Tutorial Series 01(Analysis 1)

Part 1: Real number system

Exercise 01

Answer "True" or "False" to the statements below. If the statement is False, explain why.
1.) -5 is a rational number.
2.) $\sqrt{8}$ is rational.
3.) $\sqrt{16}$ is a natural number \qquad
4.) $\sqrt{2.25}$ is rational.. \qquad
5.) $\frac{22}{7}$ is a rational number \qquad
6.) π is a rational number.
7.) $\sqrt[3]{9}$ is rational.
8.) $\sqrt{16}$ is an irrational number
9.) $10 \frac{3}{4}$ is rational..
10.) $\frac{\pi^{4}}{2}$ is a rational number

Exercise 02

1. Let $n \in \mathbb{N}$. Prove that if n^{2} is even then n is even

2 Prove that $\sqrt{2}$ is irrational.

Part 2: Supremum and Infimum

Exercise 03

Find the infimum and the supremum, whenever they exist, of the following sets

1. $A_{1}=[-2,0[$
2. $\left.B_{1}=\right]-\infty, 2[$
3. $B_{2}=[-1,0] \cup[3,4]$
4. $A_{2}=\left\{1-\frac{(-1)^{n}}{n}, n \in \mathbb{N}\right\}$
5. $A_{3}=\left\{x \in \mathbb{R}^{*}, x<\frac{1}{x}\right\}$
6. $A_{4}=\left\{x \in \mathbb{R}, x+2 \geq x^{2}\right\}$
7. $A_{5}=\left\{\frac{1}{n}-\frac{1}{m}, n, m \in \mathbb{N}\right\}$
8. $A_{6}=\left\{x \in \mathbb{Q}, x^{2} \leq 2\right\}$
9. $A_{7}=\left\{x \in \mathbb{R} \backslash \mathbb{Q}, x^{2} \leq 2\right\}$

Exercise 04

Given nonempty subsets A and B of \mathbb{R} and $k \in \mathbb{R}$, we define the following subsets of \mathbb{R} :

$$
\begin{aligned}
& k A:=\{k \cdot a, a \in A\} \\
& k+a:=\{k+a, a \in A\} \\
& A+B:=\{a+b, a \in A, b \in B\}
\end{aligned}
$$

Assume that A and B are nonempty bounded subsets of \mathbb{R}. Prove (any two of) the following

1. If $k>0$, then $\inf (k A)=k \inf (A), \sup (k A)=k \sup (A)$.
2. If $k<0$, then $\inf (k A)=k \sup (A), \sup (k A)=k \inf (A)$.
3. $\sup (A+B)=\sup A+\sup B, \inf (A+B)=\inf A+\inf B$
4. $\sup (A \cup B)=\sup \{\sup A, \sup B\}, \inf (A \cup B)=\inf \{\inf A, \inf B\}$

Part 3: The Modulus (Absolute value)

Exercise 5

Let $a, b \in \mathbb{R}$

1. Prove that $|a+b| \leq|a|+|b|$ (Triangle Inequality)
2. Prove that $|a+b| \geq||a|-|b||$ (Reverse Triangle Inequality)

Exercise 6

Solve the following equations

1. $|2 x+5|-2=2$
2. $\frac{1}{4}|2 x-6|+1=2$
3. $\left|6-x^{2}\right|+1=3$
4. $|x+3|=x^{2}-4 x-3$
5. $\left|x^{2}+1\right|=2 x$

Exercise 7

Find which $x \in \mathbb{R}$ meet

1. $|x-4| \leq 2$
2. $|x+3|>4$
3. $|x+2| \leq-1$
4. $3|2 x-5| \geq-6$
5. $\left|x^{2}-1\right|>2 x$
6. $\left|x^{2}-3\right|<2$

Part 4: Integer Part

Exercise 08

Find the integer part and fractional part of the following numbers

$$
14, \quad 4.1, \quad \frac{35}{4}, \quad \frac{-22}{3}, \quad \sqrt{14}, \quad \pi, \quad \frac{\pi}{2}, \quad \frac{\pi}{3}
$$

Exercise 09

Find the smallest positive $x \in \mathbb{R}$ such that $\left[x^{2}\right]-x[x]=2019$

