
All this means that at the moment our collection of functions we’ve de-

fined is rather small, and doesn’t give the richness we’d like when exploring

examples of sequences. So for now we’ll work with these familiar functions

(trig, exponential, log)—we’ll assume that they exist and have the properties

we expect. You can do this on the problems sheets too. When we come to

defining them later on, you can watch out to see that we don’t have any

circular arguments!

Notation. When we use logarithms, these will all be to the base e. We write

log x for loge(x). We don’t write ln x.

For a > 0 and x ∈ R, we define ax = ex log a. (Of course this relies

on definitions of the exponential and logarithm functions, which will come

later.)

Remark. Examples can be really useful. I don’t mean worked examples

(although these can also be really useful), I mean examples of objects that

do or don’t have certain properties. I’ll include some examples in these

notes and the accompanying videos. You’ll find additional examples in Dr

Hilary Priestley’s lecture notes, on the Moodle page for Analysis I, and I

encourage you to work through those too. I also encourage you to try your

own examples (and non-examples), to help you to deepen your experience

and understanding of the definitions and results we’ll meet.

Example. Here are some informal examples of sequences.

�

3

10
,
33

100
,
333

1000
,
3333

10000
, . . . are approximations to 1

3
, each better than the

previous.

�

14

10
,
141

100
,
1414

1000
,
14142

10000
, . . . are approximations to

√
2, each better than

the previous.
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� Take ε > 0. Then, by the Archimedean property, there is N ⩾ 1 such

that 0 < 1
N

< ε. Now for all n ⩾ N we have 0 < 1
n
⩽ 1

N
< ε. We

see that apart from finitely many terms at the start, the terms of the

sequence 1, 1
2
, 1
3
, 1
4
, 1
5
, . . . all lie within distance ε of 0. This is the case

for any positive real number ε.

� 1,−1, 2,−2, 3,−4, 4,−4, . . . is another sequence, and intuitively it feels

as though it does not tend to a limit.

� 7, 1.2,−5, 2, 324,−9235.32, . . . is another sequence—there is no clear

pattern to the terms (I just typed them wherever my fingers landed),

but it is still a sequence.

What exactly is a sequence?

Definition. A real sequence, or sequence of real numbers, is a function

α : N → R. We call α(n) the nth term of the sequence.

We usually write an for α(n), and say that α defines the sequence (an)

with terms a1, a2, a3, a4, . . . . We might also write this as (an)n⩾1 or (an)
∞
n=1.

Similarly, a complex sequence is formally a function α : N → C, and we

write it as (an), where now an ∈ C for n ⩾ 1.

Remark. � The order of the terms in a sequence matters!

� We write (an) for the sequence, and an for a term of the sequence.

� Much of the theory relating to sequences applies to both real and com-

plex sequences. Sometimes, though, we’ll need to focus only on real

sequences—for example if we’re using inequalities. In this case we’ll

carefully specify that we’re working with real sequences. If we don’t
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specify, and just say ‘sequences’, then it applies equally to real and com-

plex sequences. We’ll also have a section (and corresponding video) at

the end of this block concentrating on complex sequences.

Example. � Let an = (−1)n. Then the first few terms of the sequence

are −1, 1,−1, 1,−1, 1, . . . .

� Let an = sinn
2n+1

. Then the first few terms of the sequence are

1

3
sin 1,

1

5
sin 2,

1

7
sin 3, . . . .

� Let

an =

0 if n is prime

1 + 1
n

otherwise.

Then the first few terms of the sequence are 2, 0, 0, 5
4
, 0, 7

6
, 0, 9

8
, . . . .

� Let an = n. Then the first few terms of the sequence are 1, 2, 3, 4, 5, . . . .

Definition. We can make new sequences from old. Let (an), (bn) be se-

quences and let c be a constant. Then we can define new sequences ‘termwise’:

(an + bn), (−an), (anbn), (can), (|an|). If bn ̸= 0 for all n, then we can also

define a sequence (an
bn
).

Example. Let an = (−1)n and bn = 1 for n ⩾ 1.

Then the first few terms of (an + bn) are 0, 2, 0, 2, 0, 2, . . . ; and (−an) =

((−1)n+1); and (|an|) = (bn).

16 Convergence of a sequence

Before we see a formal definition of convergence, let’s consider some examples

informally. Here’s one way I like to visualise a sequence. These are examples

from the previous section. Each graph plots the points (n, an) for 1 ⩽ n ⩽ 10.
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� an = (−1)n

� an =

0 if n is prime

1 + 1
n

otherwise
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� an = sinn
2n+1

� an = n

42



Here is an unofficial picture of the definition of convergence.

Definition. Let (an) be a real sequence, let L ∈ R. We say that (an)

converges to L as n → ∞ if

∀ε > 0 ∃N ∈ N such that ∀n ⩾ N, |an − L| < ε.

In this case we write an → L as n → ∞, and we say that L is the limit of

(an).

Remark. � We might also say that (an) tends to L as n → ∞, and we

might also write that lim
n→∞

an = L.

� N can depend on ε, and almost always will.

� The ‘order of the quantifiers’ matters. We wrote “∀ε > 0 ∃N ∈

N . . .”. This order allows N to depend on ε. If we wrote “∃N ∈

N such that ∀ε > 0 . . .” that would be something quite different.

We could replace n ⩾ N in the definition by n > N , and |an − L| < ε

by |an − L| ⩽ ε, without changing the definition. (Check this!) But

it’s crucial that we have ε > 0 not ε ⩾ 0. (Check this!)
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� I put ‘the’ limit in the definition. We’ll see later that if it exists then

it’s unique.

Definition. Let (an) be a real sequence. We say that (an) converges, or is

convergent, if there is L ∈ R such that an → L as n → ∞. If (an) does not

converge, then we say that it diverges, or is divergent.

Intuitively, the first thousand or million terms of a sequence shouldn’t

affect whether it converges. We’ll prove a result that makes this precise, but

first we need a quick definition.

Definition. Let (an) be a sequence. A tail of (an) is a sequence (bn), where

for some natural number k we have bn = an+k for n ⩾ 1. That is, (bn) is the

sequence obtained by deleting the first k terms of (an).

