Tutorial Series 02(Analysis 1)

Exercise 01

Prove (this means give $\varepsilon-N$ proof) that

1. $\frac{10}{n} \longrightarrow 0$ as $n \longrightarrow \infty$
2. $\frac{2 n^{2}+1}{9 n^{2}+5} \longrightarrow \frac{2}{9}$ as $n \longrightarrow \infty$
3. $\frac{1-2 n}{3 n+5} \longrightarrow \frac{-2}{3}$ as $n \longrightarrow \infty$
4. $\frac{n \cos \left(n^{3}+1\right)}{5 n^{2}+1} \longrightarrow 0$ as $n \longrightarrow \infty$

Exercise 02

Determine whether each sequence converges or diverges. If the sequence converges, find its limit

1. $\left(\frac{n(n+1)}{3 n^{2}+7 n}\right)_{n \in \mathbb{N}^{*}}$
2. $\left(\frac{\sin n}{n}\right)_{n \in \mathbb{N}^{*}}$
3. $\left(\frac{\sqrt{n+1}}{\sqrt{3 n+1}}\right)_{n \in \mathbb{N}^{*}}$
4. $\frac{2^{n} n!}{(2 n+1)!}$

Exercise 03

Determine the limits of the following sequences $\left(a_{n}\right)_{n \in \mathbb{N}}$ whose $n^{\text {th }}$ term a_{n} is given below.

1. $a_{n}=\frac{103 n^{2}-8}{4 n^{2}+99 n-3}$
2. $a_{n}=-n+\sqrt{n^{2}+3 n}$
3. $a_{n}=\frac{5 n^{3}+3 n+1}{15 n^{3}+n^{2}+2}$
4. $a_{n}=\frac{\sin \left(n^{2}+1\right)}{n^{2}+1}$
5. $a_{n}=\frac{\sqrt{n+2}-\sqrt{n+1}}{\sqrt{n+1}-\sqrt{n}}$
6. $a_{n}=\frac{n^{2}+n+1}{3 n^{2}+4}$
7. $a_{n}=\sqrt{n^{4}+n^{2}}-n^{2}$
8. $a_{n}=-n+\sqrt{n^{2}+n}$
9. $a_{n}=\frac{\sin n}{n}+(\sqrt{n+1}-\sqrt{n})$

Exercise 04

Show that if $\left(a_{n}\right)$ is a sequence of real numbers which converge to L then the sequence $\left(M_{n}\right)$ whose $n^{t h}$ term is

$$
M_{n}=\frac{a_{1}+a_{2}+\ldots+a_{n}}{n}
$$

also converges to L

Exercise 05

Which of the following assertions are true? Justify correct ones and give a counter example for each incorrect assertion.
(a) If a sequence is monotone and bounded, then it converges.
(b) If a sequence converges, then it is monotone and bounded.
(c) If a sequence is not bounded, then it is not convergent.
(d) If a sequence is not monotone, then it is not convergent.
(e) If a sequence has exactly one accumulation point, then it converges.
(\mathbf{f}) If a sequence converges, then it has exactly one accumulation point.

Exercise 06

Let the sequence $\left(a_{n}\right)$ be given by a starting value $a_{0} \in[0 ; 2]$ and the recursion

$$
a_{n+1}=\frac{a_{n}\left(a_{n}^{2}+3\right)}{3 a_{n}^{2}+1}, \quad n=0,1,2, \ldots
$$

1. Show that $a_{n+1}-1=\frac{\left(a_{n}-1\right)^{3}}{3 a_{n}^{2}+1}, \quad n=0,1,2, \ldots$
2. Prove the following two statements:

$$
\begin{array}{ll}
0<a_{0}<1 \Longrightarrow & 0<a_{n}<1 \\
1<a_{0}<2 \Longrightarrow & \text { for all } n \in \mathbb{N} \\
1<a_{n}<2 & \text { for all } n \in \mathbb{N}
\end{array}
$$

3. Show that the sequence is strictly montonically increasing for $0<a_{0}<1$ and strictly monotonically decreasing for $1<a_{0}<2$.
4. For which $a_{0} \in[0 ; 2]$ does the sequence converge? If so, determine the limit.

Exercice 07

Show that the sequences $\left(x_{n}\right)$ whose $n^{t h}$ term is x_{n} is unbounded

1. $x_{n}=\frac{n^{3}+3 n^{2}}{n+1}-n^{2}$
2. $x_{n}=\left(n+\frac{1}{n}\right)^{3}-n^{3}$
3. $x_{n}=\left(n+\frac{1}{n^{2}}\right)^{4}-n^{4}$

Exercice 08

1. Given that $k!\geq 2^{k-1}$ for all $k \geq 1$, show that the sequence $\left(a_{n}\right)$ whose $n^{t h}$ term is $a_{n}=\sum_{k=1}^{n} \frac{1}{k!}$ is bounded above by 3 .
2. Explain why you can deduce that $\left(a_{n}\right)$ converge

Exercice 09

1. Given that $k^{k} \geq 2^{k}$ for all $k \geq 2$, show that the sequence $\left(a_{n}\right)$ whose $n^{t h}$ term is $a_{n}=\sum_{k=1}^{n} \frac{1}{k^{k}}$ is bounded above by $\frac{3}{2}$.
2. Explain why you can deduce that $\left(a_{n}\right)$ converge

Exercise 10

Let $\quad a_{k}=\frac{1}{k 2^{k}}, \quad b_{k}=\frac{k}{2^{k}}, \quad S_{n}=\sum_{k=1}^{n} a_{k} \quad$ and $\quad t_{n}=\sum_{k=1}^{n} b_{k}$

1. Find the limit of the sequence $\left(\frac{a_{k+1}}{a_{k}}\right)$ and $\left(\frac{b_{k+1}}{b_{k}}\right)$
2. Given that $a_{k}<\frac{1}{2^{k}}<b_{k}$ and $b_{k} \leq\left(\frac{3}{4}\right)^{k-2}, k \geq 3$. Explain why $\left(S_{n}\right)$ and $\left(t_{n}\right)$ both converge with

$$
\lim _{n \longrightarrow \infty} S_{n} \leq 1 \leq \lim _{n \longrightarrow \infty} t_{n}<4
$$

Exercice 11

Given that $(1+1 / n)^{n} \longrightarrow e=2.718 \cdots$ as $n \longrightarrow \infty$ and for $c>0, c^{\frac{1}{n}} \longrightarrow 1$ as $n \longrightarrow \infty$ show the following.

1. $\left(1+\frac{1}{n^{2}}\right) \longrightarrow 1$ as $n \longrightarrow \infty$
2. The sequence $\left(a_{n}\right)$ defined by

$$
a_{n}=\left(1+\frac{1}{\sqrt{n}}\right)^{n}
$$

is unbounded
3. If $r=\frac{p}{q} \in \mathbb{Q}$ is a rational number and assuming that the sequence $\left(t_{n}\right)$ defined by $t_{n}=\left(1+\frac{r}{n}\right)^{n}$ converges, then the subsequence $\left(t_{n p}\right)=\left(t_{p}, t_{2 p}, \ldots\right)$ converges to e^{r}.

Exercise 12

Let $\left(s_{n}\right)$ be the sequence given by $S_{n}=\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{2 n}$

1. Show that the sequence is increasing. Does it converges?
2. By noting that $0<\int_{k}^{k+1} \frac{1}{k} d x-\frac{1}{k+1}<\frac{1}{k}-\frac{1}{k+1}$. Show that $0<\ln 2-S_{n}<\frac{1}{2 n}$, and explain why you can deduce that $\left(S_{n}\right)$ converge.
