹𝟑𝒈 −

𝟏

𝟐
𝑪𝑨𝝆𝒗𝟐 = 𝒎�⃗⃗�  

For a limit speed:  �⃗⃗� = �⃗⃗�  

⟹        𝒗𝒍 = √
𝟖

𝟑

𝝆𝒘

𝝆𝒂
.
𝑹

𝑪
𝒈       

     ⟹       𝒗𝒍 = 𝟕. 𝟒
𝒎

𝒔
≈ 𝟐𝟕

𝒌𝒎

𝒉
 

     7.6- Pseudo-forces (Inertial force) 

 - During the study of relative motion, it was found that the 

acceleration of a body with respect to the inertial (fixed) frame of 

reference is:  �⃗⃗� = �⃗⃗� 𝒓 + �⃗⃗� 𝒆 + �⃗⃗� 𝒄.  

- Each acceleration induces a force. Then Newton 2nd law gives:  

∑�⃗⃗� 𝒊
𝒆𝒙 = 𝒎�⃗⃗� = 𝒎(

𝒊

�⃗� 𝒓 + �⃗� 𝒆 + �⃗� 𝒄) 

 - In the non-inertial frame of reference Newton's law is: 

                         𝒎�⃗⃗� 𝒓 = ∑ �⃗⃗� 𝒊
𝒆𝒙

− 𝒎(𝒊 �⃗⃗� 𝒆 + �⃗⃗� 𝒄) = �⃗⃗� − �⃗⃗� 𝒊𝒏 

�⃗⃗� = ∑ �⃗⃗� 𝒊
  𝒆𝒙

𝒊 Net external force. These are the physical (actual) forces  

�⃗⃗� 𝒊𝒏 The forces of inertia or pseudo-forces. These are the fictitious (virtual) forces 

7.6.1- Translational Motion 

- For the inertial observer "𝑶𝑰", the mass of the pendulum is subject to the action of the 

weight and tension of the wire. Its acceleration is the same than that of the car that is 

produced by the component   " 𝑻𝒙" of the tension in the wire 

Newton's law gives: 

∑ �⃗⃗� 𝒊
𝒆𝒙 =𝒊 𝒎�⃗⃗� + �⃗⃗� = 𝒎�⃗⃗�   ⟹ {

𝑻𝒔𝒊𝒏𝜽 = 𝒎𝒂         (𝟏)

 𝑻𝒄𝒐𝒔𝜽 = 𝒎𝒈       ( 𝟐)
 

𝒙 

�⃗⃗� 𝒇𝒊𝒄 

𝒎�⃗⃗�  

𝒚 

�⃗⃗�  

𝑶𝑵𝑰 

𝑶𝑰 
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- For the non-inertial observer "𝑶𝑵𝑰" , the wire that suspends the mass which is at rest, 

despite being in equilibrium, deviates from the vertical "𝒚" by an angle "𝜽". 

To solve this paradox, he introduces a fictitious (virtual) force in the horizontal 

direction and asserts that the sum of the acting forces is zero. Newton's law gives:"𝒙 " 

∑ �⃗⃗� 𝒊
𝒆𝒙 =𝒊 𝒎�⃗⃗� + �⃗⃗� = 𝒎�⃗⃗� = 𝟎   ⟹ {

𝑻𝒔𝒊𝒏𝜽 − 𝑭𝒇𝒊𝒄 = 𝟎         (𝟑)

 𝑻𝒄𝒐𝒔𝜽 − 𝒎𝒈 = 𝟎       ( 𝟒)
 

The two systems of equations (1; 2) and (3; (4) are equivalent only if:  𝑭𝒇𝒊𝒄 ≡ 𝒎𝒂 

The two systems are mathematically equivalent, but the physical interpretation 

of the string deflection is different for the two observers (reference frames).   

7.6.2- Rotational Movement 

A mass  "𝒎"hung by means of a wire to the axis of rotation, a smooth plate that 

rotates at the angular velocity "�⃗⃗⃗� ". If the speed is constant: 

      �⃗⃗� 𝒆 = [�⃗⃗⃗� ∧   (�⃗⃗⃗� ∧ �⃗� 𝟏)] = −𝝎𝟐�⃗� 𝟏         and           �⃗⃗� 𝒄 = 𝟐�⃗⃗⃗� ∧ �⃗⃗� 𝒓 

 

A - Centrifugal force: 

- For the inertial observer "𝑶𝑰", the mass subjected to the 

forces (𝒎�⃗⃗� ; �⃗⃗� ; �⃗⃗� ) and rotates at a constant speed, it has 

a centripetal acceleration: 𝒂 =
𝒗𝟐

𝑹
.  

 

- Newton's law gives: 

∑�⃗⃗� 𝒊
𝒆𝒙 =

𝒊

𝒎�⃗⃗� + �⃗⃗� + �⃗⃗� = 𝒎(�⃗⃗� 𝑵 + �⃗⃗� 𝑻) 

⟹    {
�⃗� 𝝆: 𝑻 = 𝒎𝒂𝑵 = 𝒎

𝒗𝟐

𝑹
 (𝟏)

 �⃗� :   𝑹 = 𝒎𝒈                  ( 𝟐)

 

- For the non-inertial observer  "𝑶𝑵𝑰 " attached to the platform, the mass is at rest, but 

the thread is taut. To resolve this paradox, the observer introduces a fictitious force 

(virtual) in the horizontal direction and asserts that the sum of the forces is null. 

Newton's law gives: 

∑ �⃗⃗� 𝒊
𝒆𝒙 =𝒊 𝒎�⃗⃗� + �⃗⃗� + �⃗⃗� + �⃗⃗� 𝒇𝒊𝒄 = 𝒎�⃗⃗� = 𝟎   ⟹      {

𝑻 − 𝑭𝒇𝒊𝒄 = 𝟎         (𝟑)

 𝑹 − 𝒎𝒈 = 𝟎       ( 𝟒)
 

�⃗⃗⃗�  

�⃗⃗� 𝒇𝒊𝒄 

�⃗⃗�  

𝒎�⃗⃗�  

𝑶𝑵𝑰 

𝑶𝑰 
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The two systems of equations (1; 2) and (3; (4) are equivalent only if: 

𝑭𝒇𝒊𝒄 ≡ 𝒎𝒂𝑵 = 𝒎
𝒗𝟐

𝑹
 

    The force of inertia   𝑭𝒇𝒊𝒄 = 𝑭𝒊𝒏 is equal to the centrifugal force:  𝑭𝒊𝒏 = 𝒎
𝒗𝟐

𝑹
        

B – Coriolis’s Force 

A ball of mass "𝒎" moves inside a tube that rotates 

about the vertical axis at a constant angular velocity 

" �⃗⃗⃗�  ". 

- The inertial observer  "𝑶𝑰" sees the ball carried away 

in the tube and it are subject only to its weight and 

the reaction exerted by the tube. 

 

- The inertial observer "𝑵𝑶𝑰" sees that the ball going outwards, tends to stick to the side 

wall of the tube. The outward movement is explained by the effect of the centrifugal 

force already mentioned. Its deviation towards the wall is explained by the effect of 

another force called the Coriolis force  �⃗⃗� 𝒄 = 𝟐�⃗⃗⃗� ∧ �⃗⃗� 𝒓 

�⃗⃗�  

𝒎�⃗⃗�  

�⃗⃗⃗�  

�⃗⃗� 𝒓 𝒙 𝒚 

𝒛 