Lemma 23 (Tails Lemma). Let (an) be a sequence.

(i) If (an) converges to a limit L, then every tail of (an) also converges,

and to this same limit L.

(ii) If a tail (bn) = (an+k) of (an) converges, then (an) converges.

Proof. (i) Take a tail of (an): take k ⩾ 1 and let bn = an+k for n ⩾ 1.

Assume that (an) converges to a limit L.

Take ε > 0.

Then there is N such that if n ⩾ N then |an − L| < ε.

Now if n ⩾ N then n+ k ⩾ N so |an+k − L| < ε, that is, |bn − L| < ε.

So (bn) converges and bn → L as n → ∞.

(ii) Assume that (bn) = (an+k) converges.

Then there is L ∈ R such that bn → L as n → ∞.
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Take ε > 0.

Then there is N such that if m ⩾ N then |bm − L| < ε, that is,

|am+k − L| < ε.

Now if n ⩾ N + k then n = m+ k where m ⩾ N , and so |an − L| < ε.

So (an) converges and an → L as n → ∞.

Example. We’ll see later (soon!) that there are other ways to prove con-

vergence, not only directly from the definition. But for now we’ve only got

the definition (and the Tails Lemma), so let’s get some practice using what

we’ve got so far.

�

Claim. 1
n
→ 0 as n → ∞.

Proof. Take ε > 0.

Then there is N ∈ N such that 1
N

< ε (by the Archimedean property).

For n ⩾ N we have | 1
n
− 0| = 1

n
⩽ 1

N
< ε.

So 1
n
→ 0 as n → ∞.

�

Claim. Let an = 1 + (−1)n 1√
n
for n ⩾ 1. Then an → 1 as n → ∞.

Proof. Take ε > 0.

Aim: want N such that if n ⩾ N then |an − 1| < ε

that is, |(1 + (−1)n 1√
n
)− 1| < ε

that is, 1√
n
< ε,
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that is, 1
ε
<

√
n.

Take N = ⌈ 1
ε2
⌉+ 1.

Here ⌈x⌉ denotes the ceiling function: it is defined to be the smallest

integer greater than or equal to x. Informally, if x is an integer then

take that value; otherwise, round up to the next integer.

If n ⩾ N , then

n >
1

ε2

so
√
n >

1

ε

so
1√
n
< ε

so |an − 1| < ε.

So an → 1 as n → ∞.

�

Claim. Let an =
n cos(n3 + 1)

5n2 + 1
for n ⩾ 1. Then an → 0 as n → ∞.

Proof. Take ε > 0.

Aim: want N such that if n ⩾ N then |an − 0| < ε,

that is,

∣∣∣∣n cos(n3 + 1)

5n2 + 1

∣∣∣∣ < ε

but | cos(n3 + 1)| ⩽ 1 so it’s enough to ensure that

∣∣∣∣ n

5n2 + 1

∣∣∣∣ < ε

and 5n2 + 1 ⩾ 5n2 so it’s enough to ensure that
∣∣ n
5n2

∣∣ < ε

that is, 1
5n

< ε, that is, n > 1
5ε
.

Take N = ⌈1
ε
⌉+ 1.
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If n ⩾ N , then n > 1
5ε

so

|an| =
∣∣∣∣n cos(n3 + 1)

5n2 + 1

∣∣∣∣ ⩽ 1

5n
< ε.

So an → 0 as n → ∞.

Remark. Here are some top tips!

� We don’t need the smallest possible N . It’s (almost always) not even

interesting to know what it is. So make your life easier! If an inequality

(in the right direction) helps, then go for it.

� Be careful to make sure that the logic flows in the right direction, and

that you’ve set out the logic explicitly. Hopefully the examples we’ve

just seen help you to have ideas of how to do this.

� The definition officially says N ∈ N, but we don’t really care whether

N is a natural number. If we have a value that works, then we can

always choose a natural number larger than it.

� We think of ε as a small positive real number, but we are obliged to

prove it for all ε > 0. But if we can prove it for say 0 < ε < 1

then that’s enough—if N works for a certain ε then it works for all

larger values too. So you can work with a smaller range of ε, such as

0 < ε < 1, if that is most convenient (but it would be a good idea to

mention briefly why this is sufficient).

� It’s really worth becoming comfortable with inequalities and modulus.

In the examples, it was nicer to use the absolute values to write things

like |an−L| < ε, rather than −ε < an−L < ε. If you prefer the second

at the moment, then I recommend practising to get used to the first!
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Working directly from the definition is often painful or impractical. Our

next goal is to prove a result that will give a more convenient strategy for

proving convergence in some circumstances.

17 Limits: first key results

The next result is extremely useful in practice! We’ll see a more general

version later, but even this version is strong enough to be useful.

Proposition 24 (Sandwiching, first version). Let (an) and (bn) be real se-

quences with 0 ⩽ an ⩽ bn for all n ⩾ 1. If bn → 0 as n → ∞, then an → 0

as n → ∞.

Remark. You might like to draw yourself a diagram to develop your intuition

for what this result says.

Proof. Idea: if N works for bn then it works for an too.

Assume that 0 ⩽ an ⩽ bn for all n, and that bn → 0 as n → ∞.

Take ε > 0.

Since bn → 0, there exists N such that if n ⩾ N then |bn| < ε.

Now if n ⩾ N then 0 ⩽ an ⩽ bn < ε, so |an| < ε.

So an → 0 as n → ∞.

Example. �

Claim. 1
2n

→ 0 as n → ∞.

Proof. We have 2n ⩾ n for n ⩾ 1 (can prove this by induction),

so 0 ⩽ 1
2n

⩽ 1
n
for n ⩾ 1, and 1

n
→ 0,

so by Sandwiching 1
2n

→ 0 as n → ∞.
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�

Claim. Let an =
n cos(n3 + 1)

5n2 + 1
for n ⩾ 1 (we saw this example earlier).

Then an → 0 as n → ∞.

Proof. Idea: apply Sandwiching to (|an|).

We have

0 ⩽

∣∣∣∣n cos(n3 + 1)

5n2 + 1

∣∣∣∣ ⩽ 1

5n
⩽

1

n

for n ⩾ 1,

and 1
n
→ 0 as n → ∞,

so, by Sandwiching, |an| → 0 as n → ∞.

