Chapter N°4 : Elementary functions

0.1 Inverse trigonometric functions

0.1.1 arccosine

We assume the function **cosine** $\cos : \mathbb{R} \to [-1,1], x \mapsto \cos x$. To obtain a bijection from this function, we must consider the restriction of cosine on the interval $[0,\pi]$. On this interval the function **cosine** is continuous and strictly decreasing, then the restriction

 $\cos: [0,\pi] \to [-1,1], \quad x \mapsto \cos x.$

is bijection. Its inverse bijection is the function arccosine :

 $\arccos: [-1,1] \rightarrow [0,\pi], \quad x \mapsto \arccos x.$

So we have by definition the inverse bijection :

$$\cos(\arccos x) = x \quad \forall x \in [-1, 1]$$
$$\arccos(\cos x) = x \quad \forall x \in [0, \pi]$$

In other words :

Si
$$x \in [0, \pi]$$
 $\cos x = y \Leftrightarrow x = \arccos y$

Let's finish with the derivative of arccos :

$$\operatorname{arccos}'(x) = \frac{-1}{\sqrt{1-x^2}} \quad \forall x \in]-1,1]$$

0.1.2 arcsine

The restriction

$$\sin: [\frac{-\pi}{2}, \frac{\pi}{2}] \to [-1, 1], \quad x \mapsto \sin x.$$

is a bijection. Its inverse bijection is the function arcsine :

ŝ

$$\operatorname{arcsin}: [-1,1] \to [\frac{-\pi}{2}, \frac{\pi}{2}], \quad x \mapsto \operatorname{arcsin} x.$$

We have by definition :

$$\sin(\arcsin x) = x \quad \forall x \in]-1, 1[$$
$$\arcsin(\sin x) = x \quad \forall x \in [\frac{-\pi}{2}, \frac{\pi}{2}]$$

In other words :

Si
$$x \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$$
 $\sin x = y \Leftrightarrow x = \arcsin y$

Let's finish with the derivative of arcsin is :

$$\arcsin'(x) = \frac{1}{\sqrt{1-x^2}} \quad \forall x \in]-1,1[$$

0.1.3 arctangent

The restriction

$$\tan: \left]\frac{-\pi}{2}, \frac{\pi}{2}\right[\to \mathbb{R}, \quad x \mapsto \tan x.$$

is a bijection. Its inverse bijection is the function arctangent :

$$\arctan: \mathbb{R} \to]\frac{-\pi}{2}, \frac{\pi}{2}[, x \mapsto \arctan x.$$

$$\tan(\arctan x) = x \quad \forall x \in \mathbb{R}$$
$$\arctan(\tan x) = x \quad \forall x \in]\frac{-\pi}{2}, \frac{\pi}{2}[$$

In other words :

Si
$$x \in \left]\frac{-\pi}{2}, \frac{\pi}{2}\right[\tan x = y \Leftrightarrow x = \arctan y.$$

The derivative of arctan is :

$$\arctan'(x) = \frac{1}{1+x^2} \qquad \forall x \in \mathbb{R}$$

0.2 Hyperbolic functions and their inverses

0.2.1 Hyperbolic cosine function and its inverse

For all $x \in \mathbb{R}$ the hyperbolic cosine function, written cosh or *ch* is defined by the relation :

$$chx = \frac{e^x + e^{-x}}{2}.$$

$$ch'(x) = sh(x)$$

The derivative function is

The restriction $ch: [0, +\infty[\longrightarrow [1, +\infty[$ is bijective. and its inverse bijection is :

argch: $[1, +\infty[\longrightarrow [0, +\infty[$

The derivative function is

0.2.2 Hyperbolic sine function and its inverse

For all $x \in \mathbb{R}$ le hyperbolic sine function is defined by the relation :

$$shx = \frac{e^x - e^{-x}}{2}.$$

 $sh:\,\mathbb{R}\longrightarrow\mathbb{R}$ is continuous function, differentiable and strictly increasing verifying

$$\lim_{x \to -\infty} sh(x) = -\infty \text{ et } \lim_{x \to +\infty} sh(x) = +\infty,$$

The derivative function is

$$sh'(x) = ch(x)$$

then is a bijection. And its inverse bijection is : argsh : $\mathbb{R} \longrightarrow \mathbb{R}$. The derivative function is :

Remark 1 The name of these two hyperbolic functions suggest that the have similar properties to the trigonometric functions and some of these will be investigated.

