FIRST PART: DEMENSIONAL ANALYSIS

EXERCISE 01:

Study the homogeneity of the following equations:

- \checkmark $C = P + \rho$. g. z In which P represents pressure, p stands for density, z denotes height, and C remains a constant.
- $\checkmark 2(x_0 vt) = gt^2 sin(\theta)$
- $\checkmark v = -\frac{f}{R} gt + \sqrt{2Lg \sin(\theta)}$

Where x_0 is the initial position, v is velocity, L is distance, f and Rn are reaction forces, θ is an angle, and t and T are times.

EXERCISE 02:

Consider the physical quantities s, v, a and t with dimensions [s]=L, $[v]=LT^{-1}$, [a]=L T^{-2} , and [t]=T. Check whether each of the following equations is dimensionally consistent:

$$s = vt + 0.5 a t^2$$

$$s = vt^2 + 0.5 \ a.t$$

$$v = \sin(at^2/s)$$

EXERCISE 03:

Determine the dimension of the variable 'X' that achieve dimensional consistency for the equation, given that 'h' represents height, "v" is the velocity and 'm' represents mass.

$$\frac{1}{2}m\,v^2=m\,X\,h$$

EXERCISE 04:

A particle moves with a constant velocity v in a circular orbit of a radius r as shown in the facing figure. The magnitude of its acceleration is proportional to some power of r (r^n) and some power of v (v^m). Determine both powers n and m of r and v respectively.

SECOND PART: VECTORS

EXERCISE 01:

Consider the following points: A (1, 1, 1), B (2, -1, 0), and C (0, 2, 2).

- 1- Represent these points in a Cartesian coordinates system (O, xyz)
- 2- Determine the components of the vectors \overrightarrow{AB} and \overrightarrow{BC}
- 3- Calculate the angle M between the two vectors \overrightarrow{AB} and \overrightarrow{BC} .

EXERCISE 02:

4- Using the graphical and analytical methods, find the sum and subtraction of the following vectors

$$\overrightarrow{V_1} = 3\overrightarrow{\iota} + 3\overrightarrow{J}$$
 $\overrightarrow{V_2} = 2\overrightarrow{\iota} + 2\overrightarrow{J}$

- 5- Find the angle formed by $\overrightarrow{V_1}$ and $\overrightarrow{V_2}$
- 6- Calculate the dot (scalar) product and the cross (vector) product of $\overrightarrow{V_1}$ and $\overrightarrow{V_2}$

EXERCISE 03:

- 1- Vector \vec{A} has x and y components of 4 cm and -5 cm, respectively. Vector \vec{B} has x and y components of -2 cm and 1 cm, respectively. If $\vec{A} \vec{B} + 3\vec{C} = \vec{0}$, then what are the components of the vector \vec{C} .
- 2- Three vectors are oriented as shown in Figure below, where A=10, B=20, and C=15 units. Find: (a) the x and y components of the resultant vector $\vec{D}=\vec{A}+\vec{B}+\vec{C}$, (b) the magnitude and direction of the resultant vector \vec{D} .

EXERCISE 04:

In a direct orthonormal coordinate system $\Re(\vec{i}, \vec{j}, \vec{k})$ we consider the following vectors:

$$\overrightarrow{V_1} = 3\overrightarrow{\iota} + 3\overrightarrow{J} \qquad \overrightarrow{V_2} = \overrightarrow{\iota} + 3\overrightarrow{J} + \overrightarrow{k} \qquad \overrightarrow{V_3} = \overrightarrow{\iota} - \overrightarrow{J} + 2\overrightarrow{k} \qquad \overrightarrow{V_4} = 2\overrightarrow{\iota} - \overrightarrow{k}$$

- \checkmark Represent the vectors $\overrightarrow{V_1}$ and $\overrightarrow{V_2}$.
- \checkmark Calculate the magnitude of $\overrightarrow{V_1}$ and $\overrightarrow{V_2}$, the dot product $\overrightarrow{V_1}$. $\overrightarrow{V_2}$ and the cross product $\overrightarrow{V_1} \land \overrightarrow{V_2}$.
- \checkmark Calculate the angle θ formed by the vectors $\overrightarrow{V_1}$ and $\overrightarrow{V_2}$.
- \checkmark Prove that the vector $\overrightarrow{V_3}$ is perpendicular to the plane (P) formed by vectors $\overrightarrow{V_1}$ and $\overrightarrow{V_2}$.
- \checkmark Prove that the vector $\overrightarrow{V_4}$ belongs to the plane (P).
- \checkmark Determine the unit vector \overrightarrow{U} carried by the vector $\overrightarrow{V_1}$ and $\overrightarrow{V_2}$.