But (looking back at the definition) we see that |an| → 0 if and only if

an → 0.

Here are two key sequences; it will be useful later to have studied them.

(You can also think of them as further worked examples.)

Lemma 25. (i) Take c ∈ R with |c| < 1. Then cn → 0 as n → ∞.

(ii) Let an = n
2n

for n ⩾ 1. Then an → 0 as n → ∞.

Proof. (i) Write |c| = 1
1+y

where y > 0.

Take ε > 0.

Let N = ⌈ 1
yε
⌉ + 1. (When writing this proof, we might leave this line

blank and fill it in at the end!)

Take n ⩾ N .
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By Bernoulli’s inequality (since y > 0 and n ⩾ 1) we have (1 + y)n ⩾

1 + ny, so

|cn| = 1

(1 + y)n
⩽

1

1 + ny
⩽

1

Ny
< ε.

So cn → 0 as n → ∞.

(ii) Note that if n ⩾ 2 then 2n = (1+1)n ⩾
(
n
2

)
(by the binomial theorem).

Take ε > 0.

Let N = ⌈2 + 2
ε
⌉.

For n ⩾ N , we have

|an − 0| = n

2n
⩽

n(
n
2

) =
2

n− 1
⩽

2

N − 1
< ε.

So an → 0 as n → ∞.

As promised earlier, let’s show that if a sequence converges, then its limit

is unique.

Theorem 26 (Uniqueness of limits). Let (an) be a convergent sequence.

Then the limit is unique.

Proof. Assume that an → L1 and an → L2 as n → ∞. Aim: L1 = L2.

Idea: contradiction. If L1 ̸= L2, then eventually all the terms are really

close to L1, and also to L2, and that’s not possible.
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Suppose, for a contradiction, that L1 ̸= L2.

Let ε =
|L1 − L2|

2
> 0.

Since an → L1 as n → ∞, there is N1 such that if n ⩾ N1 then |an−L1| <

ε.

Also, since an → L2 as n → ∞, there is N2 such that if n ⩾ N2 then

|an − L2| < ε.

For n ⩾ max{N1, N2} we have |an − L1| < ε and |an − L2| < ε, so

|L1 − L2| = |(L1 − an) + (an − L2)|

⩽ |L1 − an|+ |an − L2| by the triangle inequality

< 2ε = |L1 − L2|.

This is a contradiction.

So L1 = L2.

18 Limits: modulus and inequalities

Proposition 27. Let (an) be a convergent sequence. Then (|an|) also con-

verges. Moreover, if an → L as n → ∞ then |an| → |L| as n → ∞.
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Proof. Say an → L as n → ∞.

Take ε > 0.

Then there is N such that if n ⩾ N then |an − L| < ε.

Now if n ⩾ N then, by the Reverse Triangle Inequality, we have

||an| − |L|| ⩽ |an − L| < ε.

So (|an|) converges, and |an| → |L| as n → ∞.

Remark. We could instead have proved Proposition 27 using the Sandwich-

ing Lemma, since an → L as n → ∞ if and only if |an − L| → 0 as n → ∞

(check this using the definition of convergence).

Now let’s think about inequalities. If (an) is a convergent sequence and

an > 0 for all n, then what can we say about the limit? It’s not the case that

the limit must be positive. For example, if an = 1
n
then an > 0 for all n but

an → 0. But it’s hard to see how a sequence of positive terms could have a

negative limit.

Proposition 28 (Limits preserve weak inequalities). Let (an) and (bn) be

real sequences, and assume that an → L and bn → M as n → ∞, and that

an ⩽ bn for all n. Then L ⩽ M .

Remark. � This includes the special case where an = 0 for all n: Propo-

sition 28 says that if bn ⩾ 0 for all n, and bn → M as n → ∞, then

M ⩾ 0. (This is because the constant sequence 0, 0, 0, . . . certainly

converges to 0.)

� A common mistake is to use the non-result that limits preserve strict

inequalities. As we’ve seen, this is not true. Please try not to do this!
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Proof. Suppose, for a contradiction, that it is not the case that L ⩽ M , so

(by trichotomy) L > M .

Let ε = 1
2
(L−M) > 0.

Since an → L as n → ∞, there is N1 such that if n ⩾ N1 then |an−L| < ε.

Since bn → M as n → ∞, there is N2 such that if n ⩾ N2 then |bn−M | <

ε.

Now for n ⩾ max{N1, N2} we have an > L− ε and bn < M + ε,

so L− ε < an ⩽ bn < M + ε,

so L−M < 2ε = L−M . This is a contradiction.

We saw a sandwiching result earlier. Here is a generalisation.

Proposition 29 (Sandwiching). Let (an), (bn) and (cn) be real sequences

with an ⩽ bn ⩽ cn for all n ⩾ 1. If an → L and cn → L as n → ∞, then

bn → L as n → ∞.

Proof. Take ε > 0.

Since an → L as n → ∞, there is N1 such that if n ⩾ N1 then |an−L| < ε.

Since cn → L as n → ∞, there is N2 such that if n ⩾ N2 then |cn−L| < ε.

Then for n ⩾ max{N1, N2} we have L− ε ⩽ an ⩽ bn ⩽ cn ⩽ L+ ε,

so |bn − L| < ε.

So bn → L as n → ∞.
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19 Bounded and unbounded sequences

Definition. Let (an) be a sequence. We say that (an) is bounded if the set

{an : n ⩾ 1} is bounded, that is, there is M such that |an| ⩽ M for all n ⩾ 1.

If (an) is not bounded then we say that it is unbounded.

Proposition 30 (A convergent sequence is bounded). Let (an) be a conver-

gent sequence. Then (an) is bounded.

Remark. Proposition 30 tells us that if (an) is unbounded then (an) diverges.

Proof.

Assume that an → L as n → ∞.

Then (taking ε = 1) there is N such that if n ⩾ N then |an − L| < 1 so

|an| = |(an − L) + L| ⩽ |an − L|+ |L| < 1 + |L|.

Let M = max{|a1|, |a2|, . . . , |aN |, |L|+ 1}.

