FIRST PART: CARTESIAN, POLAR AND CYLINDRICAL COORDINATE SYSTEMS

Exercise 01:

Using $\overrightarrow{\boldsymbol{\imath}}$ and $\overrightarrow{\boldsymbol{\jmath}}$ as the unit vectors for the Cartesian coordinate system, and $\overrightarrow{\boldsymbol{u}}_{r}$ and $\overrightarrow{\boldsymbol{u}}_{\boldsymbol{\theta}}$ as the unit vectors for the polar coordinate system (where $\boldsymbol{\theta}$ is time-dependent),

1) Write the expressions for the unit vectors $\overrightarrow{\boldsymbol{u}}_{r}$ and $\overrightarrow{\boldsymbol{u}}_{\boldsymbol{\theta}}$ in terms of $\overrightarrow{\boldsymbol{\imath}}$ and $\overrightarrow{\boldsymbol{\jmath}}$.
2) Calculate the derivatives of these unit vectors with respect to both time and $\boldsymbol{\theta}$.
3) Express the unit vectors $\overrightarrow{\boldsymbol{\imath}}$ and $\overrightarrow{\boldsymbol{j}}$ in terms of $\overrightarrow{\boldsymbol{u}}_{r}$ and $\overrightarrow{\boldsymbol{u}}_{\boldsymbol{\theta}}$.
4) Compute the derivatives of $\overrightarrow{\boldsymbol{\imath}}$ and $\overrightarrow{\boldsymbol{\jmath}}$ unit vectors with respect to both time and $\boldsymbol{\theta}$

Exercise 02:

In the polar coordinate system with unit vectors $\overrightarrow{\boldsymbol{u}}_{r}$ and $\overrightarrow{\boldsymbol{u}}_{\boldsymbol{\theta}}$, the positions of the moving object \boldsymbol{M} at two different moments \boldsymbol{t}_{1} and \boldsymbol{t}_{2} are given as follows : $\boldsymbol{M}_{\boldsymbol{1}}(\mathbf{3}, \boldsymbol{\pi} / \mathbf{6}) \boldsymbol{M}_{2}(\mathbf{2}, 2 \pi / 3)$

1) Represent the positions of the moving object \boldsymbol{M} in the polar coordinate system.
2) Provide the expressions for the position vector at \boldsymbol{t}_{1} and \boldsymbol{t}_{2} moments.
3) Determine the expression for the displacement vector from \boldsymbol{M}_{1} to \boldsymbol{M}_{2}.
4) Convert the coordinates of the two positions from polar to Cartesian coordinates, and rewrite the previous expressions in Cartesian coordinates.

Exercise 03:

- Identify the coordinates of points $\boldsymbol{A}, \boldsymbol{B}$, and \boldsymbol{C} presented in the following polar coordinate system.
- Represent D, \boldsymbol{E}, and \boldsymbol{F} points on the same polar coordinate system.

D(5 cm, $\left.150^{\circ}\right) ; E\left(1 \mathrm{~cm}, 90^{\circ}\right) ; F\left(3.5 \mathrm{~cm}, 320^{\circ}\right)$

- From the cylindrical coordinate system shown in the attached diagram, calculate the coordinates for points $\boldsymbol{K}, \boldsymbol{L}$, and \boldsymbol{M}.

- Similarly, Represent $\boldsymbol{N}, \boldsymbol{P}$, and \boldsymbol{Q} points on the same cylindrical coordinate system $\mathbf{N}\left(\mathbf{4 c m}, 150^{0}, 2 \mathrm{~cm}\right) ; P\left(3 \mathrm{~cm}, 60^{0}, 2 \mathrm{~cm}\right) ; Q\left(4.5 \mathrm{~cm}, 320^{0}, 9 \mathrm{~cm}\right)$

