Chapter N°4 : Elementary functions

0.1 Inverse trigonometric functions

0.1.1 arccosine

We assume the function **cosine** cos : $\mathbb{R} \to [-1, 1]$, $x \mapsto \cos x$. To obtain a bijection from this function, we must consider the restriction of cosine on the interval $[0, \pi]$. On this interval the function **cosine** is continuous and strictly decreasing, then the restriction

 $\cos : [0, \pi] \rightarrow [-1, 1], \quad x \mapsto \cos x.$

is bijection. Its inverse bijection is the function arccosine :

 $\arccos : [-1, 1] \rightarrow [0, \pi], \quad x \mapsto \arccos x.$

So we have by definition the inverse bijection :

$$
\cos(\arccos x) = x \quad \forall x \in [-1, 1]
$$

$$
\arccos(\cos x) = x \quad \forall x \in [0, \pi]
$$

In other words :

$$
\text{Si} \quad x \in [0, \pi] \qquad \cos x = y \Leftrightarrow x = \arccos y
$$

Let's finish with the derivative of arccos :

$$
\arccos'(x) = \frac{-1}{\sqrt{1-x^2}} \quad \forall x \in]-1,1[
$$
\n
$$
\arccos x
$$
\n
$$
\uparrow x
$$
\n
$$
\downarrow x
$$

0.1.2 arcsine

The restriction

$$
\sin : \left[\frac{-\pi}{2}, \frac{\pi}{2}\right] \to [-1, 1], \quad x \mapsto \sin x.
$$

is a bijection. Its inverse bijection is the function arcsine :

$$
\arcsin : \, [-1,1] \to [\frac{-\pi}{2},\frac{\pi}{2}], \quad x \mapsto \arcsin x.
$$

We have by definition :

$$
\sin(\arcsin x) = x \quad \forall x \in]-1,1[
$$

$$
\arcsin(\sin x) = x \quad \forall x \in [\frac{-\pi}{2}, \frac{\pi}{2}]
$$

In other words :

$$
\text{Si} \quad x \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right] \qquad \sin x = y \Leftrightarrow x = \arcsin y
$$

Let's finish with the derivative of arcsin is :

$$
\arcsin'(x) = \frac{1}{\sqrt{1 - x^2}}
$$
 $\forall x \in]-1,1[$

0.1.3 arctangent

The restriction

$$
\tan:]\frac{-\pi}{2}, \frac{\pi}{2} [\rightarrow \mathbb{R}, \quad x \mapsto \tan x.
$$

is a bijection. Its inverse bijection is the function arctangent :

arctan :
$$
\mathbb{R} \to \left[\frac{-\pi}{2}, \frac{\pi}{2}\right[, \quad x \mapsto \arctan x.
$$

$$
\tan(\arctan x) = x \quad \forall x \in \mathbb{R}
$$

$$
\arctan(\tan x) = x \quad \forall x \in]\frac{-\pi}{2}, \frac{\pi}{2}[
$$

In other words :

$$
\text{Si} \quad x \in]\frac{-\pi}{2}, \frac{\pi}{2}[\qquad \tan x = y \Leftrightarrow x = \arctan y.
$$

The derivative of arctan is :

$$
\operatorname{arctan}'(x) = \frac{1}{1+x^2} \qquad \forall x \in \mathbb{R}
$$

0.2 Hyperbolic functions and their inverses

0.2.1 Hyperbolic cosine function and its inverse

For all $x \in \mathbb{R}$ the **hyperbolic cosine function**, written cosh or *ch* is defined by the relation :

$$
chx = \frac{e^x + e^{-x}}{2}.
$$

\n
$$
ch'(x) = sh(x)
$$

The derivative function is

The restriction $ch : [0, +\infty[\longrightarrow [1, +\infty[$ is bijective. and its inverse bijection is :

 $argch : [1, +\infty[\longrightarrow [0, +\infty[$

The derivative function is

0.2.2 Hyperbolic sine function and its inverse

For all $x \in \mathbb{R}$ le **hyperbolic sine function** is defined by the relation :

$$
shx = \frac{e^x - e^{-x}}{2}.
$$

 $sh: \mathbb{R} \longrightarrow \mathbb{R}$ is continuous function, differentiable and strictly increasing verifying

$$
\lim_{x \to -\infty} sh(x) = -\infty \text{ et } \lim_{x \to +\infty} sh(x) = +\infty,
$$

The derivative function is

$$
sh'(x) = ch(x)
$$

then is a bijection. And its inverse bijection is : $argsh : \mathbb{R} \longrightarrow \mathbb{R}$. The derivative function is :

Remark 1 *The name of these two hyperbolic functions suggest that the have similar properties to the trigonometric functions and some of these will be investigated.*