Then |an| ⩽ M for all n ⩾ 1.

Remark. � As remarked earlier, if (an) is unbounded then (an) diverges.

So, for example, (2n) diverges.

� Unboundedness is not the same as divergence. The converse of Propo-

sition 30 is not true. A bounded sequence can diverge. For example,

let an = (−1)n. Then |an| ⩽ 1 for all n ⩾ 1, so (an) is bounded.

Claim. ((−1)n) does not converge.
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Proof. Suppose, for a contradiction, that (−1)n → L as n → ∞.

Then (taking ε = 1) there is N such that if n ⩾ N then |(−1)n−L| < 1.

In particular (n = 2N) we have |L− 1| < 1 so L > 0,

and (n = 2N + 1) we have |L+ 1| < 1 so L < 0.

This is a contradiction.

What would it mean to say that a sequence tends to infinity?

Definition. Let (an) be a real sequence. We say that (an) tends to infinity

as n → ∞ if

∀M ∈ R ∃N ∈ N such that ∀n ⩾ N, an > M.

In this case we write an → ∞ as n → ∞.

Similarly, we say that (an) tends to negative infinity as n → ∞ if

∀M ∈ R ∃N ∈ N such that ∀n ⩾ N, an < M.

In this case we write an → −∞ as n → ∞.
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Remark. This is a separate definition from our earlier definition of conver-

gence, and ∞ is definitely not a real number. Results about convergence to

a real number L cannot just be applied by ‘taking L = ∞’—this would be

highly illegal!

Example. � Let an = n2 − 6n for n ⩾ 1.

Claim. an → ∞ as n → ∞.

Proof. Fix M > 0. (It suffices to prove the result for M > 0.)

We want N such that if n ⩾ N then n2 − 6n ⩾ M

but n2 − 6n = (n− 3)2 − 9

so we are done if (n− 3)2 ⩾ M + 9

that is, we are done if n− 3 ⩾
√
M + 9

Let N = ⌈4 +
√
M + 9⌉.

If n ⩾ N , then n− 3 ⩾
√
M + 9 > 0,

so (n− 3)2 ⩾ M + 9,

so n2 − 6n ⩾ M .

So an → ∞ as n → ∞.

� Let an =

0 if n prime

n otherwise.

Then (an) does not tend to infinity, because there are infinitely many

primes: for any N ∈ N, there is a prime n with n > N , and then

an = 0.

Lemma 31. (i) If α < 0, then nα → 0 as n → ∞.
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(ii) If α > 0, then nα → ∞ as n → ∞.

Proof. (i) Take ε ∈ (0, 1). We have

nα < ε

⇔ eα logn < ε

⇔ α log n < log ε

⇔ log n >
1

α
log ε (note α < 0)

⇔ n > e
1
α
log ε

so we can take N = 1 + ⌈e 1
α
log ε⌉.

(ii) Take M > 0. We have

nα > M

⇔ eα logn > M

⇔ α log n > logM

⇔ log n >
1

α
logM (note α > 0)

⇔ n > e
1
α
logM

so we can take N = 1 + ⌈e 1
α
logM⌉.

Lemma 32. Let c ∈ R>0.

(i) If c < 1, then cn → 0 as n → ∞.

(ii) If c = 1, then cn → 1 as n → ∞.

(iii) If c > 1, then cn → ∞ as n → ∞.

Proof. (i) This was Lemma 25.
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(ii) This is clear from the definition of convergence.

(iii) Exercise. (You could adapt the argument from (i), or use logarithms.)

20 Complex sequences

A lot of the theory we have just seen applies equally to complex sequences,

but there are some differences. Let’s spell out the definition of convergence

explicitly.

Definition. Let (zn) be a complex sequence, let L ∈ C. We say that (zn)

converges to L as n → ∞ if

∀ε > 0 ∃N ∈ N such that ∀n ⩾ N, |zn − L| < ε.

Remark. � If (zn) tends to a limit, then this limit is unique, exactly as

in Theorem 26.

� We can have a sort of sandwiching for complex sequences, if we use the

modulus. If (zn) and (wn) are complex sequences, and |wn| ⩽ |zn| for

all n ⩾ 1, and zn → 0 as n → ∞, then wn → 0 as n → ∞.

Given a complex sequence (zn), there are two associated real sequences

(Re(zn)) and (Im(zn)). The next result relates convergence of (zn) to con-

vergence of (Re(zn)) and (Im(zn)).

Theorem 33 (Convergence of complex sequences). Let (zn) be a complex

sequence. Write zn = xn + iyn with xn, yn ∈ R, so that (xn) and (yn)

are real sequences. Then (zn) converges if and only if both (xn) and (yn)

converge. Moreover, in the case where (zn) converges, we have lim
n→∞

zn =

lim
n→∞

xn + i lim
n→∞

yn.
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Proof. Exercise.

Example. � Let zn = in

n
. Then |zn| = 1

n
→ 0 as n → ∞ so zn → 0 as

n → ∞.

� Let zn = (1 + i)n. The sequence is

1 + i, 2i,−2 + 2i,−4,−4− 4i,−8i, 8− 8i, 16, . . . .

The real parts are 1, 0,−2,−4,−4, 0, 8, 16, . . .—this sequence doesn’t

converge, and hence neither does (zn).

21 Subsequences

We can make a good informal guess as to what we mean by a subsequence.

Let (an)n⩾1 be a sequence. Then a subsequence is a sequence (br)r⩾1,

where each br is in (an), and the terms are in the right order.

Example. Let an = n for n ⩾ 1. The following are subsequences of (an).

� 2, 4, 6, 8, . . . — the subsequence (a2n)

� 2, 4, 8, 16, . . . — the subsequence (a2n)

The following are not subsequences of (an).

� 6, 4, 8, . . . — the terms are not in the right order

� 2, 4, 0, . . . — not all the terms are in (an)

� 1, 2, 3, . . . , 2020 — finite so not a sequence.

Now let’s give a formal definition of a subsequence.
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Definition. Let (an)n⩾1 be a sequence. A subsequence (br)r⩾1 of (an)n⩾1 is

defined by a function f : N → N such that f is strictly increasing (if p < q

then f(p) < f(q)), and br = af(r) for r ⩾ 1.

