Solutions to Exercise Series \mathbf{N}° : 04

Exercise 1.

Write an algorithm which solves a first degree equation $a x+b=0$ (a, b entered by the user)
Algorithm equation
Var
a, b, x : real
Begin
Write ("This algorithm solves a first degree equation $a x+b=0$ ")
Write ("Enter a and b:");
$\operatorname{Read}(a, b)$
$x \leftarrow-b / a ;$
write (" the solution $x={ }^{\prime \prime}, x$);
End

Exercise 2.

Write an algorithm that asks the user to enter the two limits a and b of an interval $[a ; b]$. Check the entered values.
Then ask it to enter a value x, tell it if $\mathrm{x} \in[a ; b]$
Algorithm interval
var
inf, sup , val :real
write ("enter an interval ([$x x, x x]$) [") ;
read(inf, sup);
if (inf > sup)then
Ecrire (" This interval is poorly formed ") ;
else
ecrire ("Enter a value: ");
lire (val) ;
if (inf $<=$ val and val <= sup)then
printf("belongs");
else
printf (n, " does not belong to the interval [",inf, "," sup, "] ") ; endif
endif
End

Exercise 3.

Write an algorithm that reads a time measured in hours, minutes and returns the time to the next minute. Example :
Time entered 17:59 \rightarrow time after one minute 18:00

```
Algorithm Next_minute
Var
    \(H, M, H n, H n:\) integer ;
Begin
    write ( "enter Time (hh :mm) ? " ) ;
    \(\operatorname{read}(H, M)\);
    \(M n \leftarrow M+1\)
    \(H n \leftarrow H\)
    If ( \(M n=60\) ) then
    \(\mathrm{Mn} \leftarrow 0\)
        \(H n \leftarrow H+1\)
    endIf
    If (Hn=24) then
        \(H \leftarrow 0\)
    enfiF
    write ("time next minute : ",Hn, ":"Mn)
    End
```


Exercise 4.

Write an algorithm that asks the user to enter a start time (hours + minutes) and an end time (hours + minutes too).
This program must then calculate in hours + minutes the time elapsed between the start time and the end time.

```
Algorithm Gap
Var
    hStart , hEnd , mStart, mEnd , hGap , mGap : integer ;
begin
    write (" start time (hh :mm) ?" );
    read (hStart , miStart) ;
    write ("End time (hh :mm) ?" );
    read (hEnd, mEnd);
    \(h G a p \leftarrow h E n d-h S t a r t\);
    \(m\) Gap \(\leftarrow m E n d-m S t a r t ;\)
    if ( minuteEcart <0) then
        \(h\) Gap \(\leftarrow h\) Gap-1;
        \(m G a p \leftarrow m G a p+60 ;\)
    EndIf
    Write ("interval duration :",hGap, ": ",mGap);
End
```


Exercise 5.

Write an algorithm which allows you to enter the number of a day of the week and which displays "Workday" or "Weekend" depending on the day. Days are numbered 1 to 7 from Monday to Sunday.
Example: Number of day entered $4 \rightarrow$ the algorithm displays "Workday"
Number of day entered $6 \rightarrow$ the algorithm displays "Weekend"

Algorithm week
Var
Day: integer
Begin
Write ("enter a number of day ")
Read (Day)
Case day of
1: 2: 3: 4: 7: write ("Workday")
5: 6:write ("Weekend")
Else
Write ("this day doesn't exist")
End Case
End

```
#include <stdio.h>
```

\#include <stdio.h>
int main()
int main()
{
{
int Day;
int Day;
printf (" enter a number of day:");
printf (" enter a number of day:");
scanf("%d", \&Dau);
scanf("%d", \&Dau);
Case (day)
Case (day)
{
{
1: 2: 3: 4:7:
1: 2: 3: 4:7:
printf("Workday");
printf("Workday");
break;
break;
5: 6:
5: 6:
printf("Weekend ");
printf("Weekend ");
default:
default:
printf ("this day doesn't exist");
printf ("this day doesn't exist");
}
}
return 0;
return 0;
}

```

\section*{Practical Work}

\section*{Exercise 1.}

Write an algorithm that allows you to read a positive integer made up of 4 digits and tell if it is palindrome.
Example: 1221, 9559 are palindromes, on the other hand, 1591 and 1225 are not.
```

\#include < stdio.h>
int main ()
i
int n, u, d, c, m;
printf ("enter an integer: ");
scanf("\%d", \&n);
$u=n \% 10$; $/ / u$: unit numbe
$d=n / 10 \% 10 ; \quad / /$ Tens number

```
```

c=n/100%10;
// Hundreds number
m=n/1000; // Thousands number
if((a==m)\&\&(c== d))
printf("%d is palindrome ",n);
else
printf("%d is not palindrome ",n);
return 0;
}

```

Exercise 2. Write a program that reads two positive integers and informs us if one of them is divisible by the other. Example: Values entered 4 and \(17 \rightarrow\) none is divisible by the other
\[
\text { Values entered } 24 \text { and } 120 \rightarrow 120 \text { is divisible by } 24
\]
```

\#include <stdio.h>
int main ()
f
int a, b,;
printf ("enter 2 integers: ");
scanf("\%d\%d", \&a,\&b);
if $(a \% b==0)$
printf("\%d is divisible by \%d",a,b);
else
if $(b \% a==0)$
printf("\%d is divisible by \%d",b,a);
else
printf ("none is divisible by the other");
return 0 ;

```

Exercise 3. Write a program asks the user to enter a character then it informs them if it is a letter or a digit or another character. (try to look up the ASCII code)
Example: \(\quad\)\begin{tabular}{ll} 
& Entered character: \\
& Entered character: \(\rightarrow\) is a digit \\
& \\
& Entered character: \\
& \(\prime \prime \rightarrow\) is a letter \\
&
\end{tabular}
```

\#include<stdio.h>
int main ()
l
char c;
printf("enter a character: ");
scanf("%c", \&c,);
if(c>=48 \&\& c<=57)
printf("%c is a digit ",c);
else
if((c>=65 \& \&c<= 90) |(c>=97 \&\&c<= 122))
printf("%c is a lettre",c);
else
printf("%c is another charcter ",c);
return 0;
}

```
```