0.2.3 Hyperbolic tangent function and its inverse

By definition the **tangent hyperbolic** is :

$$
th(x) = \frac{sh(x)}{ch(x)}.
$$

The function $th:\mathbb{R}\longrightarrow]-1,+1[$ is a bijection. The derivative function is : $th'(x) = 1 - th^2(x) = \frac{1}{ch^2(x)}$

we notice

$$
argth: \,]-1,+1[\longrightarrow \mathbb{R}
$$

is inverse bijection. The derivative function is

0.3 Hyperbolic trigonometry

$$
ch(a + b) = ch(a).ch(b) + sh(a).sh(b), \dots \dots \dots (1)
$$

\n
$$
ch(a - b) = ch(a).ch(b) - sh(a).sh(b), \dots \dots \dots (2)
$$

\n
$$
sh(a + b) = sh(a).ch(b) + ch(a).sh(b), \dots \dots \dots (3)
$$

\n
$$
sh(a - b) = sh(a).ch(b) - ch(a).sh(b) \dots \dots \dots (4)
$$

\nBy multiplying the expression for $(chx + shx)$ and $(chx - shx)$ together, we have

$$
ch^2(x) - sh^2(x) = 1
$$

obvious,

$$
chx + shx = e^x
$$

Put $a = b$ in first formulate (1)

$$
ch(2a) = ch2(a) + sh2(a)
$$

Put $a = b$ in third formulate (3)

$$
sh(2a) = 2.sh(a).ch(a)
$$

$$
th(a+b) = \frac{th(a) + th(b)}{1 + th(a).th(b)} \dots (5)
$$

Put $a = b$ in third formulate (5)

$$
th2a = \frac{2tha}{1 + th^2a}
$$

0.3.0.1 expression of inverse hyperbolic functions with natural logatithm

$$
argch(x) = \ln(x + \sqrt{x^2 - 1}), (x \ge 1)
$$

$$
argsh(x) = \ln(x + \sqrt{x^2 + 1}), (x \in \mathbb{R})
$$

$$
argth(x) = \frac{1}{2}\ln(\frac{1+x}{1-x}), \quad -1 < x < 1)
$$

Exercise : Use the definition of *chx* and *shx* in term of exponential functions to prove that :

$$
chx = 2ch^2x - 1, \qquad \qquad chx = 1 + 2sh^2x
$$

0.4 Solution of the series "4"

Exercise 1 :

- 1. For all $x \in \mathbb{R}$, $\frac{-\pi}{2}$ $\frac{-\pi}{2} \leq \arctan(\frac{x}{2}) \leq \frac{\pi}{2}$ $\frac{\pi}{2}$, therefore the equation does not solutions. √
- 2. $\arcsin x = \arccos x \Leftrightarrow \sin(\arcsin x) = \sin(\arccos x) \Leftrightarrow x =$ √ $1-x^2 \Leftrightarrow x=$ $\overline{2}$ 2
- 3. The derivative : direct compute

4. a)
$$
\sin(\arccos x) = \sqrt{1 - \cos^2(\arcsin x)} = \sqrt{1 - x^2}
$$

- 5. *b*) $\tan(\arcsin x) = \frac{\sin(\arcsin x)}{\cos(\arcsin x)} = \frac{x}{\sqrt{1-x}}$ $1 - x^2$
- 6. *c*) $\arcsin x + \arccos x = \frac{\pi}{2}$ $\frac{\pi}{2}$, we can prove this by two methods First, consider the function $f(x) = \arcsin x + \arccos x$, continuous on [−1, 1]*,* differentiable on $]-1,1[$ and $f'(x)=0$. Then *f* is constant over $[-1,1]$, hence $f(0) = \arcsin(0) + \arccos(0) = \frac{\pi}{2}$. Therefore $\forall x \in [-1, 1]$, $f(x) = \frac{\pi}{2}$ Or, we have : $\arccos x = \frac{\pi}{2}$ $\frac{\pi}{2}$ – arcsin *x*, because cos is bijective on $[0, \pi]$ so cos(arccos *x*) = $cos(\frac{\pi}{2} - \arcsin x)$. So $x = x$, then, $arcsin x + \arccos x = \frac{\pi}{2}$ $\frac{1}{2}$.
- 7. d) We have :

$$
\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \cdot \tan b}
$$

we put $a = \arctan \alpha$, $b = \arctan x$, so

$$
\tan(\arctan\alpha + \arctan x) = \frac{\tan \arctan\alpha + \tan \arctan x}{1 - \tan \arctan \alpha \cdot \tan \arctan x} = \frac{\alpha + x}{1 - \alpha \cdot x}
$$

because arctan is a bijective, then : $\arctan \alpha + \arctan x = \arctan(\frac{\alpha + x}{1 - \alpha \cdot x})$