We often write f(r) as nr. Then n1 < n2 < n3 < · · · is a strictly

increasing sequence of natural numbers, and br = anr so the sequence (br)

has terms an1 , an2 , an3 , . . . .

Remark. � Formally, (an) corresponds to a function α : N → R or

α : N → C. Then a subsequence of (an) corresponds to a function

α ◦ f , where f : N → N is strictly increasing.

� Subscripts are ‘dummy variables’. We can write (an) as (ar) or (am)

or (aα) or (ax). It is conventional to use a letter close to n in the

alphabet, to help us remember that it is a natural number. We can

use any letter for the subscripts in the subsequence (br), except that if

we write our original sequence as (an) then we should avoid using n for

the subsequence too.

� It’s sometimes useful to know that nr ⩾ r for r ⩾ 1. (Exercise: prove

this inequality, using induction.)

Proposition 34 (Subsequences of a convergent sequence). Let (an) be a

sequence. If (an) converges, then every subsequence (anr) of (an) converges.

Moreover, if an → L as n → ∞ then every subsequence also converges to L.

Remark. So if (an) is a sequence, and it has two subsequences that tend

to different limits, then (an) does not converge. This follows from Proposi-

tion 34, and can be a useful strategy for showing that a sequence does not

converge.

Proof. Assume that (an) converges to L.
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Let (anr) be a subsequence of (an).

Take ε > 0.

Since an → L, there is N such that if n ⩾ N then |an − L| < ε.

If r ⩾ N , then nr ⩾ r ⩾ N (see remark before this result),

so |anr − L| < ε.

So anr → L as r → ∞.

Example. Let an =

0 if n is prime

1 + 1
n

otherwise

.

Claim. (an) does not converge.

Proof. Idea: the subsequence of terms with prime subscripts tends to 0,

and the subsequence of terms with non-prime subscripts tends to 1, so (an)

doesn’t converge.

Let the primes be p1 < p2 < p3 < · · · . Let P = {p1, p2, p3, . . . }.

Note that there are infinitely many primes, so (apr)r⩾1 is a subsequence.

We have apr = 0 for all r ⩾ 1, so apr → 0 as r → ∞.

Let the elements of N \ P be n1 < n2 < n3 < · · · .

Note that there are infinitely many non-primes, so (anr)r⩾1 is a subse-

quence.

We have anr = 1 + 1
nr

for r ⩾ 1, and so we see that anr → 1 as r → ∞.

So (an) has subsequences that converge to different limits, so, by Propo-

sition 34, (an) does not converge.

22 Algebra of Limits — part one

Example. This is an unofficial example. We’ll return to it once we’ve proved

some results.
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Let an =
7n5 − n sin(n2 + 5n) + 3

4n5 − 3n2 + n+ 2
.

What can we say about (an)?

Intuitively...

- the numerator grows like 7n5 — the other terms are much smaller for

large n, which is all we care about;

- the denominator grows like 4n5

so we might conjecture that an → 7
4
as n → ∞.

To prove this (and lots more!), we’ll prove a bunch of results that are

extremely useful in practice. Collectively, these are known as the ‘Algebra of

Limits’, and we’ll quote “by AOL” in arguments.

Theorem 35 (Algebra of Limits, part 1). Let (an) and (bn) be sequences

with an → L and bn → M as n → ∞. Let c be a constant.

(i) (constant) If an = c, so (an) is a constant sequence, then an → c as

n → ∞.

(ii) (scalar multiplication) The sequence (can) converges, and can → cL as

n → ∞.

(iii) (addition) The sequence (an + bn) converges, and an + bn → L+M as

n → ∞.

(iv) (subtraction) The sequence (an − bn) converges, and an − bn → L−M

as n → ∞.

(v) (modulus) The sequence (|an|) converges, and |an| → |L| as n → ∞.

Proof. (i) This is immediate from the definition.
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(ii) If c = 0, then we’re done by (i). So assume that c ̸= 0.

Take ε > 0.

Since an → L, there is N such that if n ⩾ N then |an − L| < ε.

Now if n ⩾ N then |can − cL| = |c||an − L| < |c|ε.

So (can) converges to cL.

OR...

Take ε > 0.

Since an → L, there is N such that if n ⩾ N then |an − L| < ε
|c| .

Now if n ⩾ N then |can − cL| = |c||an − L| < ε.

So (can) converges to cL.

(iii) Take ε > 0.

Since an → L as n → ∞ there is N1 such that if n ⩾ N1 then |an−L| <

ε.

Since bn → M as n → ∞ there is N2 such that if n ⩾ N2 then

|bn −M | < ε.

Let N = max{N1, N2}. If n ⩾ N , then |an − L| < ε and |bn −M | < ε,

so

|(an + bn)− (L+M)| ⩽ |an − L|+ |bn −M | (by triangle inequality)

< 2ε.

So (an + bn) converges to L+M .

(iv) This follows from (ii) and (iii).

(v) This was Proposition 27.
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Remark. In (iii), I ended up showing that we can make |(an+bn)−(L+M)|

less than 2ε by going far enough along the sequence. But the definition says

ε, not 2ε, so isn’t this a problem?

Well, no, it’s not a problem. We need to show that we can make |(an +

bn)− (L+M)| less than any positive real number — and that’s what we’ve

done. The important thing is that 2 was a (positive) constant: it didn’t

depend on n.

We could instead have chosen N1 and N2 corresponding to
ε
2
(so if n ⩾ N1

then |an −L| < ε
2
and similarly for bn), and then we’d have got ε at the end.

But if I’d done that then it might have seemed more mysterious: you might

have wondered “how would I have known to choose ε
2
?”

In practice, sometimes I doodle on scrap paper and consequently know

what to choose at the start, and sometimes I just work through and see

what happens, and if I get 2ε or 1000ε at the end then it doesn’t matter. I

illustrated these two alternative approaches in (ii) — but really they’re the

same, and both are fine.

Example.

Claim. Let an =
1

2n
+

(
1 + (−1)n

1√
n

)
+

n cos(n3 + 1)

5n2 + 1
. Then an → 1 as

n → ∞.