0.2.3 Hyperbolic tangent function and its inverse

By definition the **tangent hyperbolic** is :

$$th(x) = \frac{sh(x)}{ch(x)}.$$

The function $th : \mathbb{R} \longrightarrow] -1, +1[$ is a bijection. The derivative function is $: th'(x) = 1 - th^2(x) = \frac{1}{ch^2(x)}$ we notice

$$argth:]-1, +1[\longrightarrow \mathbb{R}$$

is inverse bijection. The derivative function is

0.3 Hyperbolic trigonometry

$$ch(a + b) = ch(a).ch(b) + sh(a).sh(b), \dots(1)$$

 $ch(a - b) = ch(a).ch(b) - sh(a).sh(b), \dots(2)$
 $sh(a + b) = sh(a).ch(b) + ch(a).sh(b), \dots(3)$
 $sh(a - b) = sh(a).ch(b) - ch(a).sh(b).\dots(4)$
By multiplying the expression for $(chx + shx)$ and $(chx - shx)$ together, we have

$$ch^2(x) - sh^2(x) = 1$$

obvious,

$$chx + shx = e^x$$

Put a = b in first formulate (1)

$$ch(2a) = ch^2(a) + sh^2(a)$$

Put a = b in third formulate (3)

$$sh(2a) = 2.sh(a).ch(a)$$

 $th(a+b) = \frac{th(a) + th(b)}{1 + th(a).th(b)}.....(5)$

Put a = b in third formulate (5)

$$th2a = \frac{2tha}{1 + th^2a}$$

0.3.0.1 expression of inverse hyperbolic functions with natural logatithm

$$argch(x) = \ln(x + \sqrt{x^2 - 1}), (x \ge 1)$$
$$argsh(x) = \ln(x + \sqrt{x^2 + 1}), (x \in \mathbb{R})$$

$$argth(x) = \frac{1}{2}\ln(\frac{1+x}{1-x}), (-1 < x < 1)$$

Exercise : Use the definition of chx and shx in term of exponential functions to prove that :

$$chx = 2ch^2x - 1, \qquad chx = 1 + 2sh^2x$$

0.4 Solution of the series "4"

Exercise 1 :

- 1. For all $x \in \mathbb{R}$, $\frac{-\pi}{2} \leq \arctan(\frac{x}{2}) \leq \frac{\pi}{2}$, therefore the equation does not solutions.
- 2. $\arcsin x = \arccos x \Leftrightarrow \sin(\arcsin x) = \sin(\arccos x) \Leftrightarrow x = \sqrt{1 x^2} \Leftrightarrow x = \frac{\sqrt{2}}{2}$
- 3. The derivative : direct compute

4. a)
$$\sin(\arccos x) = \sqrt{1 - \cos^2(\arcsin x)} = \sqrt{1 - x^2}$$

 $\sin(\arcsin x) = x$

5. b)
$$\tan(\arcsin x) = \frac{\sin(\arcsin x)}{\cos(\arcsin x)} = \frac{x}{\sqrt{1-x^2}}$$

- 6. c) $\operatorname{arcsin} x + \operatorname{arccos} x = \frac{\pi}{2}$, we can prove this by two methods First, consider the function $f(x) = \operatorname{arcsin} x + \operatorname{arccos} x$, continuous on [-1, 1], differentiable on]-1, 1[and f'(x) = 0. Then f is constant over [-1, 1], hence $f(0) = \operatorname{arcsin}(0) + \operatorname{arccos}(0) = \frac{\pi}{2}$. Therefore $\forall x \in [-1, 1]$, $f(x) = \frac{\pi}{2}$ Or, we have : $\operatorname{arccos} x = \frac{\pi}{2} - \operatorname{arcsin} x$, because cos is bijective on $[0, \pi]$ so $\operatorname{cos}(\operatorname{arccos} x) = \operatorname{cos}(\frac{\pi}{2} - \operatorname{arcsin} x)$. So x = x, then, $\operatorname{arcsin} x + \operatorname{arccos} x = \frac{\pi}{2}$.
- 7. d) We have :

$$\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \cdot \tan b}$$

we put $a = \arctan \alpha$, $b = \arctan x$, so

$$\tan(\arctan\alpha + \arctan x) = \frac{\tan \arctan \alpha + \tan \arctan x}{1 - \tan \arctan \alpha \cdot \tan \arctan x} = \frac{\alpha + x}{1 - \alpha \cdot x}$$

because $\arctan x = \arctan(\frac{\alpha + x}{1 - \alpha \cdot x})$

8. e) we put $\alpha = \frac{1}{x}$ in precedent formula (d)

$$\arctan \frac{1}{x} + \arctan x = \arctan(\frac{\frac{1}{x} + x}{1 - \frac{1}{x} \cdot x})$$
$$\arctan x + \arctan \frac{1}{x} = \frac{2x + 1}{0} = \arctan(\infty) = \frac{\pi}{2}$$

Exercise 2:

1. If $x \neq 0$, f is quotient of two differentiable functions, then differentiable. arctan r

If
$$x = 0$$
, $\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\frac{\operatorname{directar} x}{x} - 1}{x} = \lim_{x \to 0} \frac{\operatorname{arctar} x - x}{x^2} = \frac{0}{0}$. I.F By hospital theorem $\lim_{x \to 0} \frac{\frac{1}{1 - x^2} - 1}{2x} = \lim_{x \to 0} \frac{-x}{\operatorname{\acute{e}}(1 + x^2)} = 0$. The f is differentiable at 0, therefore differentiable on \mathbb{R} .

$$f(x) = \begin{cases} \frac{1}{x(1+x^2)} - \frac{\arctan x}{x^2}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0 \end{cases}$$

2. we know, $\arctan : \mathbb{R} \to] -\frac{\pi}{2}, \frac{\pi}{2}[$ is continuous on \mathbb{R} then over $[0, x], \quad x > 0$ and differentiable over]0, x[, according to mean value theorem there exists $c \in]0, x[$ such that

$$\arctan'(c) = \lim_{x \to 0} \frac{\arctan x - \arctan 0}{x - 0} = \frac{\arctan x}{x} = \frac{1}{1 + c^2}$$

other words,
$$0 < c < x \Rightarrow 1 < 1 + c^2 < 1 + x^2 \Rightarrow \frac{1}{1 + x^2} < 1 + c^2 < 1$$
, hence, $\frac{1}{1 + x^2} < \frac{\arctan x}{x}$
then, $\frac{x}{1 + x^2} < \arctan x$.

Exercise 3:

$$1. \ \forall x \in \mathbb{R} : \frac{shx}{1+chx} = \frac{2sh\frac{x}{2}.ch\frac{x}{2}}{2ch^2\frac{x}{2}} = \frac{sh\frac{x}{2}}{ch\frac{x}{2}} = th\frac{x}{2}.$$

$$2. \ \forall x \neq 0 : \frac{2}{th2x} - \frac{1}{thx} = \frac{2}{\frac{2thx}{1+th^2x}} - \frac{1}{thx} = \frac{th^2x}{thx} = thx.$$

$$3. \ \text{We have } thx = \frac{2th\frac{x}{2}}{1+th^2\frac{x}{2}} \text{ and}$$

$$chx-1 = ch^2\frac{x}{2} + sh^2\frac{x}{2} - ch^2\frac{x}{2} + sh^2\frac{x}{2} = 2sh^2\frac{x}{2}, \quad chx+1 = ch^2\frac{x}{2} + sh^2\frac{x}{2} + ch^2\frac{x}{2} - sh^2\frac{x}{2} = 2ch^2\frac{x}{2}.$$
So
$$\sqrt{\frac{chx-1}{chx+1}} = \sqrt{th^2\frac{x}{2}} \quad \text{then} \quad argth(th\frac{x}{2}) = \frac{x}{2}.$$

Exercise 4 :

For $sh(x) \ge x$ let : f(x) = sh(x) - x so f'(x) = ch(x) - 1, $x \ge 0$

For $sh(x) \ge x$ let f(x) = sh(x) - x so f(x) = ch(x) - 1, $x \ge 0$ for every $x \ge 0$, $f'(x) \ge 0$ then f is increasing and f(0) = 0, then $f(x) \ge 0 \Leftrightarrow f(x) - x \ge 0 \Leftrightarrow f(x) \ge x$. For $: ch(x) \ge 1 + \frac{x^2}{2}$ Let $g(x) = ch(x) - 1 - \frac{x^2}{2}$ we have g(0) = 0 et $g'(x) = sh(x) - x \ge 0$ then g is increasing and g(0) = 0, x^2 therefore $g(x) \ge 0 \Leftrightarrow ch(x) \ge 1 + \frac{x^2}{2}$

Exercise 5 :

1. For
$$\sqrt{1-x^2} \le x$$
 has meaning if, $x \ge 0$ and $1-x^2 \ge 0$ if $0 \le x \le 1$, so $1-x^2 \le x^2 \Leftrightarrow x^2 \ge \frac{1}{2} \Leftrightarrow x \in [\frac{\sqrt{2}}{2}, 1].$
2. f defined on $[-1, 1]$ and $f'(x) = \frac{-x + \sqrt{1-x^2}}{\sqrt{1-x^2}} e^{\arcsin x}$
 $f'(x) = 0 \Leftrightarrow x = \frac{\sqrt{2}}{2}, \quad f'(x) > 0, \text{ si } x \in]-1, \frac{\sqrt{2}}{2}[, \quad f'(x) < 0, \text{ si } x \in]\frac{\sqrt{2}}{2}, 1[$