University of M'sila. 2023/2024 Faculty of Technology Domaine: Engineering Level: First year

Tutorial Series 01(Analysis 1)

Part 1: Real number system

Exercise 01

Answer "True" or "False" to the statements below. If the statement is False, explain why.

1.) -5 is a rational number. _____ 2.) $\sqrt{8}$ is rational. _____ 3.) $\sqrt{16}$ is a natural number _____ 4.) $\sqrt{2.25}$ is rational. _____ 5.) $\frac{22}{7}$ is a rational number _____ 6.) π is a rational number. _____ 7.) $\sqrt[3]{9}$ is rational. _____ 8.) $\sqrt{16}$ is an irrational number _____ 9.) $10\frac{3}{4}$ is rational. _____ 10.) $\frac{\pi}{2}$ is a rational number _____

Exercise 02

1. Let $n \in \mathbb{N}$. Prove that if n^2 is even then n is even

2 Prove that $\sqrt{2}$ is irrational.

Part 2: Supremum and Infimum

Exercise 03

Find the infimum and the supremum, whenever they exist, of the following sets

1.
$$A_1 = [-2, 0[$$

2. $B_1 =]-\infty, 2[$
3. $B_2 = [-1, 0] \cup [3, 4]$
4. $A_2 = \left\{1 - \frac{(-1)^n}{n}, n \in \mathbb{N}\right\}$
5. $A_3 = \left\{x \in \mathbb{R}^*, x < \frac{1}{x}\right\}$
6. $A_4 = \left\{x \in \mathbb{R}, x + 2 \ge x^2\right\}$
7. $A_5 = \left\{\frac{1}{n} - \frac{1}{m}, n, m \in \mathbb{N}\right\}$
8. $A_6 = \left\{x \in \mathbb{Q}, x^2 \le 2\right\}$
9. $A_7 = \left\{x \in \mathbb{R} \setminus \mathbb{Q}, x^2 \le 2\right\}$

Exercise 04

Given nonempty subsets A and B of \mathbb{R} and $k \in \mathbb{R}$, we define the following subsets of \mathbb{R} :

$$kA := \{k.a, \ a \in A\} \\ k + a := \{k + a, \ a \in A\} \\ A + B := \{a + b, \ a \in A, b \in B\}$$

Assume that A and B are nonempty bounded subsets of \mathbb{R} . Prove (any two of) the following

- 1. If k > 0, then $\inf(kA) = k \inf(A)$, $\sup(kA) = k \sup(A)$.
- 2. If k < 0, then $\inf(kA) = k \sup(A)$, $\sup(kA) = k \inf(A)$.
- 3. $\sup (A+B) = \sup A + \sup B$, $\inf (A+B) = \inf A + \inf B$
- 4. $\sup(A \cup B) = \sup \{\sup A, \sup B\}, \inf(A \cup B) = \inf \{\inf A, \inf B\}$

Part 3: The Modulus (Absolute value)

Exercise 5

Let $a, b \in \mathbb{R}$

- 1. Prove that $|a+b| \leq |a| + |b|$ (Triangle Inequality)
- 2. Prove that $|a + b| \ge ||a| |b||$ (Reverse Triangle Inequality)

Exercise 6

Solve the following equations

1. |2x + 5| - 2 = 22. $\frac{1}{4}|2x - 6| + 1 = 2$ 3. $|6 - x^2| + 1 = 3$ 4. $|x + 3| = x^2 - 4x - 3$ 5. $|x^2 + 1| = 2x$

Exercise 7

Find which $x \in \mathbb{R}$ meet

- 1. $|x 4| \le 2$
- 2. |x+3| > 4
- 3. $|x+2| \le -1$
- 4. $3|2x-5| \ge -6$
- 5. $|x^2 1| > 2x$
- 6. $|x^2 3| < 2$

Part 4: Integer Part

Exercise 08

Find the integer part and fractional part of the following numbers

14, 4.1,
$$\frac{35}{4}$$
, $\frac{-22}{3}$, $\sqrt{14}$, π , $\frac{\pi}{2}$, $\frac{\pi}{3}$

Exercise 09

Find the smallest positive $x \in \mathbb{R}$ such that $[x^2] - x[x] = 2019$