Proof. We showed earlier that
1

2n
→ 0 and 1 + (−1)n

1√
n

→ 1 and also

n cos(n3 + 1)

5n2 + 1
→ 0 as n → ∞ (see Section 16).

So, by AOL, (an) converges, and an → 0 + 1 + 0 = 1 as n → ∞.

Example.

Claim. Let an = (−1)n + n
2n

for n ⩾ 1. Then (an) does not converge.
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Proof. Suppose, for a contradiction, that (an) converges.

Note that
(

n
2n

)
converges (this was an earlier example).

So, by AOL, the sequence with nth term (−1)n = an − n
2n

converges.

But we showed earlier that ((−1)n) does not converge (or we could now

note that it has subsequences tending to different limits 1 and −1). This is

a contradiction.

23 Algebra of Limits — part two

Theorem 36 (Algebra of Limits, part 2). Let (an) and (bn) be sequences

with an → L and bn → M as n → ∞.

(vi) (product) The sequence (anbn) converges, and anbn → LM as n → ∞.

(vii) (reciprocal) If M ̸= 0, then the sequence
(

1
bn

)
converges, and 1

bn
→ 1

M

as n → ∞.

(viii) (quotient) If M ̸= 0, then the sequence
(

an
bn

)
converges, and an

bn
→ L

M

as n → ∞.

Remark. You might wonder whether the sequences
(

1
bn

)
and

(
an
bn

)
in (vii)

and (viii) are defined. This is a good question. The answer is that — as we’ll

show in the proof — if M ̸= 0 then a tail of (bn) has all its terms nonzero,

and hence there’s a tail of
(

1
bn

)
that exists, and similarly for

(
an
bn

)
. When

we talk about convergence of these sequences, it’s enough to consider a tail.

Proof. (vi) We’re going to want to study

|anbn − LM | = |an(bn −M) +M(an − L)|

⩽ |an||bn −M |+ |M ||an − L|
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— this use of the triangle inequality can help us to see how to proceed.

Take ε > 0. We may assume that ε < 1.

Since an → L, there is N1 such that if n ⩾ N1 then |an − L| < ε.

Since bn → M , there is N2 such that if n ⩾ N2 then |bn −M | < ε.

Let N = max{N1, N2}.

If n ⩾ N , then |an − L| < ε and |bn −M | < ε and |an| < |L|+ ε, so

|anbn − LM | = |an(bn −M) +M(an − L)|

⩽ |an||bn −M |+ |M ||an − L|

< (|L|+ ε) · ε+ |M | · ε

< ε(1 + |L|+ |M |).

Since 1 + |L| + |M | is constant, this is enough to show that (anbn)

converges, and the limit is LM .

(vii) Assume that M ̸= 0.

Idea: (1) eventually bn is close to M , so can’t be 0. (2)

∣∣∣∣ 1bn − 1

M

∣∣∣∣ =
|bn −M |
|M ||bn|

– eventually the numerator is small, and |bn| is close to |M |.

Take ε > 0.

Since bn → M and |M | > 0, there is N1 such that if n ⩾ N1 then

|bn −M | < |M |
2
, so (by the Reverse Triangle Inequality)

|bn| ⩾ ||bn + (M − bn)| − |M − bn|| >
|M |
2

> 0.

So the tail (bn)n⩾N1 has all terms nonzero, so we can consider the se-

quence
(

1
bn

)
n⩾N1

.

Also, there is N2 such that if n ⩾ N2 then |bn −M | < ε.
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Let N = max{N1, N2}. If n ⩾ N , then∣∣∣∣ 1bn − 1

M

∣∣∣∣ = |M − bn|
|M ||bn|

<
ε

|M |
· 2

|M |
.

Since 2
|M |2 is a positive constant, this shows that

(
1
bn

)
n⩾N1

converges,

and the limit is 1
M
.

(viii) This follows from (vi) and (vii).

Example. Let an =
7n5 − n sin(n2 + 5n) + 3

4n5 − 3n2 + n+ 2
(we saw this example at the

start of Section 22).

Claim. an → 7
4
as n → ∞.

Proof. Idea: the important terms (for large n) are 7n5 and 4n5.

We have

an =
7− 1

n4 sin(n
2 + 5n) + 3

n5

4− 3
n3 +

1
n4 +

2
n5

.

Now

0 ⩽

∣∣∣∣ 1n4
sin(n2 + 5n)

∣∣∣∣ ⩽ 1

n4
⩽

1

n

and 1
n
→ 0, so by Sandwiching 1

n4 sin(n
2 + 5n) → 0, and several other terms

also tend to 0 (eg by Sandwiching),

so, by AOL, (an) converges, and

an → 7− 0 + 0

4− 0 + 0 + 0
=

7

4

as n → ∞.

Proposition 37 (Reciprocals and infinite/zero limits). Let (an) be a se-

quence of positive real numbers. Then an → ∞ as n → ∞ if and only if

1
an

→ 0 as n → ∞.

Proof. Exercise (using the definitions).
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24 Orders of magnitude

When we’re studying a sequence (an), it can be really useful to develop some

intuition about the behaviour of an for large n, in order to make a conjecture

about the convergence (or otherwise) of the sequence, and to select a proof

strategy. (This is what we did in the example at the end of the last section,

for example.)

Example. � Let an =
8n2 + 1000000n+ 1000000

14n6 + n3 + n
.

Intuitively, the key term in the numerator is 8n2, and the key term in

the denominator is 14n6. Even with the amusingly large coefficients in

the numerator, when n is large these terms will be much smaller than

8n2.

So it feels like the sequence grows roughly like 8
14n4 , so should tend to

0.

We can formalise this using AOL. Dividing through top and bottom by

n6 (since this is the key term), we get

an =
8
n4 +

1000000
n5 + 1000000

n6

14 + 1
n3 +

1
n5

→ 0 + 0 + 0

14 + 0 + 0
= 0

as n → ∞.

� We showed in Lemma 25 that n
2n

→ 0 as n → ∞.

This is an example of the idea that ‘exponentials beat polynomials’.

But while ‘exponentials beat polynomials’ is a useful slogan for intu-

ition, it is not suitable for rigorous proofs!

