FIRST PART: DEMENSIONAL ANALYSIS

EXERCISE 01:

Study the homogeneity of the following equations:
$\checkmark C=P+\rho . g . z$ In which P represents pressure, p stands for density, z denotes height, and Cremains a constant.
$\checkmark 2\left(x_{0}-v t\right)=g t^{2} \sin (\theta)$
$\checkmark v=-\frac{f}{R} g t+\sqrt{2 L g \operatorname{Sin}(\theta)}$
Where x_{0} is the initial position, v is velocity, L is distance, f and $R n$ are reaction forces, θ is an angle, and t and T are times.

EXERCISE 02 :

Consider the physical quantities s, v, a and t with dimensions $[s]=L,[v]=L T^{-1},[a]=L T^{-2}$, and $[t]=T$.
Check whether each of the following equations is dimensionally consistent:

$$
s=v t+0.5 a t^{2} \quad s=v t^{2}+0.5 a . t \quad v=\sin \left(a t^{2} / s\right)
$$

EXERCISE 03:

Determine the dimension of the variable ' X ' that achieve dimensional consistency for the equation, given that ' h ' represents height, " v " is the velocity and ' m ' represents mass.

$$
\frac{1}{2} m v^{2}=m X h
$$

EXERCISE 04:

A particle moves with a constant velocity v in a circular orbit of a radius r as shown in the facing figure. The magnitude of its acceleration is proportional to some power of $r\left(r^{n}\right)$ and some power of $v\left(v^{m}\right)$. Determine
 both powers n and m of r and v respectively.

SECOND PART: VECTORS

EXERCISE 01:

Consider the following points: $A(1,1,1), B(2,-1,0)$, and $C(0,2,2)$.
1- Represent these points in a Cartesian coordinates system ($O, x y z$)
2- Determine the components of the vectors $\overrightarrow{A B}$ and $\overrightarrow{B C}$
3- Calculate the angle M between the two vectors $\overrightarrow{A B}$ and $\overrightarrow{B C}$.

EXERCISE 02:

4- Using the graphical and analytical methods, find the sum and subtraction of the following vectors

$$
\overrightarrow{V_{1}}=3 \vec{\imath}+3 \vec{\jmath} \quad \overrightarrow{V_{2}}=2 \vec{\imath}+2 \vec{\jmath}
$$

5- Find the angle formed by $\overrightarrow{\boldsymbol{V}_{1}}$ and $\overrightarrow{\boldsymbol{V}_{2}}$
6- Calculate the dot (scalar) product and the cross (vector) product of $\overrightarrow{V_{1}}$ and $\overrightarrow{V_{2}}$

EXERCISE 03:

1- Vector \vec{A} has x and y components of 4 cm and -5 cm , respectively. Vector \vec{B} has x and y components of -2 cm and 1 cm , respectively. If $\vec{A}-\vec{B}+3 \vec{C}=\overrightarrow{0}$, then what are the components of the vector \vec{C}.
2- Three vectors are oriented as shown in Figure below, where $A=10, B=20$, and $C=15$ units. Find: (a) the x and y components of the resultant vector $\vec{D}=\vec{A}+\vec{B}+\vec{C}$, (b) the magnitude and direction of the resultant vector \vec{D}.

EXERCISE 04:

In a direct orthonormal coordinate system $\mathfrak{R}(\overrightarrow{\boldsymbol{\imath}}, \overrightarrow{\boldsymbol{\jmath}}, \overrightarrow{\boldsymbol{k}})$ we consider the following vectors:

$$
\overrightarrow{V_{1}}=3 \vec{\imath}+3 \vec{\jmath} \quad \overrightarrow{V_{2}}=\vec{\imath}+3 \vec{\jmath}+\vec{k} \quad \overrightarrow{V_{3}}=\vec{\imath}-\vec{\jmath}+2 \vec{k} \quad \overrightarrow{V_{4}}=2 \vec{\imath}-\vec{k}
$$

\checkmark Represent the vectors $\overrightarrow{V_{1}}$ and $\overrightarrow{V_{2}}$.
\checkmark Calculate the magnitude of $\overrightarrow{V_{1}}$ and $\overrightarrow{V_{2}}$, the dot product $\overrightarrow{V_{1}} \cdot \overrightarrow{V_{2}}$ and the cross product $\overrightarrow{V_{1}} \Lambda \overrightarrow{V_{2}}$.
\checkmark Calculate the angle θ formed by the vectors $\overrightarrow{V_{1}}$ and $\overrightarrow{V_{2}}$.
\checkmark Prove that the vector $\overrightarrow{V_{3}}$ is perpendicular to the plane (P) formed by vectors $\overrightarrow{V_{1}}$ and $\overrightarrow{V_{2}}$.
\checkmark Prove that the vector $\overrightarrow{\boldsymbol{V}_{4}}$ belongs to the plane (P).
\checkmark Determine the unit vector \vec{U} carried by the vector $\overrightarrow{V_{1}}$ and $\overrightarrow{V_{2}}$.

