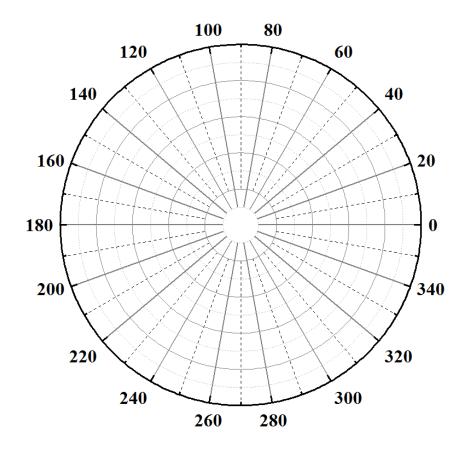
FIRST PART: CARTESIAN, POLAR AND CYLINDRICAL COORDINATE SYSTEMS Exercise 01:

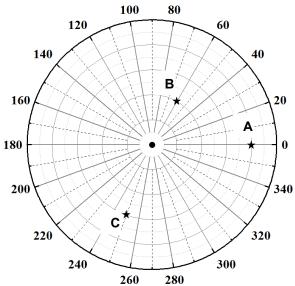

Using \vec{i} and \vec{j} as the unit vectors for the Cartesian coordinate system, and \vec{u}_r and \vec{u}_{θ} as the unit vectors for the polar coordinate system (where θ is time-dependent),

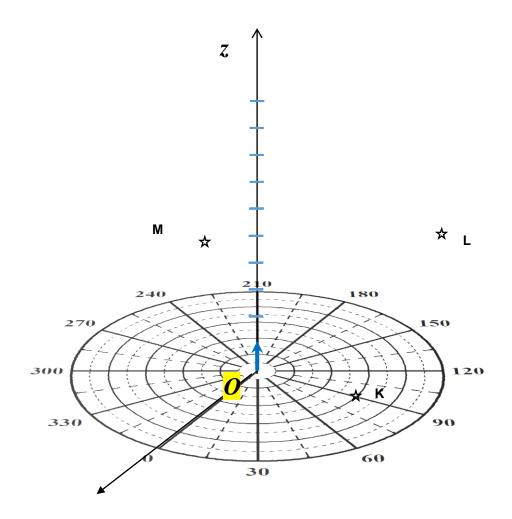
- 1) Write the expressions for the unit vectors \vec{u}_r and \vec{u}_{θ} in terms of \vec{i} and \vec{j} .
- 2) Calculate the derivatives of these unit vectors with respect to both time and θ .
- 3) Express the unit vectors \vec{i} and \vec{j} in terms of \vec{u}_r and \vec{u}_{θ} .
- 4) Compute the derivatives of \vec{i} and \vec{j} unit vectors with respect to both time and θ

Exercise 02:

In the polar coordinate system with unit vectors \vec{u}_r and \vec{u}_{θ} , the positions of the moving object M at two different moments t_1 and t_2 are given as follows: $M_1(3, \pi/6)$ $M_2(2, 2\pi/3)$

- 1) Represent the positions of the moving object M in the polar coordinate system.
- 2) Provide the expressions for the position vector at t_1 and t_2 moments.
- 3) Determine the expression for the displacement vector from M_1 to M_2 .
- 4) Convert the coordinates of the two positions from polar to Cartesian coordinates, and rewrite the previous expressions in Cartesian coordinates.




Exercise 03:

- Identify the coordinates of points A, B, and C presented in the following polar coordinate system.
- Represent **D**, **E**, and **F** points on the same polar coordinate system.

 $D(5 \text{ cm}, 150^{\circ}); E(1 \text{ cm}, 90^{\circ}); F(3.5 \text{ cm}, 320^{\circ})$

- From the cylindrical coordinate system shown in the attached diagram, calculate the coordinates for points K, L, and M.
- Similarly, Represent N, P, and Q points on the same cylindrical coordinate system $N(4 \text{ cm}, 150^{\circ}, 2 \text{ cm})$; $P(3 \text{ cm}, 60^{\circ}, 2 \text{ cm})$; $Q(4.5 \text{cm}, 320^{\circ}, 9 \text{ cm})$