� We’ve seen a couple of examples where we used that | cosx| ⩽ 1 and

| sinx| ⩽ 1 for all x — this can be useful.
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� We’ll show in the next section that logn
n

→ 0 as n → ∞. Intuitively,

polynomials grow faster than logarithms.

Definition. Let (an) and (bn) be sequences. We write an = O(bn) as n → ∞

if there is a constant C ∈ R>0 and there is N such that if n ⩾ N then

|an| ⩽ C|bn|. This is ‘big O’ notation.

If bn ̸= 0 for all n (or all sufficiently large n), then we write an = o(bn) as

n → ∞ if an
bn

→ 0 as n → ∞. This is ‘little o’ notation.

Remark. � Sandwiching tells us that if an = O(bn) and bn → 0 as

n → ∞ then an → 0 as n → ∞.

� Big O and little o notation give us precise ways to make precise state-

ments about comparative rates of growth of sequences. Please use them

precisely!

Example. This example is in a Moodle quiz. Before you read on to the next

section, please go to the Moodle course page for Analysis I, and try the quiz

for section 24 (it’s a short multiple choice quiz).

25 Monotonic sequences

Definition. Let (an) be a real sequence.

� We say that (an) is monotonic increasing, or monotone increasing, or

increasing, if an ⩽ an+1 for all n.

� We say that (an) is strictly increasing if an < an+1 for all n.

� We say that (an) is monotonic decreasing, or monotone decreasing, or

decreasing, if an ⩾ an+1 for all n.
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� We say that (an) is strictly decreasing if an > an+1 for all n.

� We say that (an) is monotonic, or monotone, if it is increasing or de-

creasing.

Example. Notice that a constant sequence is both increasing and decreasing.

This might seem counterintuitive!

We know that a convergent sequence is bounded. What can we say about

a bounded monotone sequence?

Theorem 38 (Monotone Sequences Theorem). Let (an) be a real sequence.

(i) If (an) is increasing and bounded above, then (an) converges.

(ii) If (an) is decreasing and bounded below, then (an) converges.

Remark. � So ‘a bounded monotone sequence converges’.

� The result applies to tails of sequences too: if (an) has a tail that is

monotone and bounded, then it converges.

Proof. (i) Assume that (an) is increasing and bounded above.
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Idea: {an : n ⩾ 1} has a supremum, and (an) converges to this.

The set S = {an : n ⩾ 1} is non-empty and bounded above, so, by

Completeness, it has a supremum.

Take ε > 0.

By the Approximation Property, there is N such that supS−ε < aN ⩽

supS.

If n ⩾ N , then supS − ε < aN ⩽ an ⩽ supS,

so |an − supS| < ε.

So (an) converges, and an → supS as n → ∞.

(ii) If (an) is decreasing and bounded below, then (−an) is increasing and

bounded above, so (ii) follows from (i).

Lemma 39. Let (an) be a real sequence that is increasing and not bounded

above. Then an → ∞ as n → ∞.

Proof. Take M ∈ R.

Since (an) is not bounded above, there is N such that aN > M .

Then, since (an) is increasing, if n ⩾ N then an ⩾ aN > M .
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Example. Let an =

(
1 +

1

n

)n

.

On Sheet 1, you proved that (an) is increasing and that (an) is bounded

above (by 3). So, by the Monotone Sequences Theorem, (an) converges. Say

an → L as n → ∞. Then, since limits preserve weak inequalities, we see that

2 ⩽ L ⩽ 3.

(Secretly, we know more about L, but that’s strictly unofficial for now.)

Example. Let c ⩾ 0. In this example, we’ll show that
√
c exists. (This

generalises earlier work on
√
2, and uses a different strategy.)

Define (an) by a1 = 1 and an+1 =
1

2

(
an +

c

an

)
for n ⩾ 1.

This is a legitimate definition, since (by induction) an ̸= 0 for n ⩾ 1.

Claim. (an) converges, and if an → L then L2 = c.

Proof. � (an) bounded below:

by a straightforward induction argument, we have an > 0 for all n.

� study a2n − c:

for n ⩾ 1, we have

a2n+1 − c =
1

4

(
an +

c

an

)2

− c

=
1

4

(
a2n + 2c+

c2

a2n

)
− c

=
1

4

(
a2n − 2c+

c2

a2n

)
=

1

4

(
an −

c

an

)2

⩾ 0,

so a2n+1 ⩾ c for n ⩾ 1.
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� (an)n⩾2 decreasing:

for n ⩾ 2, we have

an+1 − an =
1

2

(
an +

c

an

)
− an =

1

2

(
c

an
− an

)
=

1

2an
(c− a2n) ⩽ 0,

so an+1 ⩽ an for n ⩾ 2.

So, by the Monotone Sequences Theorem, (an) converges.

Say an → L as n → ∞.

Then also an+1 → L as n → ∞ (it’s a tail of the sequence).

But if L ̸= 0 then

an+1 =
1

2

(
an +

c

an

)
→ 1

2

(
L+

c

L

)
by AOL.

Since limits are unique, we have L = 1
2

(
L+ c

L

)
,

so, rearranging, L2 = c.

Also, we have an > 0 for all n, and limits preserve weak inequalities, so

L ⩾ 0.

So
√
c exists (L =

√
c).

In the case that L = 0, since limits preserve weak inequalities and a2n ⩾ c

for n ⩾ 2 we have c ⩽ 0, so c = 0 and L2 = c.

Lemma 40. We have logn
n

→ 0 as n → ∞.

Proof. Let an = logn
n

.

Then an ⩾ 0 for all n, so (an) is bounded below.

Also, by properties of log we see that (an)n⩾100 is decreasing.

So, by the Monotone Sequences Theorem, (an) converges. Say
logn
n

→ L

as n → ∞.

Since limits preserve weak inequalities, we have L ⩾ 0.
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Now

a2n =
log(2n)

2n
=

log 2 + log n

2n
→ 0 +

L

2

by AOL,

but also (a2n) is a subsequence of (an) so a2n → L as n → ∞.

So, by uniqueness of limits, L
2
= L, so L = 0.

26 Convergent subsequences

Theorem 41 (Scenic Viewpoints Theorem). Let (an) be a real sequence.