8. e) we put $\alpha = \frac{1}{1}$ $\frac{1}{x}$ in precedent formula (d)

$$
\arctan\frac{1}{x} + \arctan x = \arctan(\frac{\frac{1}{x} + x}{1 - \frac{1}{x} \cdot x})
$$

$$
\arctan x + \arctan\frac{1}{x} = \frac{2x + 1}{0} = \arctan(\infty) = \frac{\pi}{2}
$$

Exercise 2 :

1. If $x \neq 0$, f is quotient of two differentiable functions, then differentiable. arctan *x*

If
$$
x = 0
$$
, $\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\frac{\arctan x}{x} - 1}{x} = \lim_{x \to 0} \frac{\arctan x - x}{x^2} = \frac{0}{0}$. I.F By hospital theorem $\lim_{x \to 0} \frac{1}{1 - x^2} - 1 = \lim_{x \to 0} \frac{-x}{6(1 + x^2)} = 0$. The *f* is differentiable at 0, therefore differentiable on R.

$$
f(x) = \begin{cases} \frac{1}{x(1+x^2)} - \frac{\arctan x}{x^2}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0 \end{cases}
$$

2. we know, $\arctan : \mathbb{R} \to]-\frac{\pi}{2}$ $\frac{\pi}{2}, \frac{\pi}{2}$ $\frac{\pi}{2}$ is continuous on R then over $[0, x]$, $x > 0$ and differentiable over $]0, x[$, according to mean value theorem there exists $c \in]0, x[$ such that

$$
\arctan'(c) = \lim_{x \to 0} \frac{\arctan x - \arctan 0}{x - 0} = \frac{\arctan x}{x} = \frac{1}{1 + c^2}
$$

other words,
$$
0 < c < x \Rightarrow 1 < 1 + c^2 < 1 + x^2 \Rightarrow \frac{1}{1 + x^2} < 1 + c^2 < 1
$$
, hence, $\frac{1}{1 + x^2} < \frac{\arctan x}{x}$, then, $\frac{x}{1 + x^2} < \arctan x$.

Exercise 3 :

1.
$$
\forall x \in \mathbb{R}
$$
: $\frac{shx}{1+chx} = \frac{2sh\frac{x}{2} \cdot ch\frac{x}{2}}{2ch^2 \frac{x}{2}} = \frac{sh\frac{x}{2}}{ch\frac{x}{2}} = th\frac{x}{2}$.
\n2. $\forall x \neq 0$: $\frac{2}{th2x} - \frac{1}{thx} = \frac{2}{2thx} - \frac{1}{thx} = \frac{th^2x}{thx} = thx$.
\n3. We have $thx = \frac{2th\frac{x}{2}}{1+th^2\frac{x}{2}}$ and
\n $chx-1 = ch^2\frac{x}{2} + sh^2\frac{x}{2} - ch^2\frac{x}{2} + sh^2\frac{x}{2} = 2sh^2\frac{x}{2}$, $chx+1 = ch^2\frac{x}{2} + sh^2\frac{x}{2} + ch^2\frac{x}{2} - sh^2\frac{x}{2} = 2ch^2\frac{x}{2}$.
\nSo
\n $\sqrt{\frac{chx-1}{chx+1}} = \sqrt{th^2\frac{x}{2}}$ then $argth(th\frac{x}{2}) = \frac{x}{2}$.

Exercise 4 :

For $sh(x) \ge x$ let : $f(x) = sh(x) - x$ so $f'(x) = ch(x) - 1$, $x \ge 0$ for every $x \geq 0$, $f'(x) \geq 0$ then *f* is increasing and $f(0) = 0$, then $f(x) \geq 0 \Leftrightarrow f(x) - x \geq 0 \Leftrightarrow f(x) \geq x.$

For : $ch(x) \ge 1 + \frac{x^2}{2}$ 2 Let $g(x) = ch(x) - 1 - \frac{x^2}{2}$ we have $g(0) = 0$ et $g'(x) = sh(x) - x \ge 0$ then *g* is increasing and $g(0) = 0$, therefore $g(x) \geq 0 \Leftrightarrow ch(x) \geq 1 + \frac{x^2}{2}$ 2

Exercise 5 :

1. For
$$
\sqrt{1-x^2} \le x
$$
 has meaning if, $x \ge 0$ and $1 - x^2 \ge 0$ if $0 \le x \le 1$, so
\n $1 - x^2 \le x^2 \Leftrightarrow x^2 \ge \frac{1}{2} \Leftrightarrow x \in [\frac{\sqrt{2}}{2}, 1].$
\n2. f defined on $[-1, 1]$ and $f'(x) = \frac{-x + \sqrt{1 - x^2}}{\sqrt{1 - x^2}} e^{\arcsin x}$
\n $f'(x) = 0 \Leftrightarrow x = \frac{\sqrt{2}}{2}, \quad f'(x) > 0, \text{ si } x \in]-1, \frac{\sqrt{2}}{2}[, \quad f'(x) < 0, \text{ si } x \in]\frac{\sqrt{2}}{2}, 1[$