FIRST PART: DEMENSIONAL ANALYSIS

EXERCISE 01:

Study the homogeneity of the following equations:

- \checkmark $C = P + \rho$. g. z In which P represents pressure, p stands for density, z denotes height, and C remains a constant.
- $\checkmark 2(x_0 vt) = gt^2 \sin(\theta)$
- $\checkmark v = -\frac{f}{R} gt + \sqrt{2Lg \sin(\theta)}$

Where x_0 is the initial position, v is velocity, L is distance, f and Rn are reaction forces, θ is an angle, and t and T are times.

EXERCISE 02:

Consider the physical quantities s, v, a and t with dimensions [s] = L, $[v] = LT^{-1}$, [a] = L, T^{-2} , and [t] = T. Check whether each of the following equations is dimensionally consistent:

$$s = vt + 0.5 a t^2 s = vt^2 + 0.5 a.tv = sin (at^2/s)$$

EXERCISE 03:

Determine the dimension of the variable 'X' that achieve dimensional consistency for the equation, given that 'h' represents height, "v" is the velocity and 'm' represents mass.

$$\frac{1}{2}m v^2 = m X h$$

EXERCISE 04:

A particle moves with a constant velocity v in a circular orbit of a radius r as shown in the facing figure. The magnitude of its acceleration is proportional to some power of $r(r^n)$ and some power of $v(v^m)$. Determine both powers n and m of r and v respectively.

SECOND PART: VECTORS

EXERCISE 01:

Consider the following points: A(1, 1, 1), B(2, -1, 0), and C(0, 2, 2).

- 1- Represent these points in a Cartesian coordinates system (O, xyz)
- 2- Determine the components of the vectors \overrightarrow{AB} and \overrightarrow{BC}
- 3- Calculate the angle M between the two vectors \overrightarrow{AB} and \overrightarrow{BC} .

EXERCISE 02:

Using the graphical and analytical methods, find the sum and subtraction of the following vectors

$$\overrightarrow{V_1} = 3\overrightarrow{i} + 3\overrightarrow{j} \overrightarrow{V_2} = 2\overrightarrow{i} + 2\overrightarrow{j}$$

Find the angle formed by $\overrightarrow{V_1}$ and $\overrightarrow{V_2}$

Calculate the dot (scalar) product and the cross (vector) product of $\overrightarrow{V_1}$ and $\overrightarrow{V_2}$

EXERCISE 03:

Vector \vec{A} has x and y components of 4 cm and -5 cm, respectively. Vector \vec{B} has x and y components of -2 cm and 1 cm, respectively. If $\vec{A} - \vec{B} + 3 \vec{C} = \vec{0}$, then what are the components of the vector \vec{C} . Three vectors are oriented as shown in Figure below, where A = 10, B = 20, and C = 15 units. Find: (a) the x and y components of the resultant vector $\vec{D} = \vec{A} + \vec{B} + \vec{C}$, (b) the magnitude and direction of the resultant vector \vec{D} .

EXERCISE 04:

In a direct orthonormal coordinate system $\Re(\vec{t}, \vec{j}, \vec{k})$ we consider the following vectors:

$$\overrightarrow{V_1} = 3\overrightarrow{t} + 3\overrightarrow{j} \, \overrightarrow{V_2} = \overrightarrow{t} + 3\overrightarrow{j} + \overrightarrow{k} \overrightarrow{V_3} = \overrightarrow{t} - \overrightarrow{j} + 2\overrightarrow{k} \overrightarrow{V_4} = 2\overrightarrow{t} - \overrightarrow{k}$$

- \checkmark Represent the vectors $\overrightarrow{V_1}$ and $\overrightarrow{V_2}$.
- \checkmark Calculate the magnitude of $\overrightarrow{V_1}$ and $\overrightarrow{V_2}$, the dot product $\overrightarrow{V_1}.\overrightarrow{V_2}$ and the cross product $\overrightarrow{V_1}.\overrightarrow{V_2}$.
- \checkmark Calculate the angle θ formed by the vectors $\overrightarrow{V_1}$ and $\overrightarrow{V_2}$.
- ✓ Prove that the vector $\overrightarrow{V_3}$ is perpendicular to the plane (P) formed by vectors $\overrightarrow{V_1}$ and $\overrightarrow{V_2}$.
- ✓ Provethat the vector $\overrightarrow{V_4}$ belongs to the plane (P).
- \checkmark Determine the unit vector \vec{U} carried by the vector $\vec{V_1}$ and $\vec{V_2}$.