University of M'sila. 2023/2024 Faculty of Technology Domaine: Engineering Level: First year

Tutorial Series 02(Analysis 1)

Exercise 01

Prove (this means give $\varepsilon - N$ proof) that

1.
$$\frac{10}{n} \longrightarrow 0 \text{ as } n \longrightarrow \infty$$

2. $\frac{2n^2 + 1}{9n^2 + 5} \longrightarrow \frac{2}{9} \text{ as } n \longrightarrow \infty$
3. $\frac{1 - 2n}{3n + 5} \longrightarrow \frac{-2}{3} \text{ as } n \longrightarrow \infty$
4. $\frac{n \cos(n^3 + 1)}{5n^2 + 1} \longrightarrow 0 \text{ as } n \longrightarrow \infty$

Exercise 02

Determine whether each sequence converges or diverges. If the sequence converges, find its limit

1.
$$\left(\frac{n(n+1)}{3n^2+7n}\right)_{n\in\mathbb{N}^*}$$

2. $\left(\frac{\sin n}{n}\right)_{n\in\mathbb{N}^*}$
3. $\left(\frac{\sqrt{n+1}}{\sqrt{3n+1}}\right)_{n\in\mathbb{N}^*}$
4. $\frac{2^n n!}{(2n+1)!}$

Exercise 03

Determine the limits of the following sequences $(a_n)_{n \in \mathbb{N}}$ whose n^{th} term a_n is given below.

1.
$$a_n = \frac{103n^2 - 8}{4n^2 + 99n - 3}$$

2. $a_n = -n + \sqrt{n^2 + 3n}$
3. $a_n = \frac{5n^3 + 3n + 1}{15n^3 + n^2 + 2}$
4. $a_n = \frac{\sin(n^2 + 1)}{n^2 + 1}$
5. $a_n = \frac{\sqrt{n + 2} - \sqrt{n + 1}}{\sqrt{n + 1} - \sqrt{n}}$
6. $a_n = \frac{n^2 + n + 1}{3n^2 + 4}$
7. $a_n = \sqrt{n^4 + n^2} - n^2$
8. $a_n = -n + \sqrt{n^2 + n}$
9. $a_n = \frac{\sin n}{n} + (\sqrt{n + 1} - \sqrt{n})$

Exercise 04

Show that if (a_n) is a sequence of real numbers which converge to L then the sequence (M_n) whose n^{th} term is

$$M_n = \frac{a_1 + a_2 + \dots + a_n}{n}$$

also converges to L

Exercise 05

Which of the following assertions are true? Justify correct ones and give a counter example for each incorrect assertion.

- (a) If a sequence is monotone and bounded, then it converges.
- (b) If a sequence converges, then it is monotone and bounded.
- (c) If a sequence is not bounded, then it is not convergent.
- (d) If a sequence is not monotone, then it is not convergent.
- (e) If a sequence has exactly one accumulation point, then it converges.
- (f) If a sequence converges, then it has exactly one accumulation point.

Exercise 06

Let the sequence (a_n) be given by a starting value $a_0 \in [0; 2]$ and the recursion

$$a_{n+1} = \frac{a_n \left(a_n^2 + 3\right)}{3a_n^2 + 1}, \qquad n = 0, 1, 2, \dots$$

1. Show that $a_{n+1} - 1 = \frac{(a_n - 1)^3}{3a_n^2 + 1}$, n = 0, 1, 2, ...

2. Prove the following two statements:

$$\begin{array}{ll} 0 < a_0 < 1 \implies & 0 < a_n < 1 & \text{for all } n \in \mathbb{N}; \\ 1 < a_0 < 2 \implies & 1 < a_n < 2 & \text{for all } n \in \mathbb{N}. \end{array}$$

- 3. Show that the sequence is strictly monotically increasing for $0 < a_0 < 1$ and strictly monotonically decreasing for $1 < a_0 < 2$.
- 4. For which $a_0 \in [0; 2]$ does the sequence converge? If so, determine the limit.

Exercice 07

Show that the sequences (x_n) whose n^{th} term is x_n is unbounded

1.
$$x_n = \frac{n^3 + 3n^2}{n+1} - n^2$$

2. $x_n = \left(n + \frac{1}{n}\right)^3 - n^3$
3. $x_n = \left(n + \frac{1}{n^2}\right)^4 - n^4$

Exercice 08

- 1. Given that $k! \ge 2^{k-1}$ for all $k \ge 1$, show that the sequence (a_n) whose n^{th} term is $a_n = \sum_{k=1}^{n} \frac{1}{k!}$ is bounded above by 3.
- 2. Explain why you can deduce that (a_n) converge

Exercice 09

- 1. Given that $k^k \ge 2^k$ for all $k \ge 2$, show that the sequence (a_n) whose n^{th} term is $a_n = \sum_{k=1}^n \frac{1}{k^k}$ is bounded above by $\frac{3}{2}$.
- 2. Explain why you can deduce that (a_n) converge

Exercise 10

Let
$$a_k = \frac{1}{k2^k}$$
, $b_k = \frac{k}{2^k}$, $S_n = \sum_{k=1}^n a_k$ and $t_n = \sum_{k=1}^n b_k$

1. Find the limit of the sequence $\left(\frac{a_{k+1}}{a_k}\right)$ and $\left(\frac{b_{k+1}}{b_k}\right)$

2. Given that $a_k < \frac{1}{2^k} < b_k$ and $b_k \le \left(\frac{3}{4}\right)^{k-2}$, $k \ge 3$. Explain why (S_n) and (t_n) both converge with

$$\lim_{n \to \infty} S_n \le 1 \le \lim_{n \to \infty} t_n < 4$$

Exercice 11

Given that $(1+1/n)^n \longrightarrow e = 2.718 \cdots$ as $n \longrightarrow \infty$ and for $c > 0, c^{\frac{1}{n}} \longrightarrow 1$ as $n \longrightarrow \infty$ show the following.

- 1. $\left(1+\frac{1}{n^2}\right) \longrightarrow 1 \text{ as } n \longrightarrow \infty$
- 2. The sequence (a_n) defined by

$$a_n = \left(1 + \frac{1}{\sqrt{n}}\right)^r$$

is unbounded

3. If $r = \frac{p}{q} \in \mathbb{Q}$ is a rational number and assuming that the sequence (t_n) defined by $t_n = (1 + \frac{r}{n})^n$ converges, then the subsequence $(t_{np}) = (t_p, t_{2p}, ...)$ converges to e^r .

Exercise 12

Let (s_n) be the sequence given by $S_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$

- 1. Show that the sequence is increasing. Does it converges?
- 2. By noting that $0 < \int_{k}^{k+1} \frac{1}{k} dx \frac{1}{k+1} < \frac{1}{k} \frac{1}{k+1}$. Show that $0 < \ln 2 S_n < \frac{1}{2n}$, and explain why you can deduce that (S_n) converge.