Then (an) has a monotone subsequence.

Proof. Idea: consider the ‘peaks’ of the sequence.

Let V = {k ∈ N : if m > k then am < ak}. (The elements of V are

‘peaks’ or ‘scenic viewpoints’: if k ∈ V then ak is higher than all subsequent

terms.)

Case 1: V is infinite.

Say the elements of V are k1 < k2 < · · · .

Then (akr)r is a subsequence of (an)

and it is monotone decreasing (if r < s then kr < ks so akr > aks).

Case 2: V is finite.

Then there is N such that if k ∈ V then k < N .
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Let m1 = N . Then m1 ̸∈ V so there is m2 > m1 with am2 ⩾ am1 .

Also, m2 ̸∈ V so there is m3 > m2 with am3 ⩾ am2 .

Continuing inductively, we construct m1 < m2 < m3 < · · · such that

am1 ⩽ am2 ⩽ am3 ⩽ · · · .

Then (amr)r is an increasing subsequence of (an).

Theorem 42 (Bolzano-Weierstrass Theorem). Let (an) be a bounded real

sequence. Then (an) has a convergent subsequence.

Proof. By the Scenic Viewpoints Theorem, (an) has a monotone subsequence.

This monotone subsequence is bounded (because the whole sequence is),

so by the Monotone Sequences Theorem (Theorem 38) it converges.

Remark. � This proof of the Bolzano-Weierstrass Theorem was very

short, because we did all the work in the Monotone Sequences Theorem

and Scenic Viewpoints Theorem! I have another favourite proof of

Bolzano-Weierstrass. I’ve turned it into a quiz ‘proof sorter’ activity

on Moodle.

� The Monotone Sequences Theorem and Scenic Viewpoints Theorem

don’t make sense for complex sequences. But Bolzano-Weierstrass po-

tentially could . . .

Corollary 43 (Bolzano-Weierstrass Theorem for complex sequences). Let

(zn) be a bounded complex sequence. Then (zn) has a convergent subsequence.

Proof. Study real and imaginary parts, and repeatedly pass to subsequences

Write zn = xn + iyn where xn, yn ∈ R.

Say (zn) is bounded by M , so |zn| ⩽ M for all n.

Then (xn) and (yn) are also bounded by M , and they are real sequences.

By Bolzano-Weierstrass, (xn) has a convergent subsequence, say (xnr)r.
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Now (ynr)r is a bounded real sequence, so by Bolzano-Weierstrass it has

a convergent subsequence, say (ynrs
)s.

Note that (xnrs
)s is a subsequence of the convergent sequence (xnr)r and

hence converges.

So, by Theorem 33, (znrs
)s converges (since its real and imaginary parts

converge).

27 Cauchy sequences

Example. Let (an) be a convergent sequence.

Then an+1 − an → 0 as n → ∞.

We can prove this directly from the definition (with the triangle inequal-

ity), or using tails and the Algebra of Limits.

But it is not the case that if an+1−an → 0 as n → ∞ then (an) converges.

For example, consider an =
√
n. Certainly (an) does not converge. But

an+1 − an =
√
n+ 1−

√
n =

(n+ 1)− n√
n+ 1 +

√
n
=

1√
n+ 1 +

√
n
→ 0

as n → ∞.

Nonetheless, intuitively it seems that if eventually all the terms of a se-

quence are bunched up close together then the sequence might converge.

Definition. Let (an) be a sequence. We say that (an) is a Cauchy sequence

if

∀ε > 0 ∃N ∈ N such that ∀m,n ⩾ N |an − am| < ε.

Remark. Note that this definition makes sense for complex sequences as

well as for real sequences.

Proposition 44. Let (an) be a convergent sequence. Then (an) is Cauchy.
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Proof. Say an → L as n → ∞.

Take ε > 0.

Since an → L, there is N such that if n ⩾ N then |an − L| < ε
2
.

Take m,n ⩾ N . Then |am − L| < ε
2
and |an − L| < ε

2
,

so, by the triangle inequality,

|am − an| = |(am − L) + (L− an)|

⩽ |am − L|+ |an − L| < ε.

So (an) is Cauchy.

Proposition 45. Let (an) be a Cauchy sequence. Then (an) is bounded.

Proof. Idea: use a similar strategy to Proposition 30, where we showed that

a convergent sequence is bounded.

Since (an) is Cauchy, there is (applying the definition with ε = 1) N such

that if m,n ⩾ N then |am − an| < 1.

Now for n ⩾ N we have |an − aN | < 1,

so |an| = |(an − aN) + aN | ⩽ 1 + |aN |.

Let K = max{|a1|, |a2|, . . . , |aN−1|, 1 + |aN |}.

Then |an| ⩽ K for all n ⩾ 1.

So (an) is bounded.
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Proposition 46. Let (an) be a Cauchy sequence. Suppose that the subse-

quence (anr)r converges. Then (an) converges.

Proof. Idea: eventually all the terms of (anr) are really close to the limit L,

and eventually all the terms of (an) are really close to terms in the subse-

quence and hence also really close to L.

Say that anr → L as r → ∞.

Take ε > 0.

Then there is N1 such that if r ⩾ N1 then |anr − L| < ε
2
.

Also, since (an) is Cauchy there is N2 such that if m,n ⩾ N2 then |am −

an| < ε
2
.

Let N = max{N1, N2}.

Let r = N . Then nr ⩾ r ⩾ N1 so |anr − L| < ε
2

and if n ⩾ N then n, nr ⩾ N2 so |anr − an| < ε
2
,

so

|an − L| = |(an − anr) + (anr − L)|

⩽ |an − anr |+ |anr − L| < ε.

So an → L as n → ∞.

The following result is really useful! We’ll use it in later sections.

Theorem 47 (Cauchy Convergence Criterion). Let (an) be a sequence. Then

(an) converges if and only if (an) is Cauchy.

Proof. (⇒) This was Proposition 44.

(⇐) Assume that (an) is Cauchy.

Then (an) is bounded, by Proposition 45,

so by the Bolzano-Weierstrass Theorem (Theorem 42), (an) has a conver-

gent subsequence, say (anr).
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